

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2301566

FCC RF Test Report

Report No.: JYTSZ-R12-2301566

Applicant: TECNO MOBILE LIMITED

Address of Applicant: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

19-25 SHAN MEI STREET FOTAN NT HONGKONG

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: KJ6s

Trade Mark: TECNO

FCC ID: 2ADYY-KJ6S

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 17 Oct., 2023

Date of Test: 18 Oct., to 02 Nov., 2023

Date of Report Issued: 13 Nov., 2023

Test Result: PASS

Project by: _____ Date: ____ 13 Nov., 2023

Reviewed by: Date: 13 Nov., 2023

Approved by: _____ Date: ____ 13 Nov., 2023

Manager

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description	
00	03 Nov., 2023	Original	
01	13 Nov., 2023	Updated page 10 of the report	

2 Contents

			Page
С	over Paç	je	1
1	Vers	ion	2
2	Cont	ents	3
3	Gene	eral Information	4
	3.1	Client Information	4
	3.2	General Description of E.U.T.	4
	3.3	Test Mode and Test Environment	5
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Measurement Uncertainty	5
	3.6	Additions to, Deviations, or Exclusions from the Method	5
	3.7	Laboratory Facility	5
	3.8	Laboratory Location	6
	3.9	Test Instruments List	6
4	Meas	surement Setup and Procedure	7
	4.1	Test Channel	7
	4.2	Test Setup	7
	4.3	Test Procedure	9
5	Test	Results	10
	5.1	Summary	10
	5.1.1	Clause and Data Summary	10
	5.1.2	Test Limit	11
	5.2	Test Result	12
	5.2.1	Radiated spurious emissions Spot-check	12
	522	Conducted Output Power Spot-check	16

3 General Information

3.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

3.2 General Description of E.U.T.

3.2 General Descrip	MOII OI E.O.II.
Product Name:	Mobile Phone
Model No.:	KJ6s
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY), 2 Mbps (LE 2M PHY), 125 kbps (LE Coded PHY, S=8), 500 kbps (LE Coded PHY, S=2)
Antenna Type:	Internal Antenna
Antenna Gain:	-2.50dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.87V,4900mAh
AC Adapter:	Adapter1: Model: U330TSA Input: AC100-240V, 50/60Hz, 1.5A Output: DC 5.0V, 3.0A 15W or 10.0V, 3.3A 33.0W MAX Adapter2: Model: U330TSB Input: AC100-240V, 50/60Hz, 1.5A Output: DC 5.0V, 3.0A 15W or 5V-10.0V, 3.3A or 11.0V, 3.0A 33.0W MAX
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2301566

3.3 Test Mode and Test Environment

Test Mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation
5	

- Remark:
- 1. For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, found 1 Mbps (LE 1M PHY) was worse case mode. The report only reflects the test data of worst mode.
- 2. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report.

Operating Environment:	
Temperature:	15°C ~ 35°C
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar
Voltage:	Nominal: 3.87Vdc, Extreme: Low 3.45Vdc, High 4.45Vdc
	Logan Li (Conducted measurement)
Test Engineer:	Kiran Zeng (Conducted emission measurement)
	Robin Gu (Radiated emission measurement)

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))		
Conducted Emission for LISN (9kHz ~ 150kHz)	3.57 dB		
Conducted Emission for LISN (150kHz ~ 30MHz)	3.14 dB		
Radiated Emission (30MHz ~ 200MHz) (3m SAC)	4.6 dB		
Radiated Emission (200MHz ~ 1000MHz) (3m SAC)	5.8 dB		
Radiated Emission (1GHz ~ 6GHz) (3m FAR)	4.95 dB		
Radiated Emission (6GHz ~ 18GHz) (3m FAR)	5.23 dB		
Radiated Emission (18GHz ~ 40GHz) (3m FAR)	5.32 dB		

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://jyt.lets.com

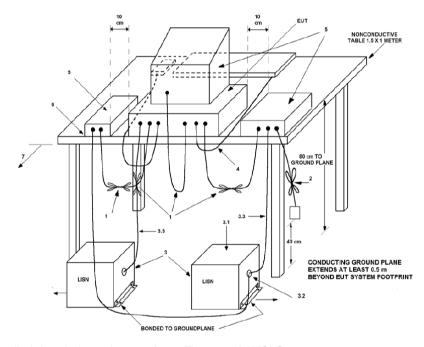
3.9 Test Instruments List

Radiated Emission(3m FAR):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m FAR	YUNYI	9m*6m*6m	WXJ097	06-15-2023	06-14-2028	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ097-2	07-13-2023	07-12-2024	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	07-02-2021	07-01-2024	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ097-3	07-14-2023	07-13-2024	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	01-09-2023	01-08-2024	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	01-09-2023	01-08-2024	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-6	01-09-2023	01-08-2024	
Pre-amplifier (30MHz ~ 1GHz)	YUNYI	PAM-310N	WXJ097-5	05-14-2023	05-13-2024	
Pre-amplifier (1GHz ~ 18GHz)	YUNYI	PAM-118N	WXJ097-6	05-14-2023	05-13-2024	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	01-11-2023	01-10-2024	
EMI Test Receiver	Rohde & Schwarz	ESCI3	WXJ003	01-10-2023	01-09-2024	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-10-2023	01-09-2024	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ081-1	06-13-2023	06-12-2024	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-13M	WXG097-1	08-01-2023	07-31-2024	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG097-2	08-01-2023	07-31-2024	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG097-3	08-01-2023	07-31-2024	
High Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Low Band Reject Filter Group	Tonscend	JS0806-F	WXJ097-4	N/A		
Test Software	Tonscend	TS+		Version: 5.0.0		

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-2	09-25-2023	09-24-2024	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	01-09-2023	01-08-2025	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	09-25-2023	09-24-2024	
DC Power Supply	Keysight	E3642A	WXJ025-2	09-25-2023	09-24-2024	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006 N/A		I/A	
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0			

4 Measurement Setup and Procedure

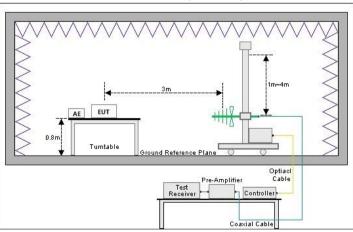
4.1 Test Channel

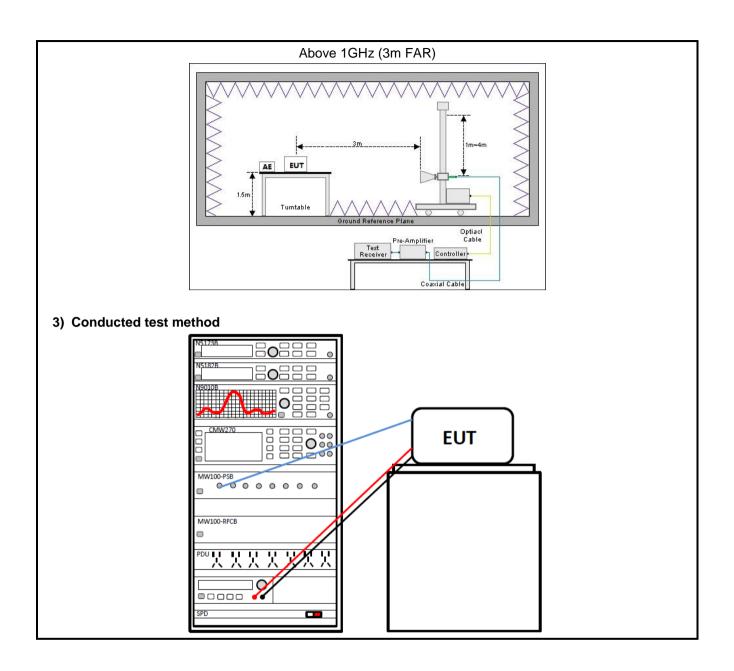

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	20	2442	39	2480
1	2404	20	2442	38	2478

Note: For LE 2M PHY, channels 1,12, 39 have been removed. Therefore, at LE 2M PHY, channels 1,20, and 38 were selected to correspond to the lowest, middle, and highest channels respectively for testing

4.2 Test Setup


1) Conducted emission measurement:


Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

4.3 Test Procedure

4.5 Test Flocedule	
Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz:
radiated emission	The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to
	 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 10Um
	For above 1GHz: 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	 Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

Report No.: JYTSZ-R12-2301566

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

This report is revised according to the JYTSZ-R12-2301306 report, FCC ID: 2ADYY-KJ6 issued by JianYan Testing Group Shenzhen Co., Ltd. Differences: Dual card to single card, change the SIM card seat, by replacing the software and card to achieve, PCBA has not changed. Add bands 13 and 26 by modifying software and changing component suppliers for U3220, U3314, U3024, U6603, and U3305, so need to spot-check BLE Conducted Output Power and Radiated emission.

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	Please refer to report No.: JYTSZ-R12-2301306.	Please refer to report No.: JYTSZ-R12-2301306.
AC Power Line Conducted Emission	15.207	Please refer to report No.: JYTSZ-R12-2301306.	Please refer to report No.: JYTSZ-R12-2301306.
Conducted Output Power	15.247 (b)(3)	Please refer to report No.: JYTSZ-R12-2301306.	Please refer to report No.: JYTSZ-R12-2301306.
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Please refer to report No.: JYTSZ-R12-2301306.	Please refer to report No.: JYTSZ-R12-2301306.
Power Spectral Density	15.247 (e)	Please refer to report No.: JYTSZ-R12-2301306.	Please refer to report No.: JYTSZ-R12-2301306.
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Please refer to report No.: JYTSZ-R12-2301306.	Please refer to report No.: JYTSZ-R12-2301306.
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	Please refer to report No.: JYTSZ-R12-2301306.	Please refer to report No.: JYTSZ-R12-2301306.
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	Please refer to report No.: JYTSZ-R12-2301306.	Please refer to report No.: JYTSZ-R12-2301306.

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Please refer to FCC ID: 2ADYY-KJ6, report No.: JYTSZ-R12-2301306 issue by JianYan Testing Group Shenzhen Co., Ltd.
- 3. N/A: Not Applicable.
- 4. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:	ANSI C63.10-2013
	KDB 558074 D01 15.247 Meas Guidance v05r02

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

5.1.2 Test Limit

Test items			Lim	nit			
		Frequency		Limit (d	iΒμV)		
		(MHz)	Quas	i-Peak	Average		
AC Power Line Conducted		0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1		
Emission		0.5 – 5	į.	56	46		
		5 – 30		60	50		
		Note 1: The limit level in dBµV Note 2: The more stringent limit			m of frequency.		
Conducted Output Power		systems using digital m l 5725-5850 MHz bands		the 902-928	MHz, 2400-2483.5 MH	łz,	
6dB Emission Bandwidth	The	e minimum 6 dB bandwid	lth shall be a	it least 500 k	Hz.		
99% Occupied Bandwidth	N/A						
Power Spectral Density	inte	digitally modulated syst intional radiator to the ar id during any time interva	ntenna shall i	not be greate	er than 8 dBm in any 3		
Band-edge Emission Conduction Spurious Emission	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
	whi	ts specified in §15.209(a ch fall in the restricted b	IB instead of a) is not requ ands, as defi	section, the 20 dB. Atter ired. In addit ined in §15.2	er a time interval, as attenuation required un uation below the generation, radiated emission (05(a), must also comp	cted nder eral s	
	whi	ts specified in §15.209(a ch fall in the restricted b	IB instead of a) is not requ ands, as defi	section, the 20 dB. Atter ired. In addit ined in §15.209 d in §15.209	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also composa) (see §15.205(c)).	cted nder eral s	
	whi	ts specified in §15.209(a ch fall in the restricted ba the radiated emission li	IB instead of a) is not reque ands, as defi mits specifie	section, the 20 dB. Atter ired. In addit ined in §15.209 d in §15.209	er a time interval, as attenuation required un uation below the generation, radiated emission (05(a), must also comp	cted nder eral s	
	whi	ts specified in §15.209(a ch fall in the restricted ban the radiated emission life	IB instead of i) is not requands, as definits specifie	section, the 20 dB. Atterired. In additined in §15.209 BµV/m)	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also composa) (see §15.205(c)).	cted nder eral s	
Emissions in Restricted	whi	ts specified in §15.209(a ch fall in the restricted ba the radiated emission li Frequency (MHz)	IB instead of i) is not requands, as definits specifie Limit (d @ 3m	section, the 20 dB. Atter ired. In additined in §15.209 BµV/m) @ 10m	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also composite (see §15.205(c)).	cted nder eral s	
Emissions in Restricted Frequency Bands	whi	ts specified in §15.209(a ch fall in the restricted banthe radiated emission life (MHz) 30 – 88	IB instead of i) is not requands, as definite specifie Limit (d @ 3m 40.0 43.5 46.0	section, the 20 dB. Atterired. In additined in §15.209 BµV/m) @ 10m 30.0	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also composa) (see §15.205(c)). Detector Quasi-peak	cted nder eral s	
	whi	ts specified in §15.209(a ch fall in the restricted bath the radiated emission life (MHz) 30 – 88 88 – 216	IB instead of i) is not requands, as definits specifie Limit (d @ 3m 40.0 43.5	section, the 20 dB. Atterired. In additined in §15.209 d in §15.209 BµV/m) @ 10m 30.0 33.5	er a time interval, as attenuation required unuation below the generion, radiated emission (05(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak	cted nder eral s	
	whi	ts specified in §15.209(a ch fall in the restricted ban the radiated emission line frequency (MHz) 30 – 88 88 – 216 216 – 960	IB instead of i) is not requands, as definites specifie Limit (d @ 3m 40.0 43.5 46.0 54.0	section, the 20 dB. Atter ired. In additined in §15.209 BµV/m) @ 10m 30.0 33.5 36.0 44.0	er a time interval, as attenuation required unuation below the generion, radiated emission (05(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak	cted nder eral s	
Frequency Bands	whi	ts specified in §15.209(a ch fall in the restricted bath the radiated emission limits and the radia	IB instead of i) is not requands, as definites specifie Limit (d @ 3m 40.0 43.5 46.0 54.0	section, the 20 dB. Atter ired. In additined in §15.209 BµV/m) @ 10m 30.0 33.5 36.0 44.0	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral s	
Frequency Bands Emissions in Non-restricted	whi	ts specified in §15.209(a ch fall in the restricted ban the radiated emission line Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000	IB instead of i) is not requands, as definites specifie Limit (d @ 3m 40.0 43.5 46.0 54.0	section, the 20 dB. Atterired. In additined in §15.209 dd	er a time interval, as attenuation required unuation below the generation, radiated emission (05(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral s	
Frequency Bands Emissions in Non-restricted	whi	ts specified in §15.209(a ch fall in the restricted bath the radiated emission limits and the radia	IB instead of i) is not requands, as definites specific Limit (d @ 3m 40.0 43.5 46.0 54.0 pplies at transitio	section, the 20 dB. Atterired. In additined in §15.209 d	er a time interval, as attenuation required unuation below the gencion, radiated emission (05(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral s	

5.2 Test Result

5.2.1 Radiated spurious emissions Spot-check

Above 1GHz:

		ВІ	LE Tx (LE 1M PH	Y)		
		Test c	hannel: Lowest cl	nannel		
		D	etector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	57.75	-7.66	50.09	74.00	23.91	Vertical
4804.00	56.74	-7.66	49.08	74.00	24.92	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	47.09	-7.66	39.43	54.00	14.57	Vertical
4804.00	46.90	-7.66	39.24	54.00	14.76	Horizontal
		Test o	channel: Middle ch	nannel		
			etector: Peak Val			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	57.54	-7.77	49.77	74.00	24.23	Vertical
4884.00	56.88	-7.77	49.11	74.00	24.89	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	46.74	-7.77	38.97	54.00	15.03	Vertical
4884.00	46.79	-7.77	39.02	54.00	14.98	Horizontal
			hannel: Highest c			
			etector: Peak Val		T	ı
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	57.61	-7.82	49.79	74.00	24.21	Vertical
4960.00	57.16	-7.82	49.34	74.00	24.66	Horizontal
	<u>, </u>	Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	46.80	-7.82	38.98	54.00	15.02	Vertical
4960.00	47.00	-7.82	39.18	54.00	14.82	Horizontal

Remark:

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

(dB)

15.28

14.89

BLE Tx (LE 2M PHY)									
		Test c	hannel: Lowest c	hannel					
Detector: Peak Value									
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	1 Glarization			
4808.00	57.66	-7.66	50.00	74.00	24.00	Vertical			
4808.00	57.09	-7.66	49.43	74.00	24.57	Horizontal			
		Det	ector: Average Va	alue					
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Folalization			
4808.00	47.25	-7.66	39.59	54.00	14.41	Vertical			
4808.00	46.65	-7.66	38.99	54.00	15.01	Horizontal			
		Test o	channel: Middle ch	nannel					
		D	etector: Peak Val	ue					
Frequency	Read Level	Factor	Level	Limit	Margin	Dolorization			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization			
4884.00	57.17	-7.77	49.40	74.00	24.60	Vertical			
4884.00	56.80	-7.77	49.03	74.00	24.97	Horizontal			
		Det	ector: Average Va	alue					
Frequency	Read Level	Factor	Level	Limit	Margin	Delevierstiere			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization			
4884.00	46.96	-7.77	39.19	54.00	14.81	Vertical			
4884.00	46.39	-7.77	38.62	54.00	15.38	Horizontal			
		Test c	hannel: Highest c	hannel					
		D	etector: Peak Val	ue					
Frequency	Read Level	Factor	Level	Limit	Margin	Delesi (i			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization			
4956.00	57.64	-7.82	49.82	74.00	24.18	Vertical			
4956.00	57.36	-7.82	49.54	74.00	24.46	Horizontal			
		Det	ector: Average Va	alue					
Frequency	Read Level	Factor	Level	Limit	Margin	51			
l					1	l Polarization			

Remark:

(MHz)

4956.00

4956.00

(dBµV)

46.54

46.93

(dBµV/m)

38.72

39.11

 $(dB\mu V/m)$

54.00

54.00

(dB)

-7.82

-7.82

Project No.: JYTSZR2310028

Vertical

Horizontal

Level = Reading + Factor.

Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

		BEL T	x (LE Coded PH)	Y, S=2)		
		Test o	channel: Lowest cl	nannel		
		D	etector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	57.89	-7.66	50.23	74.00	23.77	Vertical
4804.00	57.20	-7.66	49.54	74.00	24.46	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	47.52	-7.66	39.86	54.00	14.14	Vertical
4804.00	46.84	-7.66	39.18	54.00	14.82	Horizontal
		Test o	channel: Middle ch	nannel		
		D	etector: Peak Val	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	57.52	-7.77	49.75	74.00	24.25	Vertical
4884.00	57.09	-7.77	49.32	74.00	24.68	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	47.25	-7.77	39.48	54.00	14.52	Vertical
4884.00	46.85	-7.77	39.08	54.00	14.92	Horizontal
			hannel: Highest c etector: Peak Val			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	57.80	-7.82	49.98	74.00	24.02	Vertical
4960.00	56.60	-7.82	48.78	74.00	25.22	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	47.12	-7.82	39.30	54.00	14.70	Vertical
4960.00	46.55	-7.82	38.73	54.00	15.27	Horizontal
			1		1	1

Remark:

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

		BEL T	x (LE Coded PH)	Y, S=8)		
			channel: Lowest cl			
		D	etector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	57.85	-7.66	50.19	74.00	23.81	Vertical
4804.00	57.04	-7.66	49.38	74.00	24.62	Horizontal
		Det	tector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	47.10	-7.66	39.44	54.00	14.56	Vertical
4804.00	46.35	-7.66	38.69	54.00	15.31	Horizontal
		T /	1 1 1 1 1 1 1			
			channel: Middle ch			
	I		etector: Peak Val			
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
4884.00	57.74	-7.77	49.97	74.00	24.03	Vertical
4884.00	56.56	-7.77	48.79	74.00	25.21	Horizontal
	Dandland		tector: Average Va		NAi-	
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	47.59	-7.77	39.82	54.00	14.18	Vertical
4884.00	46.52	-7.77	38.75	54.00	15.25	Horizontal
		Test c	hannel: Highest c	hannel		
			etector: Peak Val			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	58.18	-7.82	50.36	74.00	23.64	Vertical
4960.00	56.21	-7.82	48.39	74.00	25.61	Horizontal
		Det	tector: Average Va	alue	•	
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4960.00	48.08	-7.82	40.26	54.00	13.74	Vertical

Remark:

4960.00

46.49

38.67

54.00

15.33

-7.82

Project No.: JYTSZR2310028

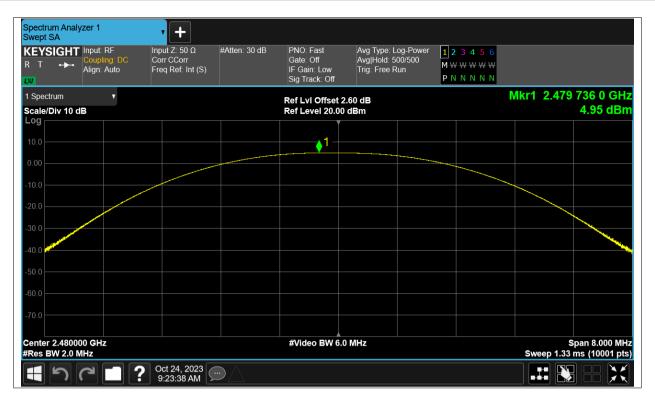
Horizontal

^{1.} Level = Reading + Factor.

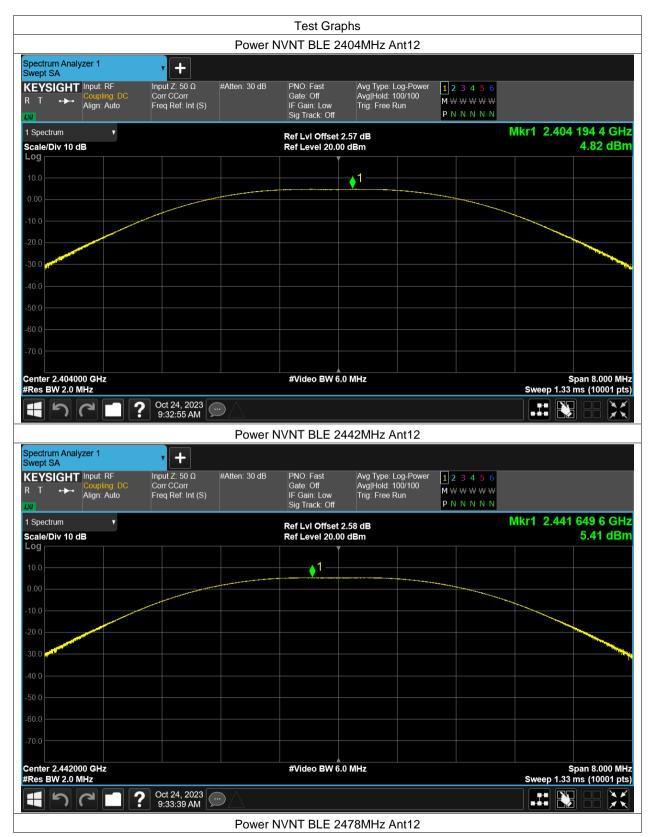
^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.


5.2.2 Conducted Output Power Spot-check

Appendix A - BLE-1M PHY


Maximum Conducted Output Power

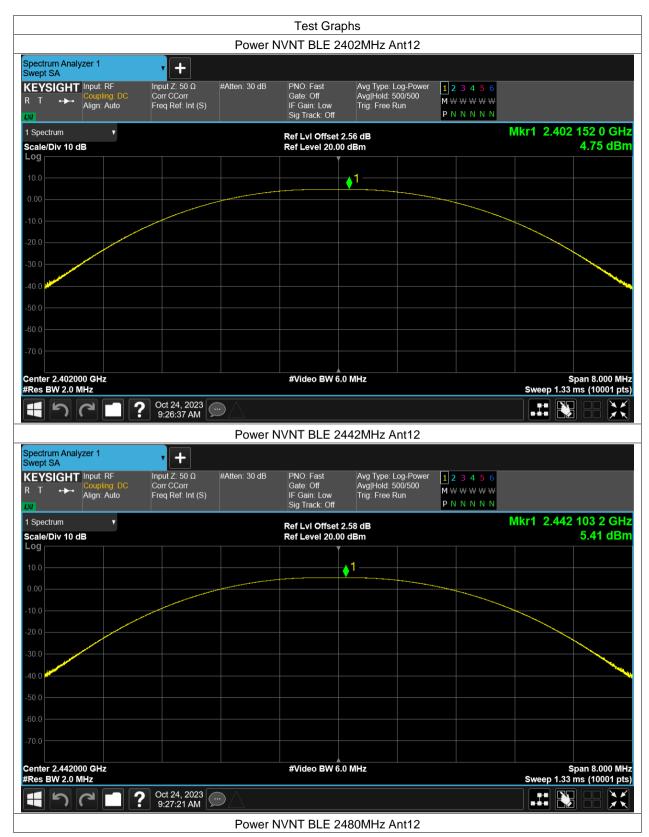
maximum conductor curput i circi										
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict				
NVNT	BLE	2402	Ant12	4.727	30	Pass				
NVNT	BLE	2442	Ant12	5.398	30	Pass				
NVNT	BLE	2480	Ant12	4.946	30	Pass				



Appendix A - BLE-2M PHY

Maximum Conducted Output Power

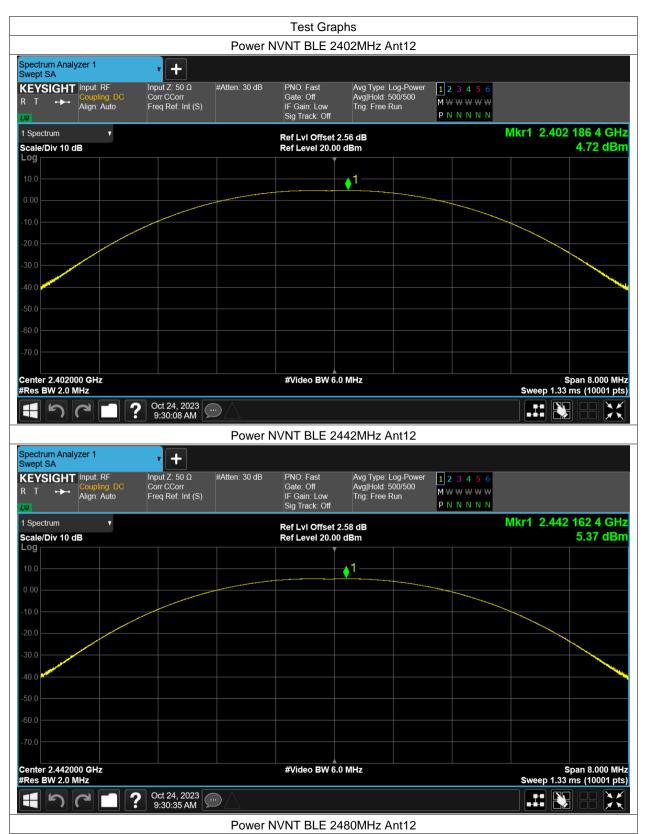
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2404	Ant12	4.821	30	Pass
NVNT	BLE	2442	Ant12	5.407	30	Pass
NVNT	BLE	2478	Ant12	5.12	30	Pass



Appendix A - BLE-Coded PHY,S=2

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant12	4.755	30	Pass
NVNT	BLE	2442	Ant12	5.414	30	Pass
NVNT	BLE	2480	Ant12	4.956	30	Pass



Appendix A - BLE-Coded PHY,S=8

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant12	4.723	30	Pass
NVNT	BLE	2442	Ant12	5.365	30	Pass
NVNT	BLE	2480	Ant12	4.894	30	Pass

-----End of report-----