

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101306

FCC REPORT

Applicant: TECNO MOBILE LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35

SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: KG7

Trade mark: TECNO

FCC ID: 2ADYY-KG7

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Jul., 2021

Date of Test: 13 Jul., to 28 Jul., 2021

Date of report issued: 13 Aug., 2021

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	29 Jul., 2021	Original
01	13 Aug., 2021	Update Page 39

Tested by:	Mike ou	Date:	13 Aug., 2021	
	Test Engineer	_		

Reviewed by:

| Date: 13 Aug., 2021 | Project Engineer | Date: 13 Aug., 2021 | Date: 13 Aug., 2021 | Date: 14 Aug., 2021 | Date: 15 Aug., 2021 | Date: 16 Aug., 2021 | Date: 17 Aug., 2021 | Date: 18 Aug., 2021 | Date: 18

Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	3
4		
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T	5
	5.3 TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
	5.4 DESCRIPTION OF SUPPORT UNITS	6
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 LABORATORY FACILITY	
	5.7 LABORATORY LOCATION	
	5.8 TEST INSTRUMENTS LIST	7
6	TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT	8
	6.2 CONDUCTED EMISSION	
	6.3 CONDUCTED OUTPUT POWER	
	6.4 OCCUPY BANDWIDTH	13
	6.5 POWER SPECTRAL DENSITY	14
	6.6 BAND EDGE	
	6.6.1 Conducted Emission Method	
	6.6.2 Radiated Emission Method	
	6.7 Spurious Emission	
	6.7.1 Conducted Emission Method	
	6.7.2 Radiated Emission Method	34
7	7 TEST SETUP PHOTO	41
8	B EUT CONSTRUCTIONAL DETAILS	42
J		······································

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass
Power Spectral Density	15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass
Conducted Band Edge	45 247 (4)	Appendix A – 2.4G Wi-Fi	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	15 205 8 15 200	Appendix A – 2.4G Wi-Fi	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone		
Model No.:	KG7		
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)		
	2422MHz~2452MHz: 802.11n(HT40)		
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)		
	7: 802.11n(HT40)		
Channel separation:	5MHz		
Modulation technology:	Direct Sequence Spread Spectrum (DSSS)		
(IEEE 802.11b)			
Modulation technology:	Orthogonal Frequency Division Multiplexing(OFDM)		
(IEEE 802.11g/802.11n)			
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps		
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps		
Data speed (IEEE 802.11n):	Up to 150Mbps		
Antenna Type:	Internal Antenna		
Antenna gain:	1.2dBi		
Power supply:	Rechargeable Li-ion Polymer Battery DC3.85V, 4900mAh		
AC adapter:	Model: U100TSA		
	Input: AC100-240V, 50/60Hz, 0.3A		
	Output: DC 5.0V, 2.0A		
Test Sample Condition:	The test samples were provided in good working order with no visible defects.		

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

Report No: JYTSZB-R12-2101306

5.3 Test environment and mode, and test samples plans

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

0 1	'			
Per-scan all kind of data rate, the follow list were the worst case.				
Mode	Data rate			
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			
802.11n(HT40)	13.5Mbps			
Test Samples Plans:				
Samples Number	Used for Test Items			

Samples Number	Used for Test Items		
2#	Conducted measurements test method		
1#	Radiated measurements test method		
1#	EUT constructional details		

Remark: Jian Yan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
	Expanded Officertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
rest Equipment	Manufacturer	wiodei No.	Serial No.	(mm-dd-yy)	(mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Diconical Antenna	SURWARZDEUK	VUDASTIT	309	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Hom Amenna	SOHWARZBECK	DDI 1A9 120D	1005	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\	ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Cimulated Station	Dahda & Cahwarz	CNAVAGOO	140402	07-22-2020	07-21-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2021	07-21-2022
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019 04-06-2021 04-07-2022		04-07-2022
Test Software	R&S	EMC32	Version: 10.50.40		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022	
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022	
LICNI	Dahda 9 Cahusara	E0110 75	0.420024/040	06-18-2020	06-17-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2021	06-17-2022	
Cable	HP	10503A	N/A	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:								
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021			
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021			
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021			
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021			
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021			
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A			
PDU	MWRF-test	XY-G10	N/A	N/A	N/A			
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0					
DC Power Supply	Keysight	E3642A	MY60296194 11-27-2020 11-26-202					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:	FCC Part 15 C Section 15.203 /247(b))
-----------------------	-------------------------------------	----

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

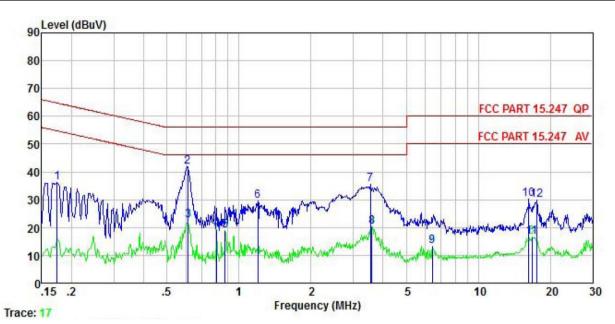
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.2 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

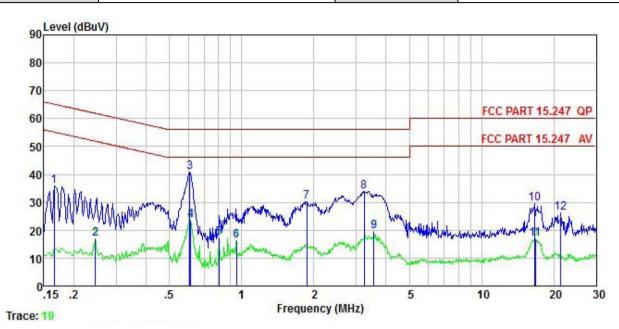
6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.2	207				
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz					
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarit	hm of the frequency.				
Test procedure	line impedance stabiliz 50ohm/50uH coupling 2. The peripheral devices LISN that provides a 50 termination. (Please re photographs). 3. Both sides of A.C. line interference. In order to positions of equipment	LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).				
Test setup:	LISN	st	er — AC power			
Test Instruments:	Refer to section 5.9 for deta	ails				
Test mode:	Refer to section 5.3 for deta	ails				
Test results:	Passed					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 9 of 42

Measurement Data:

Product name:	Mobile Phone	Product model:	KG7
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

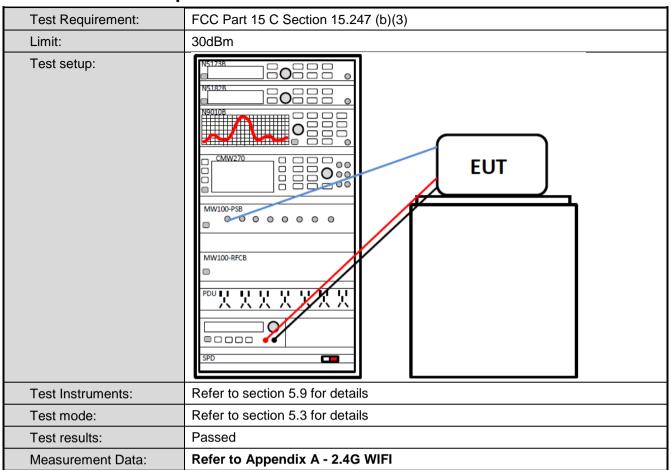

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu₹	<u>dB</u>	<u>d</u> B	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.174	26.14	10.13	-0.11	0.01	36.17	64.77	-28.60	QP
2	0.611	31.73	10.38	-0.38	0.02	41.75	56.00	-14.25	QP
3	0.614	12.67	10.38	-0.38	0.02	22.69	46.00	-23.31	Average
4	0.809	8.98	10.44	-0.05	0.03	19.40	46.00	-26.60	Average
1 2 3 4 5 6 7 8 9	0.876	8.32	10.45	0.13	0.04	18.94	46.00	-27.06	Average
6	1.197	18.72	10.50	0.26	0.09	29.57	56.00	-26.43	QP
7	3.547	24.89	10.61	-0.11	0.08	35.47	56.00	-20.53	QP
8	3.584	9.79	10.61	-0.11	0.08	20.37	46.00	-25.63	Average
9	6.420	1.56	10.71	1.00	0.09	13.36	50.00	-36.64	Average
10	16.226	16.12	11.08	2.91	0.16	30.27	60.00	-29.73	QP
11	16.750	2.86	11.10	2.60	0.16	16.72	50.00	-33.28	Average
12	17.568	16.48	11.12	2.13	0.15	29.88	60.00	-30.12	QP

Notes:

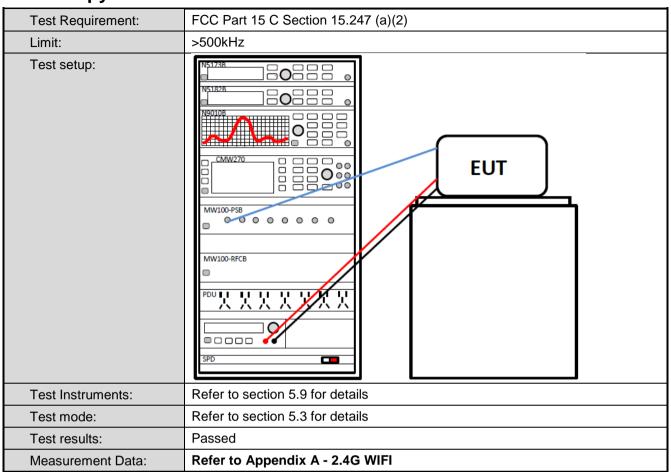
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	KG7
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

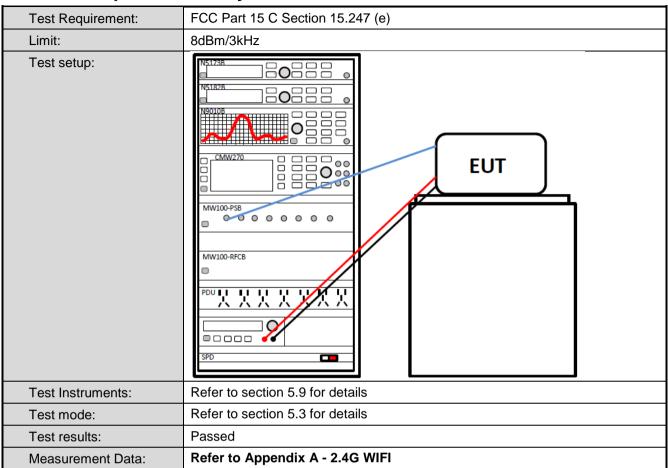
	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	—dBu∜	<u>ab</u>	<u>d</u> B		dBu₹	—dBu∀	<u>ab</u>	
1 2 3 4 5 6 7 8	0.166	25.87	9.90	0.01	0.01	35.79		-29.37	
2	0.246	6.94	9.97	0.01	0.01	16.93			Average
3	0.608	30.45	10.30	0.04	0.02	40.81	56.00	-15.19	QP
4	0.614	13.35	10.31	0.04	0.02	23.72	46.00	-22.28	Average
5	0.804	6.76	10.44	0.06	0.03	17.29	46.00	-28.71	Average
6	0.953	5.58	10.53	0.07	0.05	16.23	46.00	-29.77	Average
7	1.868	19.18	10.78	0.16	0.19	30.31	56.00	-25.69	QP
8	3, 241	22.63	10.92	0.37	0.07	33.99		-22.01	
9	3.565	8.01	10.94	0.43	0.08	19.46			Average
10	16.661	15.76	11.47	2.13	0.16	29.52		-30.48	
11	16.750	3.28	11.48	2.05	0.16	16.97			Average
12	21.373	14.11	11.66	0.37	0.17	26.31		-33.69	


Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.


6.3 Conducted Output Power

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



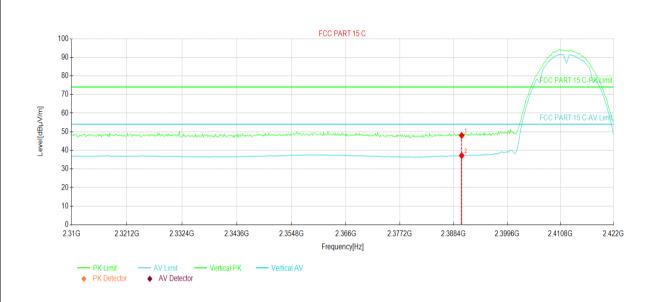
6.4 Occupy Bandwidth

6.5 Power Spectral Density

6.6 Band Edge

6.6.1 Conducted Emission Method

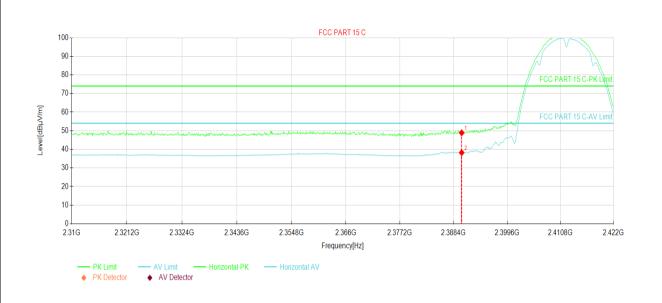
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.				
Test setup:	NS182B NS18B NS182B NS18B NS1				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Measurement Data:	Refer to Appendix A - 2.4G WIFI				


6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Frequency Range:	2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW				
	Above 1GHz	Peak	1MHz	3MHz	+			
Limite	Frequency	RMS	<u> 1MHz </u>	3MHz	z Average Value Remark			
Limit:			54.00	3111)	Average Value			
	Above 1GH		74.00		Peak Value			
Test procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 							
Test setup:	- 150cm	AE EUT (Turntable)	Ground Reference Plane		na Tower			
Test Instruments:	Refer to section 5	.9 for details						
Test mode:	Refer to section 5	.3 for details						
Test results:	Passed							

802.11b mode:

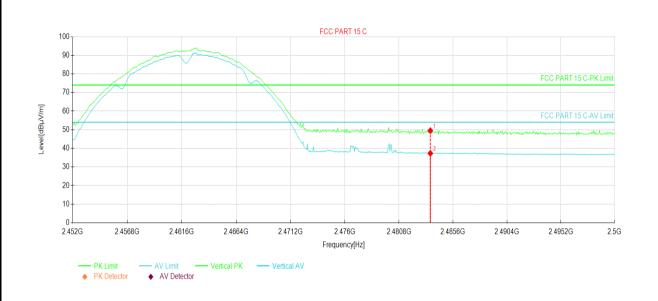
Product Name:	Mobile Phone	Product Model:	KG7
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


NO	Freq [MHz].	Reading [dBuV/m]	Level [dBuV/m]	Factor.a [dB].a	Limit. [dBuV/m].	Margin [dB]	Trace₽	Polarity.
1₽	2390.00	40.91₽	47.99₽	7.08₽	74.00₽	26.01₽	PK₽	Vertical₽
24□	2390.00	30.09₽	37.17₽	7.08₽	54.00₽	16.83₽	AV₄⊃	Vertical₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	KG7
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


NO	Freq [MHz].	Reading. [dBuV/m].	Level [dBuV/m]	Factor [dB]	Limit. [dBuV/m].	Margin.a [dB].a	Trace₽	Polarity.
1₽	2390.00	41.80₽	48.88₽	7.08₽	74.00₽	25.12₽	PK₽	Horizontal₽
2↔	2390.00	31.15₽	38.23₽	7.08₽	54.00₽	15.77₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 42

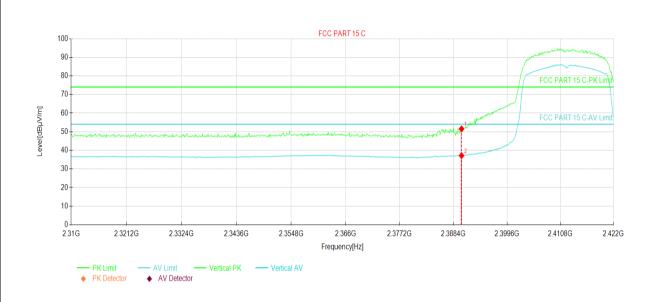
Product Name:	Mobile Phone	Product Model:	KG7
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO	Freq [MHz].	Reading. [dBuV/m].	Level [dBuV/m]	Factor.a [dB].a	Limit. [dBuV/m].	Margin.a [dB].a	Trace₽	Polarity.
1₽	2483.50₽	41.81₽	49.50₽	7.69₽	74.00₽	24.50₽	PK₽	Vertical∉
24□	2483.50₽	29.63₽	37.32₽	7.69₽	54.00₽	16.68₽	AV₄⋾	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

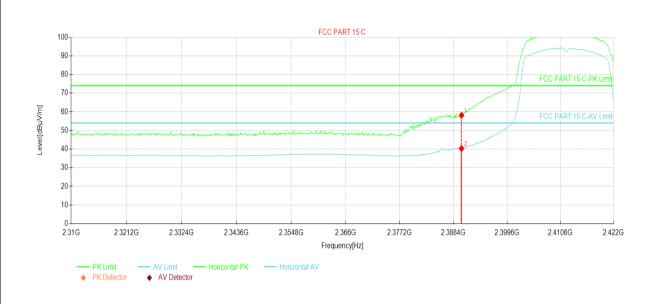
Product Name:	Mobile Phone	Product Model:	KG7
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


NO	Freq [MHz].	Reading. [dBuV/m].	Level [dBuV/m]	Factor.a [dB].a	Limit. [dBµV/m].	Margin.a [dB].a	Trace₽	Polarity.
1₽	2483.50₽	40.80₽	48.49₽	7.69₽	74.00₽	25.51₽	PK₽	Horizontal₽
24□	2483.50₽	29.55₽	37.24₽	7.69₽	54.00₽	16.76₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g mode:

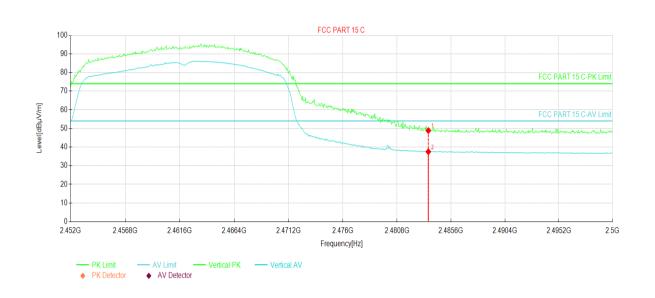
Product Name:	Mobile Phone	Product Model:	KG7
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


NO	Freq [MHz]	Reading. [dBuV/m].	Level [dBuV/m]	Factor.a [dB].a	Limit. [dBµV/m].	Margin.a [dB].a	Trace₽	Polarity.
1₽	2390.00	44.46₽	51.54₽	7.08₽	74.00₽	22.46₽	PK₽	Vertical₽
2↔	2390.00	30.10₽	37.18₽	7.08₽	54.00₽	16.82₽	AV₄⊃	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 42

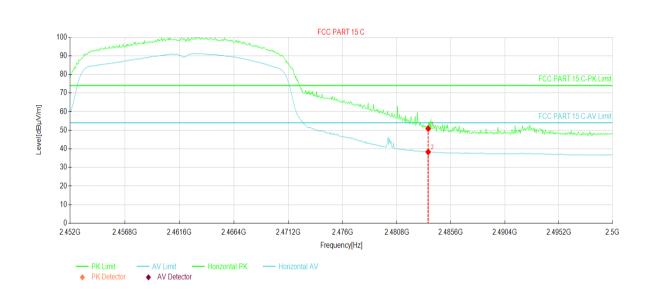
Product Name:	Mobile Phone	Product Model:	KG7
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



NO1	Freq [MHz].	Reading [dBuV/m]	Level [dBuV/m]	Factor [dB]	Limit. [dBuV/m].	Margin [dB]	Trace₽	Polarity.
1₽	2390.00	51.02₽	58.10₽	7.08₽	74.00₽	15.90₽	PK₽	Horizontal₽
2₽	2390.00	33.18₽	40.26₽	7.08₽	54.00₽	13.74₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	KG7	
Test By:	Mike	Test mode:	802.11g Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

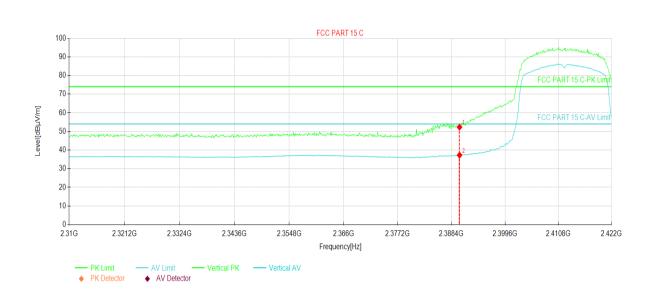

NO3	Freq [MHz].	Reading. [dBuV/m].	Level [dBuV/m]	Factor [dB]	Limit. [dBuV/m].	Margin.a [dB].a	Trace₽	Polarity.
1₽	2483.50₽	41.15₽	48.84₽	7.69₽	74.00₽	25.16₽	PK₽	Vertical₽
2↔	2483.50₽	29.83₽	37.52₽	7.69₽	54.00₽	16.48₽	AV₽	Vertical∉

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 23 of 42

Product Name:	Mobile Phone	Product Model:	KG7	
Test By:	Mike	Test mode:	802.11g Tx mode	
Test Channel:	Highest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

NO ₃	Freq [MHz].	Reading [dBuV/m]	Level [dBuV/m]	Factor [dB]	Limit [dBuV/m]	Margin [dB]	Trace∂	Polarity.
1₽	2483.50₽	43.19₽	50.88₽	7.69₽	74.00₽	23.12₽	PK₽	Horizontal₽
2₽	2483.50₽	30.64₽	38.33₽	7.69₽	54.00₽	15.67₽	AV₽	Horizontal₽

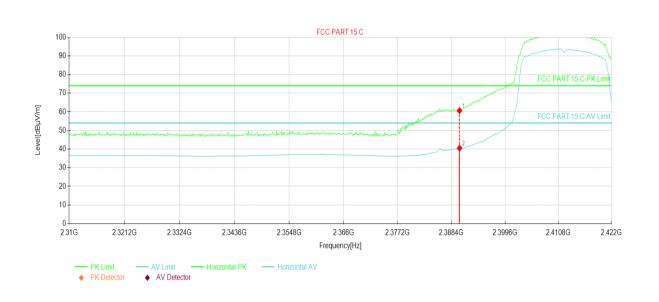

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 24 of 42

802.11n(HT20):

Product Name:	Mobile Phone	Product Model:	KG7	
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

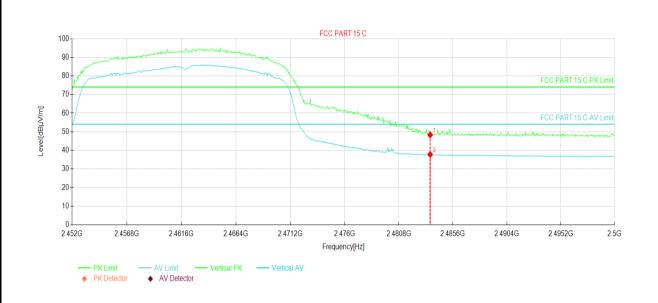
NO1	Freq [MHz].	Reading [dBuV/m]	Level [dBuV/m]	Factor.a [dB].a	Limit. [dBuV/m].	Margin [dB]	Trace∂	Polarity.
1₽	2390.00	45.22₽	52.30₽	7.08₽	74.00₽	21.70₽	PK₽	Vertical₽
2€	2390.00	30.20₽	37.28₽	7.08₽	54.00₽	16.72₽	AV₽	Vertical₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

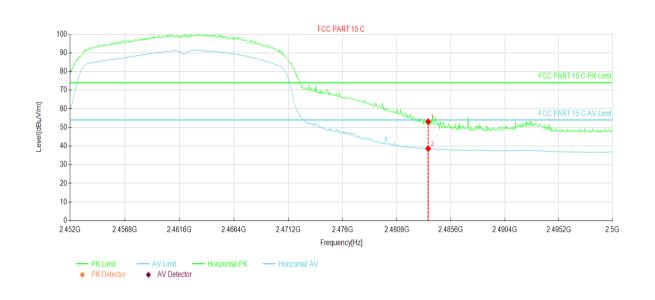
Product Name:	Mobile Phone	Product Model:	KG7	
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Lowest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	


NO	Freq [MHz]	Reading [dBuV/m]	Level [dBuV/m]	Factor.a [dB].a	Limit. [dBµV/m].	Margin.a [dB].a	Trace₽	Polarity.
1₽	2390.00	53.56₽	60.64₽	7.08₽	74.00₽	13.36₽	PK₽	Horizontal₽
24□	2390.00	33.41₽	40.49₽	7.08₽	54.00₽	13.51₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Mobile Phone	Product Model:	KG7	
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	


NO1	Freq [MHz]	Reading [dBuV/m]	Level [dBuV/m]	Factor [dB]	Limit [dBuV/m]	Margin [dB]	Trace₽	Polarity.
1 ₽	2483.50₽	40.63₽	48.32₽	7.69₽	74.00₽	25.68₽	PK₽	Vertical₽
2₽	2483.50↔	30.06₽	37.75₽	7.69₽	54.00₽	16.25₽	AV₽	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Mobile Phone	Product Model:	KG7	
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Highest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

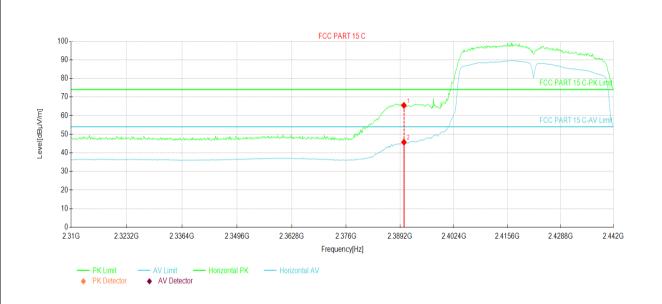

NO.,	Freq [MHz]	Reading [dBuV/m]	Level [dBuV/m]	Factor [dB]	Limit [dBuV/m]	Margin [dB]	Trace₽	Polarity. ₁
1 ₽	2483.50₽	45.36₽	53.05₽	7.69₽	74.00₽	20.95₽	PK₽	Horizontal₽
2↔	2483.50₽	30.97₽	38.66₽	7.69₽	54.00₽	15.34₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT40):

Product Name:	Mobile Phone	Product Model:	KG7	
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode	
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

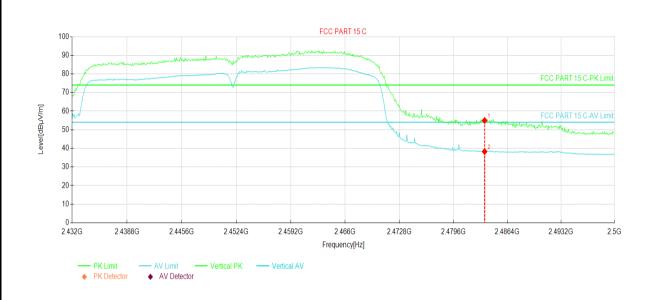
Ν	10	Freq [MHz]	Reading [dBuV/m]	Level [dBuV/m]	Factor [dB]	Limit [dBuV/m]	Margin [dB]	Trace₽	Polarity.
	1₽	2390.00₽	52.12₽	59.20₽	7.08₽	74.00₽	14.80₽	PK₽	Vertical₽
	2↩	2390.00₽	33.13₽	40.21₽	7.08₽	54.00₽	13.79₽	AV₽	Vertical∉


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

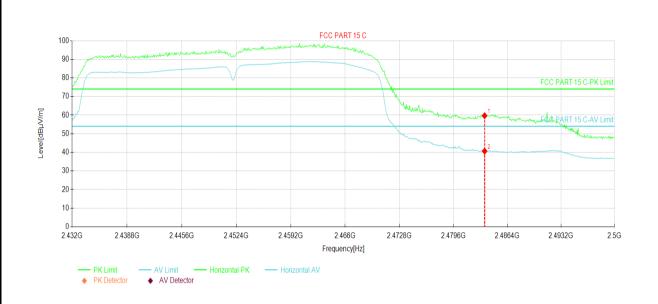
Product Name:	Mobile Phone	Product Model:	KG7
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


NO	Freq [MHz].	Reading [dBuV/m]	Level [dBuV/m]	Factor.a [dB].a	Limit. [dBuV/m].	Margin [dB]	Trace₽	Polarity.
1₽	2390.00₽	58.42₽	65.50₽	7.08₽	74.00₽	8.50₽	PK₽	Horizontal₽
24□	2390.00₽	38.64₽	45.72₽	7.08₽	54.00₽	8.28₽	AV₄⊃	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 30 of 42

Product Name:	Mobile Phone	Product Model:	KG7
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



NO ₁	Freq [MHz].	Reading. [dBuV/m].	Level [dBuV/m]	Factor.a [dB].a	Limit. [dBµV/m].	Margin.a [dB].a	Trace₽	Polarity.
1 ₽	2483.50₽	47.27₽	54.96₽	7.69₽	74.00₽	19.04₽	PK₽	Vertical∉
2₽	2483.50₽	30.59₽	38.28₽	7.69₽	54.00₽	15.72₽	AV₄⊃	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	KG7
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

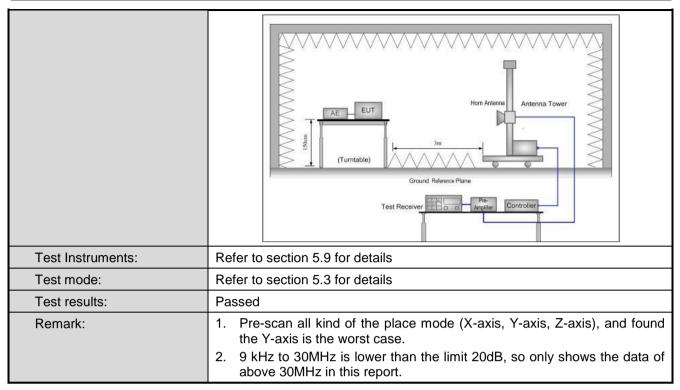
NO	Freq [MHz].	Reading [dBuV/m]	Level [dBuV/m]	Factor [dB]	Limit. [dBuV/m].	Margin.a [dB].a	Trace₽	Polarity.
1₽	2483.50₽	52.00₽	59.69₽	7.69₽	74.00₽	14.31₽	PK₽	Horizontal₽
2↔	2483.50₽	32.96₽	40.65₽	7.69₽	54.00₽	13.35₽	AV₄⋾	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS1173R					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Test Requirement:	FCC Part 15 C Se	ection 15.2	209 an	d 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Frequency Detector RBW			V	BW	Remark
	30MHz-1GHz	Quasi-peak		120KHz	300KHz		Quasi-peak Value
	Above 1GHz	Peak	(1MHz	31	ЛHz	Peak Value
	Above IGIIZ	RMS	5	1MHz	31	ИHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @10)m)		Remark
	30MHz-88MH	-		30.0			uasi-peak Value
	88MHz-216MH			33.5			uasi-peak Value
	216MHz-960M			36.0			uasi-peak Value
	960MHz-1GH		1 1 1	44.0	\	Q	uasi-peak Value
	Frequency		Limit	: (dBuV/m @3i	m)		Remark
	Above 1GHz	z –		54.0 74.0		,	Average Value Peak Value
Test Procedure:	1. The EUT w	as nlaced	d on		a rot	ating	table 0.8m(below
	(below 1GHZ 360 degrees 2. The EUT wa away from the top of a v 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to maximum reasonable of the EUT wou 10dB margin average meth	c) or 3 meters to determine to determine the remine the determine the de	er cha ine the meters ence-right a varied e max polariz mission vas tur turned ith Ma the El ting conted. (re-tes	mber(above e position of to be position of to be position of to be position of the eceiving anto the eceiving anto the eceiving anto the eceiving and to height a from 0 degrous set to Peak aximum Hold JT in peak mould be stopp otherwise the ted one by our set to be position.	1GHz the hideline hideline hideline enna, teter to of the ante as arres from the ees to the hideline bed are emissione us	z). The ghest ranged of the positions are considered the positions are considered to the posit	ters(above 1GHz) was mounted on neters above the trength. Both e set to make the to its worst case ter to 4 meters degrees to find the etion and dB lower than the beak values of that did not have ak, quasi-peak or
Test setup:	Below 1GHz EUT Turn Table Ground Pl. Above 1GHz	0.8m	m 1m			Searce Anter	nna :

Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	KG7
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

-	Frequency↓	MaxPeak↓	Limit↓	Margin↓	Height↓	Pol∂	Azimuth ↓	Corr.↓
	(MHz)∂	(dBµV/m)∂	(dBµV/m)∂	(dB)∂	(cm) <i>₽</i>		(deg)∂	(dB/m)∂
-	30.582000₽	15.53₽	30.00₽	14.47₽	100.0₽	H₽	23.0₽	-17.2∂
-	39.215000₽	16.63₽	30.00₽	13.37₽	100.0₽	V ₽	122.0↩	-15.8₽
-	68.121000₽	18.28₽	30.00₽	11.72₽	100.0₽	V ₽	191.0₽	-17.9₽
-	286.662000₽	16.76₽	36.00₽	19.24₽	100.0₽	V₽	0.0₽	-14.3₽
-	562.530000₽	21.54₽	36.00₽	14.46₽	100.0₽	V₽	46.0₽	-7.5₽
•	958.872000₽	26.17₽	36.00₽	9.83₽	100.0₽	V₽	291.0↵	0.0₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Above 1GHz

bove 1GHz						
			802.11b			
		Test ch	annel: Lowest ch	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	57.74	-9.46	48.28	74.00	25.72	Vertical
4824.00	60.20	-9.46	50.74	74.00	23.26	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	50.98	-9.46	41.52	54.00	12.48	Vertical
4824.00	54.41	-9.46	44.95	54.00	9.05	Horizontal
		Test ch	annel: Middle ch	ıannel		
		Det	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	58.14	-9.11	49.03	74.00	24.97	Vertical
4874.00	59.74	-9.11	50.63	74.00	23.37	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	51.32	-9.11	42.21	54.00	11.79	Vertical
4874.00	54.14	-9.11	45.03	54.00	8.97	Horizontal
			annel: Highest cl			
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	57.97	-8.74	49.23	74.00	24.77	Vertical
4924.00	59.86	-8.74	51.12	74.00	22.88	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	51.07	-8.74	42.33	54.00	11.67	Vertical

Remark:

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

	802.11g								
	Test channel: Lowest channel								
		De	tector: Peak Valu	ie					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4924.00	58.05	-9.46	48.59	74.00	25.41	Vertical			
4924.00	60.26	-9.46	50.80	74.00	23.20	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4824.00	50.97	-9.46	41.51	54.00	12.49	Vertical			
4824.00	4824.00 54.22 -9.46 44.76 54.00 9.24 Horizontal								

Test channel: Middle channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4874.00	58.04	-9.11	48.93	74.00	25.07	Vertical		
4874.00	60.70	-9.11	51.59	74.00	22.41	Horizontal		
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4874.00	51.38	-9.11	42.27	54.00	11.73	Vertical		
4874.00	54.19	-9.11	45.08	54.00	8.92	Horizontal		

Test channel: Highest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4924.00	57.61	-8.74	48.87	74.00	25.13	Vertical		
4924.00	60.87	-8.74	52.13	74.00	21.87	Horizontal		
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4924.00	51.03	-8.74	42.29	54.00	11.71	Vertical		
4924.00	53.91	-8.74	45.17	54.00	8.83	Horizontal		

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11n(HT20)			
		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	57.25	-9.46	47.79	74.00	26.21	Vertical
4824.00	61.01	-9.46	51.55	74.00	22.45	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	50.67	-9.46	41.21	54.00	12.79	Vertical
4824.00	53.90	-9.46	44.44	54.00	9.56	Horizontal
		Ta at ali	and the state of			
			annel: Middle ch			
	T 5 11 1	Dei	tector: Peak Valu		Manain	T
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	57.30	-9.11	48.19	74.00	25.81	Vertical
4874.00	61.00	-9.11	51.89	74.00	22.11	Horizontal
		Dete	ctor: Average Va	alue	1	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	50.85	-9.11	41.74	54.00	12.26	Vertical
4874.00	53.50	-9.11	44.39	54.00	9.61	Horizontal
			annel: Highest cl			
		Det	ector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	57.01	-8.74	48.27	74.00	25.73	Vertical
4924.00	60.55	-8.74	51.81	74.00	22.19	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4844.00	51.34	-8.74	42.60	54.00	11.40	Vertical
4844.00	53.21	-8.74	44.47	54.00	9.53	Horizontal
Remark:	Receiver Read level	_				

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11n(HT40)			
		Test ch	annel: Lowest ch	nannel		
		Det	tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4844.00	56.65	-9.32	47.33	74.00	26.67	Vertical
4844.00	60.94	-9.32	51.62	74.00	22.38	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4844.00	51.16	-9.32	41.84	54.00	12.16	Vertical
4844.00	52.79	-9.32	43.47	54.00	10.53	Horizontal
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	57.23	-9.11	48.12	74.00	25.88	Vertical
4874.00	60.80	-9.11	51.69	74.00	22.31	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	50.86	-9.11	41.75	54.00	12.25	Vertical
4874.00	52.72	-9.11	43.61	54.00	10.39	Horizontal
		Took also	anal Highaat a			
			annel: Highest cl tector: Peak Valu			
Fraguency	Read Level	Dei	Level	Limit Line	Margin	
Frequency (MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	Margin (dB)	Polarization
4904.00	57.23	-8.90	48.33	74.00	25.67	Vertical
4904.00	60.80	-8.90	51.90	74.00	22.10	Horizontal
	T	Dete	ctor: Average Va		T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4904.00	50.86	-8.90	41.96	54.00	12.04	Vertical
	52.72	-8.90	43.82	54.00	10.18	Horizontal

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.