

Report No: JYTSZB-R12-2102447

FCC REPORT

Applicant:	TECNO MOBILE LIMITED
Address of Applicant:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31- 35 SHAN MEI STREET FOTAN NT
Equipment Under Test (E	EUT)
Product Name:	Mobile Phone
Model No.:	KG5j
Trade mark:	TECNO
FCC ID:	2ADYY-KG5J
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	05 Nov., 2021
Date of Test:	06 Nov., to 25 Nov., 2021
Date of report issued:	26 Nov., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	26 Nov., 2021	Original

Tested by:

Wei Janet

Test Engineer

Date: 26 Nov., 2021

iest Litgiliee

Reviewed by:

Winner Thang

Project Engineer

Date: 26 Nov., 2021

3 Contents

			Page
1	COV	ER PAGE	1
2	VFR	SION	2
		TENTS	
3			
4	TES	۲ SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	-
	5.3	TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	7
	5.8	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
	6.7	Spurious Emission	
	6.7.1	Conducted Emission Method	34
	6.7.2	Radiated Emission Method	35
7	TES	Г SETUP PHOTO	43
8	FUT	CONSTRUCTIONAL DETAILS	лл
U	LUI		

4 Test Summary

-	Test Items	Section in CFR 47	Test Data	Result		
Anter	nna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass		
AC Power Lir	ne Conducted Emission	15.207	See Section 6.2	Pass		
Conducted	Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass		
	nission Bandwidth cupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass		
Power	Spectral Density	15.247 (e)	Appendix A - BLE	Pass		
Conducted Band Edge			Appendix A - BLE	Pass		
Radiated Band Edge		15.247 (d)	See Section 6.6.2	Pass		
Conducted	Spurious Emission	15.205 & 15.209	Appendix A - BLE	Pass		
Radiated	Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: Not Applicable. 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer). ANSI C63.10-2013						
Test Method:	KDB 558074 D01 15.247	Meas Guidance v05r02				

5 General Information

5.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory::	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address:	101,Building 24,Waijing Industrial Park,Fumin Community,Fucheng Street,Longhua District,Shenzhen City,P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	KG5j
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.2 dBi
Power supply:	Rechargeable Li-ion Polymer Battery DC3.85V, 4900mAh
AC adapter:	Model: U100TSA
	Input: AC100-240V, 50/60Hz, 0.3A
	Output: DC 5.0V, 2A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode, and test samples plans

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Transmitting mode	Keep the EUT in continuous transmitting with modulation				
Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.					
Test Samples Plans :					
Samples Number	Used for Test Items				
3#	Conducted Emission				
1#	Radiated Emission				

4# EUT constructional details **Remark:** Jian Yan Testing Group Shenzhen Co. Ltd. is only responsible for the test project of

Remark: Jian Yan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date	Cal.Due date	
				(mm-dd-yy)	(mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022	
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022	
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022	
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022	
Test Software	R&S	EMC32	\ \	Version: 10.50.4	0	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
ISN	Schwarzbeck	CAT3 8158	#96	03-03-2021	03-02-2022	
ISN	Schwarzbeck	CAT5 8158	#166	03-03-2021	03-02-2022	
ISN	Schwarzbeck	NTFM 8158	#126	03-03-2021	03-02-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021	
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021	
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021	

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2111024

Report No: JYTSZB-R12-2102447

Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022
Test Software	MWRF-tes	MTS 8310	N	Version: 2.0.0.0	

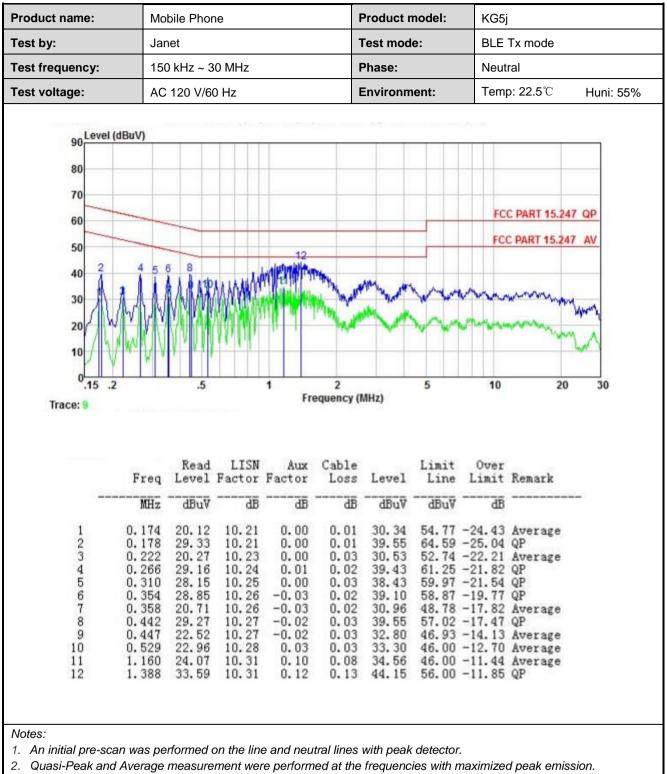
6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohil 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anter power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. ower limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this anas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The BLE antenna is an Interr antenna is 1.2dBi.	al antenna which cannot replace by end-user, the best-case gain of the

6.2 Conducted Emission

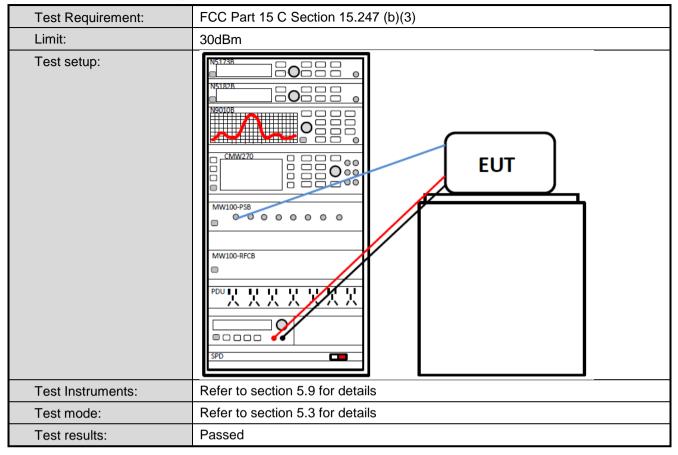
Test Requirement:	FCC Part 15 C Section 15.207	7					
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)	Limit (,				
	Quasi-peak Average						
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30 * Decreases with the logarithm	60	50				
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im The peripheral devices ar LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line ard interference. In order to fi positions of equipment ar according to ANSI C63.10 	are connected to the ma on network (L.I.S.N.), wh pedance for the measuring re also connected to the hm/50uH coupling imped to the block diagram of the checked for maximum and the maximum emission and all of the interface cab	hich provides a ng equipment. main power through a ance with 500hm the test setup and conducted on, the relative les must be changed				
Test setup:	Reference	80cm Filter EMI Receiver	– AC power				
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						



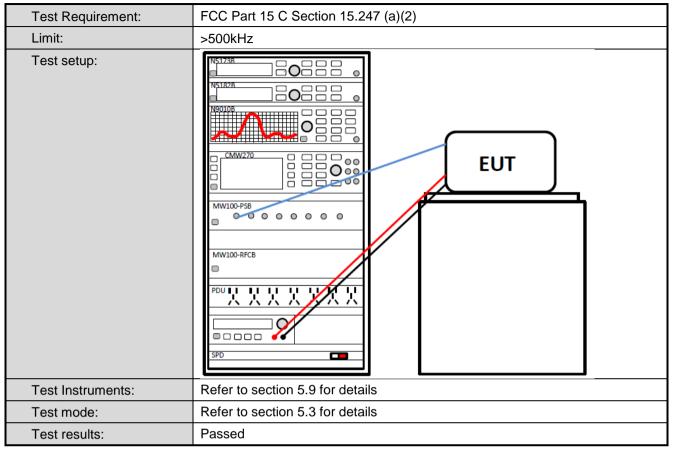
Measurement Data:

	Mo	bile Phor	ne			Product I	model:	KG5	j	
est by:	Ja	net				Test mod	le:	BLE	Tx mode	
est frequency:	15	0 kHz ~ 3	0 MHz		1	Phase:		Line		
est voltage:	AC	AC 120 V/60 Hz			Environment:		Temp: 22.5℃ Huni: 55			
90 Level 80 70 60 50 40 30 20 10					lite generative				C PART 15.247	
0.15 .15 .1	2	.5		1 Fr	2 equency (I	/Hz)	5	10	20	30
-10.007a. 2	2 Freq	Read	LISN Factor			MHz) Level	Limit	10 Over Limit		30
-10.007a. 2		Read		Fre	equency() Cable		Limit	Over		30

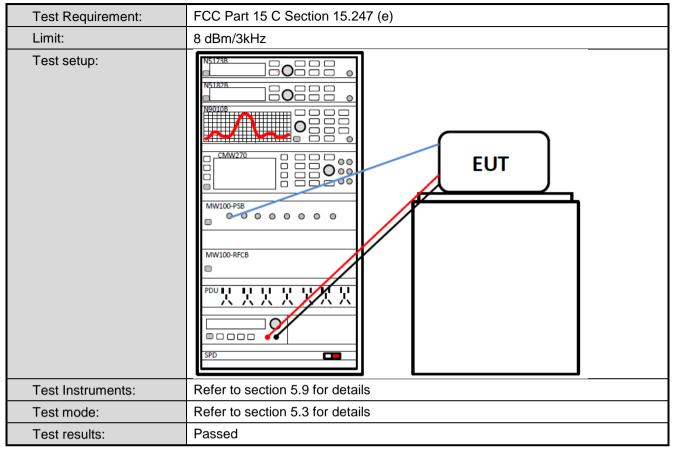
3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power



6.4 Occupy Bandwidth

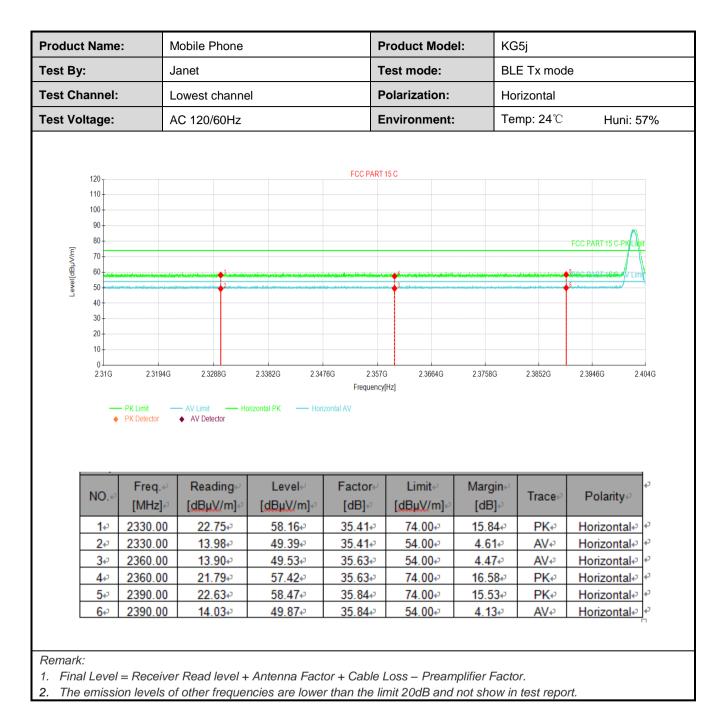
6.5 Power Spectral Density

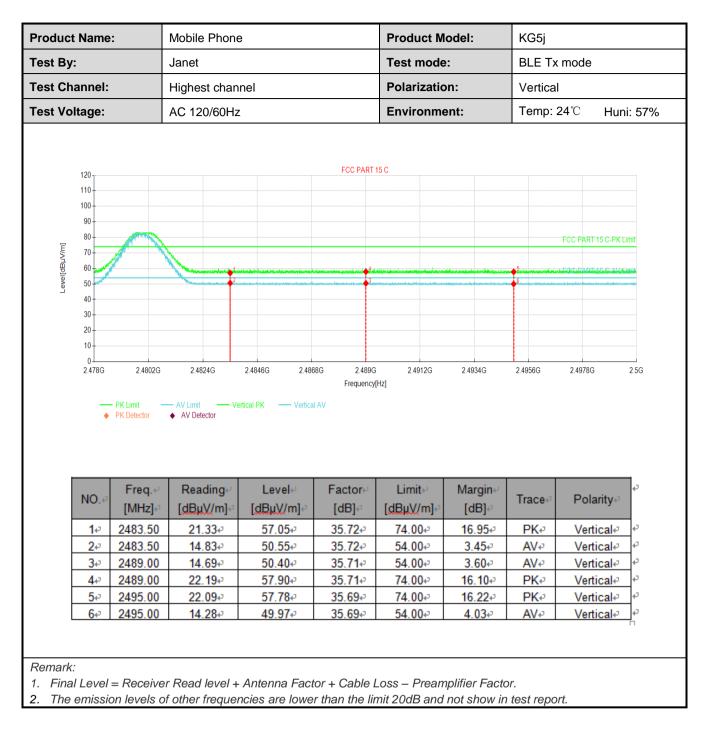
6.6 Band Edge

6.6.1 Conducted Emission Method

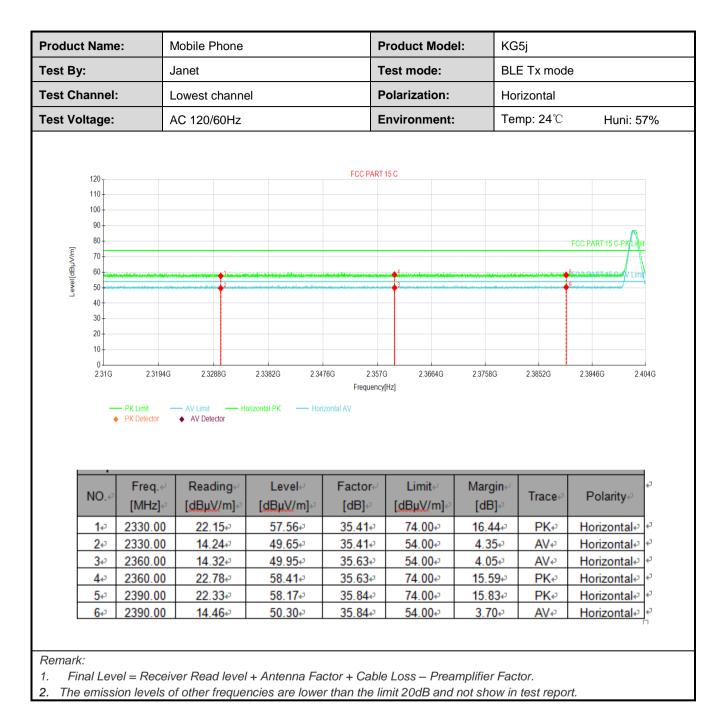
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

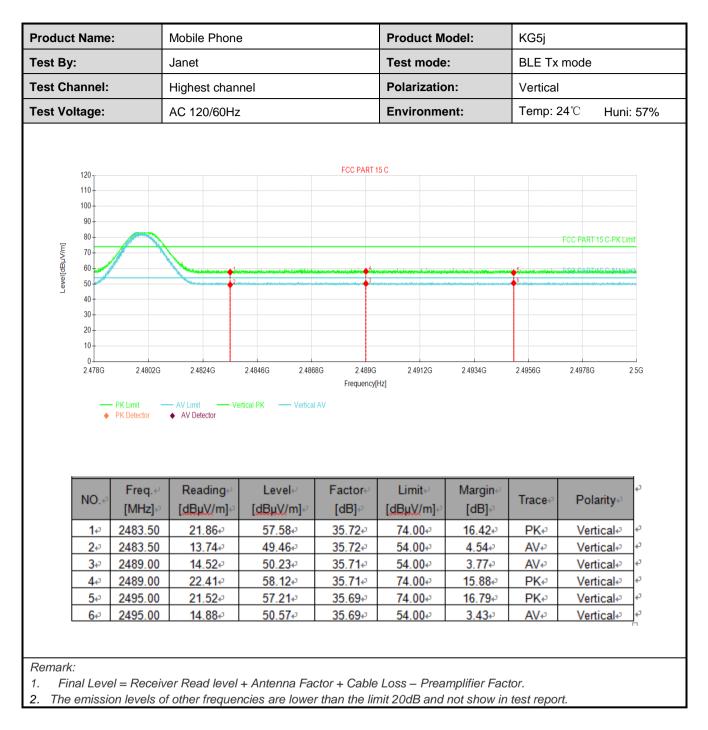
6.6.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C	Section 15.	205 and 15.209				
Test Frequency Range:	2310 MHz to 2	2390 MHz an	d 2483.5MHz to 2	2500 MHz	<u>-</u>		
Test Distance:	3m						
Receiver setup:	Frequency	Detector			Remark		
	Above 1GHz	Peak	1MHz	3MHz			
		RMS	1MHz	3MHz			
Limit:	Frequen	icy I	<u>imit (dBuV/m @:</u> 54.00	3m)	Remark Average Value		
	Above 1GHz 74.00 Peak Va						
Test Procedure:	 the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emist the limit s of the EU have 10 c 	d at a 3 meter ine the positi was set 3 meter which was me and height is d to determine contal and ver measurement suspected en then the anter a maximum re receiver syste Bandwidth we ssion level of pecified, then T would be re B margin wo	er camber. The ta on of the highest eters away from t ounted on the top varied from one in the the maximum entical polarization nt. mission, the EUT enna was tuned to ble was turned fre eading. em was set to Pe vith Maximum Ho the EUT in peak in testing could be eported. Otherwis	able was ro radiation. he interfer of a varia meter to for value of the so of the an was arrar o heights om 0 degr ak Detect Id Mode. so the emi one by on	rence-receiving able-height antenna our meters above he field strength. Intenna are set to inged to its worst from 1 meter to 4 rees to 360 degrees Function and is 10 dB lower than and the peak values issions that did not e using peak, quasi-		
Test setup:		LEUT urntable) Gro Test Receive	Horn Antenna 3m Horn Antenna 3m Horn Antenna are the second	Antenna Tower	Swwwww		
Test Instruments:	Refer to section	on 5.9 for det	ails				
Test mode:	Refer to section	on 5.3 for det	ails				
Test results:	Passed						

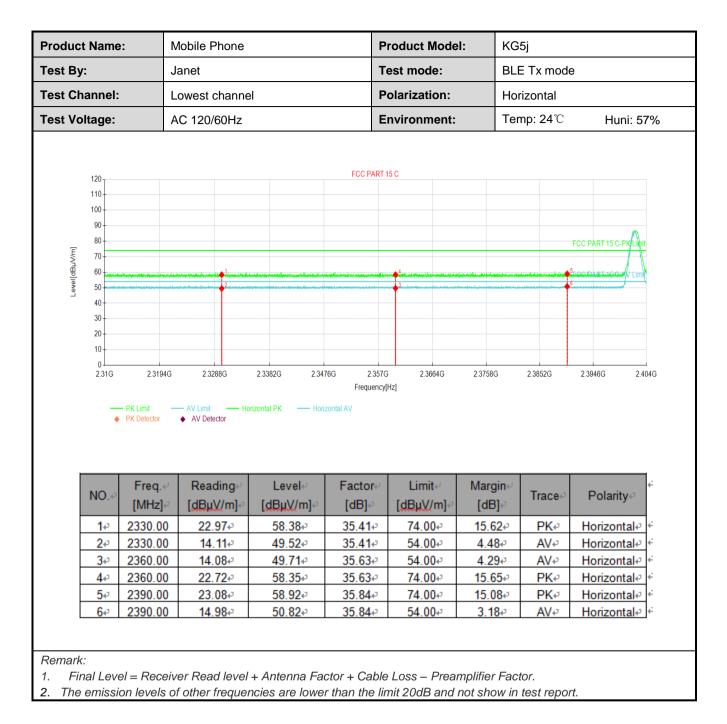

PHY: 1MHz

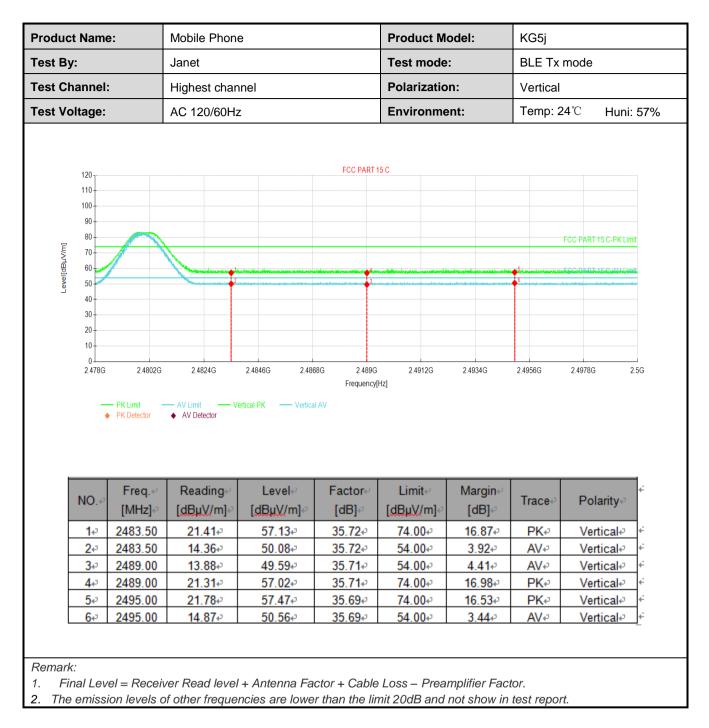
Product Name:		Mobile Phone	e	Product Model:		KG5j					
Test By	<i>ı</i> :		Janet			Test mode:		BLE Tx	BLE Tx mode		
Test Ch	nannel:	hannel: Lowest channel Polarization		n: Vertical							
Test Voltage:			AC 120/60Hz		Environment:		Temp: 2	Temp: 24℃ Huni: 57%			
[₩/٨٢	120 110 100 90 80 70				FCC PART 1	15 C			FCC PART 15 C-PKLIPT		
Level[dBµV/m]	60	na san an a	2		a d	3		n data mangan kata mangan k Kata mangan kata mangan kata Kata mangan kata	2565405405465495495495495495495495495495495495495495		
	10 0 2.31G	2.3194G → PK Limit → PK Detector	2.3288G AV Limit Ve AV Detector	2.3382G 2.347 artical PK — Vertical	Frequency[2.3758G	2.3852G	2.3946G 2.404	4G	
	0 2.31G	– PK Limit –	— AV Limit — Ve		Frequency[2.3758G Margin⊷ [dB]⊷	2.3852G	2.3946G 2.404 Polarity₽	4G *	
	0 2.31G	- PK Limit - → PK Detector Freq. ↓	AV Limit Ve AV Detector	ertical PK — Vertical	Frequency[AV Factore	Hz] Limit⊷	Margin∉			4G *	
	0 2316 NO.₽ 1₽ 2₽	PK Limit PK Detector Freq. 4 [MHz] 4 2330.00 2330.00	AV Limit Ve	ertical PK — Vertical Level [dBµV/m] 57.66+ 49.72+	Frequency[AV Factor [dB] 35.41 35.41	Limit↩ [dBμV/m]↩ 74.00↩ 54.00↩	Margin⊮ [dB]⊮ 16.34₽ 4.28₽	Trace₽ PK₽ AV₽	Polarity.₀ Vertical.₀ Vertical.₀	4G *	
	0 2316 NO.~ 1+2	PK Limit PK Detector [MHz]₽ 2330.00 2330.00 2360.00	AV Limit Ve ♦ AV Detector Reading+/ [dBµV/m]+/ 22.25+/ 14.31+/ 14.45+/	rtical PK — Vertical Level↓ [dBµV/m]↓ 57.66↓ 49.72↓ 50.08↓	Frequency AV Factor [dB] 35.41 35.41 35.41	Limit [dBµV/m] 74.00+ 54.00+ 54.00+	Margin.⊌ [dB].₽ 16.34₽ 4.28₽ 3.92₽	Trace+ PK+ AV+ AV+	Polarity∉ Vertical∉ Vertical∉ Vertical∉	4G * *	
	0 2316 NO.~ 1+ 2+ 3+ 4+	PK Limit PK Detector [MHz]+ ² 2330.00 2360.00 2360.00	AV Limit Ve AV Detector Reading= [dBµV/m]= 22.25+3 14.31+3 14.45+3 21.82+3	rtical PK — Vertical Level↔ [dBµV/m]↔ 57.66↔ 49.72↔ 50.08↔ 57.45↔	Frequency AV Factor [dB] 35.41 35.63 35.63 35.63 35.63	Hz] Limit↔ [dBµV/m]↔ 74.00↔ 54.00↔ 54.00↔ 74.00↔	Margin.↓ [dB].↓ 16.34↓↓ 4.28↓↓ 3.92↓↓ 16.55↓↓	Trace PK↔ AV↔ AV↔ PK↔	Polarity∉ Vertical∉ Vertical∉ Vertical∉ Vertical	4G * * *	
	0 231G NO.# 1+ 2+ 3+	PK Limit PK Detector [MHz]₽ 2330.00 2330.00 2360.00	AV Limit Ve ♦ AV Detector Reading+/ [dBµV/m]+/ 22.25+/ 14.31+/ 14.45+/	rtical PK — Vertical Level↓ [dBµV/m]↓ 57.66↓ 49.72↓ 50.08↓	Frequency AV Factor [dB] 35.41 35.41 35.41	Limit↔ [dBµV/m]↔ 74.00↔ 54.00↔ 54.00↔	Margin.⊌ [dB].₽ 16.34₽ 4.28₽ 3.92₽	Trace+ PK+ AV+ AV+	Polarity∉ Vertical∉ Vertical∉ Vertical∉	4G * * *	



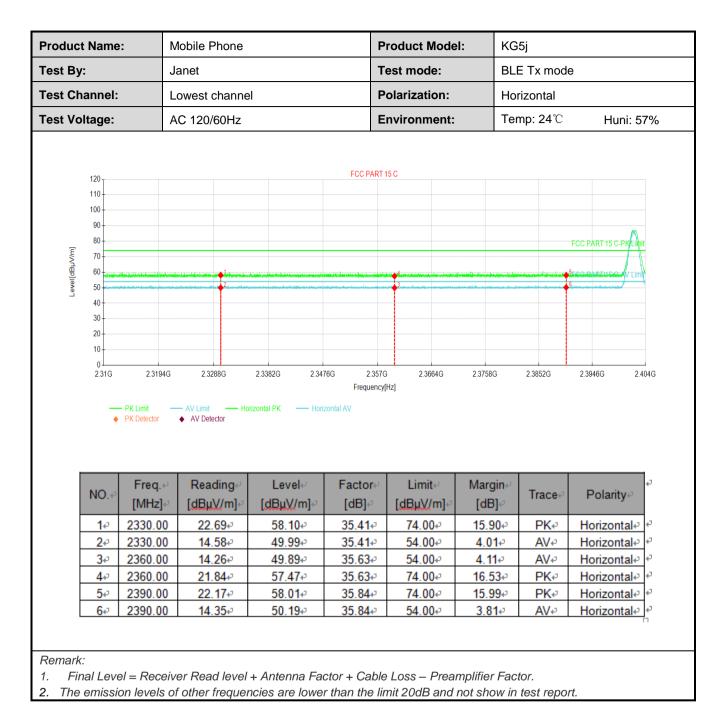

PHY: 2MHz

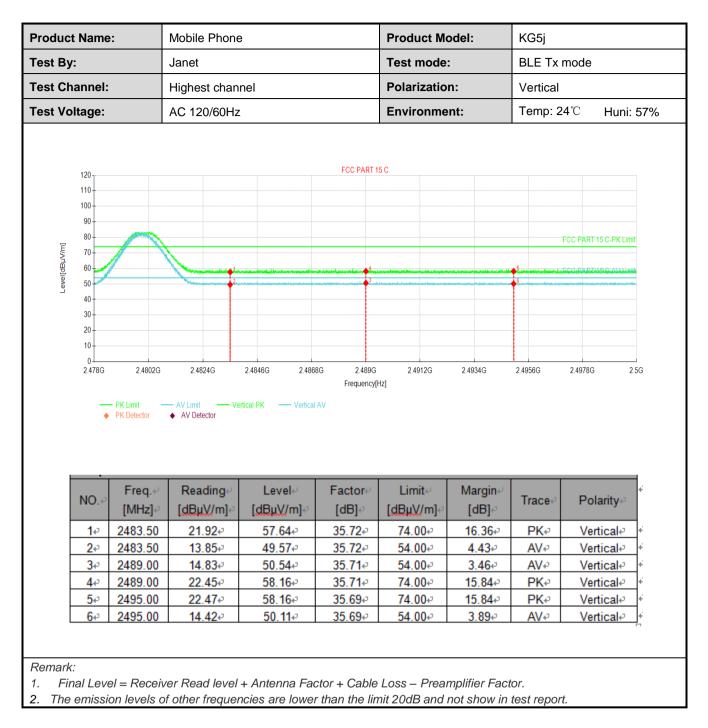
Product Name:		Mobile Phone			Product N	lodel:	KG5j			
Fest By:	:		Janet			Test mode	Test mode:		BLE Tx mode	
Fest Ch	annel:		Lowest chan	nel		Polarization: Vertical			Vertical	
Fest Vo	Itage:		AC 120/60Hz	Ζ		Environm	ent:	Temp: 24℃ Huni: 57%		
	100				FCC PART	15 C				
	120 110									
	100									
	90									"
Έ	80								FCC PART 1	5 C-PK/Limit
Level[dBµV/m]	60					4				
evel[o	50	den de la fait de la fa	an a	d de la martin de la company d International de la company	talan dagi dan yang bertak karan dalam bahan bahan bahan dalam bahan bahan bahan bahan bahan bahan bahan bahan	alanation and a language of the second s	n jakon dalah kina milika kana kana kana kana kana kana kana k	an ann an Anna an Anna an Airdine	Same and the second	
L	40									
	30									
	20									
	20 10									
	20	2.3194G	2.3288G	2.3382G 2.34	176G 2.3570		2.3758G	2.3852G	2.3946G	2.404G
	20 10 0				Frequency		2.3758G	2.3852G	2.3946G	2.404G
	20 10 0	2.3194G – PK Limit – PK Detector		2.3382G 2.34 ertical PK — Vertica	Frequency		2.3758G	2.3852G	2.3946G	2.404G
	20 10 0	– PK Limit –	— AV Limit — V		Frequency		2.3758G	2.3852G	2.3946G	2.404G
_	20 10 0	– PK Limit –	— AV Limit — V		Frequency		2.3758G	2.3852G	2.3946G	2.404G
Γ	20 10 0 2.31G	– PK Limit –	— AV Limit — V		Frequency		2.3758G Margin⊮			47
	20 10 0	PK Limit – PK Detector	AV Limit V AV Detector	ertical PK — Vertica	Frequency al AV	(Hz)		2.3852G Trace₽	2.3946G Polar	47
	20 10 0 2.31G	PK Limit - PK Detector	AV Limit	erfical PK — Vertica	Frequency al AV Factor⊷	(Hz) Limit⊬	Margin∉			ity₽
	20 10 0 2.31G ♦ NO.≮ 1+ ² 2+ ³	PK Limit PK Detector [MHz] ₽ 2330.00 2330.00	AV Limit → V AV Detector → V Reading ← [dBµV/m] ← 22.39 ← 14.11 ←	ertical PK — Vertica Level↩ [dBµV/m]↩ 57.80↩ 49.52↩	Frequency Factor.e [dB].e 35.41.e 35.41.e	(Hz) Limit-↓ [dBµV/m]-↓ 74.004↓ 54.004↓	Margin.⊌ [dB].₽ 16.20+³ 4.48+³	Trace↔ PK↔ AV↔	Polar Vertic Vertic	ity≁ cal≁ cal≁
	20 10 0 2.31G NO.≪ 1+² 2+² 3+²	PK Limit PK Detector [MHz] ↔ 2330.00 2330.00 2360.00	AV Limit V AV Detector V Reading V [dBµV/m] V 22.39+3 14.11+3 15.41+3	ertical PK — Vertica Level↔ [dBµV/m]↔ 57.80↔ 49.52↔ 51.04↔	Frequency al AV Factor [dB] 35.41+ 35.41+ 35.63+	Limit-/ [dBµV/m]-/ 74.00+/ 54.00+/ 54.00+/	Margin.⊌ [dB].₽ 16.20+ ³ 4.48+ ³ 2.96+ ³	Trace PK AV AV	Polar Vertic Vertic Vertic	ity ← cal ← cal ← cal ← cal ← cal ←
	20- 10- 0- 231G • NO.• 1+3- 2+3- 3+3- 3+3- 4+3-	PK Limit PK Detector [MHz] 42 2330.00 2360.00 2360.00	AV Limit V AV Detector V Reading* ¹ [dBµV/m]* ² 22.39* ² 14.11* ² 15.41* ² 22.96* ³	ertical PK — Vertica Level↔ [dBµV/m]↔ 57.80↔ 49.52↔ 51.04↔ 58.59↔	Frequency Factor [dB] 35.41 35.63 35.63 35.63 35.63	(Hz) Limit-/ [dBµV/m]-/ 74.00-/ 54.00-/ 54.00-/ 74.00-/	Margin₊ ^J [dB]₊ ^J 16.20₊ ^J 4.48₊ ^J 2.96₊ ^J 15.41₊ ^J	Trace∂ PK∂ AV∂ AV∂ PK₽	Polar Vertic Vertic Vertic Vertic	ity = cal = cal = cal = cal = cal = e
	20 10 0 2.31G NO.≪ 1+² 2+² 3+²	PK Limit PK Detector [MHz] ↔ 2330.00 2330.00 2360.00	AV Limit V AV Detector V Reading V [dBµV/m] V 22.39+3 14.11+3 15.41+3	ertical PK — Vertica Level↔ [dBµV/m]↔ 57.80↔ 49.52↔ 51.04↔	Frequency al AV Factor [dB] 35.41+ 35.41+ 35.63+	Limit-/ [dBµV/m]-/ 74.00+/ 54.00+/ 54.00+/	Margin.⊌ [dB].₽ 16.20+ ³ 4.48+ ³ 2.96+ ³	Trace PK AV AV	Polar Vertic Vertic Vertic	ity ====================================




Coded PHY, S=2

roduct Name:		Mobile Phone			Product Mo	odel:	KG5j					
est By:			Janet		Test mode:		BLE Tx	BLE Tx mode				
est Cha	annel	:	Lowest chan	nel		Polarizatio	n:	Vertical		Vertical		
est Vol	tage:		AC 120/60Hz	Z		Environme	nt:	Temp: 24℃ Huni: 57%				
	400				FCC PART 1	5 C						
	120 110											
	100											
	90								٨			
E	80 70								FCC PART 15 C-PK Li	nît V		
Level[dBµV/m]	60	مراجع والمراجع والمراجع والمراجع	an a	a je za zako de de dutta en a frances de la dalaje de	a a fa fa sta ga a fa a fa f		alaya da kalana da kalang da kalang	an a				
eve	50	atta alati dan ikilgan dan pianaan ajka ta mayan ke	Linger han station an orbit her enter the state hand	an plan and the descent part of the second secon		a	anan mananan ar ar an	i Anga an talan na matana ito jenerak	6	_		
	40 30											
	20-											
	20 10 0	2.3194G	2.3288G	2.3382G 2.34	76G 2.357G	2.3664G	2.3758G	2.3852G	2.3946G 2.	404G		
	20 10	2.3194G	2.3288G	2.3382G 2.34	76G 2.357G Frequency[2.3758G	2.3852G	2.3946G 2.	 404G		
	20 10 0	— PK Limit –	— AV Limit — Ve	2.3382G 2.34 ertical PK — Vertica	Frequency[2.3758G	2.3852G	2.3946G 2.	404G		
	20 10 0				Frequency[2.3758G	2.3852G	2.3946G 2.	404G		
	20 10 0	— PK Limit –	— AV Limit — Ve		Frequency[2.3758G	2.3852G	2.3946G 2.	404G		
	20 10 0 2.31G	— PK Limit –	— AV Limit — Ve		Frequency[2.3758G Margin⊷			404G		
	20 10 0	PK Limit - PK Detector	AV Limit Vi AV Detector	ertical PK — Vertica	Frequency[Hz]		2.3852G	2.3946G 2. Polarity	404G		
	20 10 0 2.31G	PK Limit PK Detector Freq. 4 ³ [MHz] 4 ³ 2330.00	AV Limit Vi AV Detector Vi Reading	ertical PK — Vertica	Frequency[IAV Factor⊷	Hz] Limit⊷'	Margin⊭			404G		
	20 10 0 231G NO.4 14 ³ 24 ³	PK Limit PK Detector Freq. ↓ [MHz] ↓ 2330.00 2330.00	AV Limit Vi	ertical PK Vertica Level₊↓ [dBµV/m]₊ ² 57.65₊ ² 49.91₊ ³	Frequency AV Factor [dB] 35.41 35.41	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩	Margin⊮ [dB]⊮ 16.35₽ 4.09₽	Trace-∂ PK+∂ AV+∂	Polarity₽ Vertical₽ Vertical₽	404G		
	20 10 0 2.31G NO.4 14 24 34	PK Limit PK Detector Freq. ↓ [MHz] ↓ 2330.00 2330.00 2360.00	AV LimitV	ertical PK — Vertica Level↔ [dBµV/m]↔ 57.65↔ 49.91↔ 50.73↔	Frequency AV Factor [dB] 35.41 35.41 35.63 35.63	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩	Margin.⊌ [dB].₽ 16.35₽ 4.09₽ 3.27₽	Trace- PK+ AV+ AV+	Polarity₽ Vertical₽ Vertical₽ Vertical₽	404G		
	20 10 0 2.31G NO.~ 1+ 2+ 2+ 3+ 4+	PK Limit PK Detector [MHz] 4 ² 2330.00 2360.00 2360.00	AV Limit V AV Detector V Reading V [dBµV/m] V 22.24+3 14.50+3 15.10+3 22.91+3	ertical PK — Vertica Level↔ [dBµV/m]↔ 57.65↔ 49.91↔ 50.73↔ 58.54↔	Frequency AV Factor [dB] 35.41+ 35.63+ 35.63+ 35.63+	Limit.↔ [dBµV/m].↔ 74.00.↔ 54.00.↔ 54.00.↔ 74.00.↔	Margin∉ [dB]∉ 16.35¢ 4.09¢ 3.27¢ 15.46¢	Trace+ PK+ AV+ AV+ PK+	Polarity↩ Vertical↩ Vertical↩ Vertical↩ Vertical↩	404G		
	20 10 0 2.31G NO.4 14 24 34	PK Limit PK Detector Freq. ↓ [MHz] ↓ 2330.00 2330.00 2360.00	AV LimitV	ertical PK — Vertica Level↔ [dBµV/m]↔ 57.65↔ 49.91↔ 50.73↔	Frequency AV Factor [dB] 35.41 35.41 35.63 35.63	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩	Margin.⊌ [dB].₽ 16.35₽ 4.09₽ 3.27₽	Trace-∂ PK+∂ AV+∂ AV+∂	Polarity₽ Vertical₽ Vertical₽ Vertical₽	404G		




Coded PHY, S=8

Product Name: Test By:		Mobile Phone			Product Model:		KG5j			
			Janet		Polarization:		BLE Tx mode Vertical			
rest Ch	st Channel:		Lowest chann	nel						
Fest Vo	Itage:		AC 120/60Hz				Temp: 2	4℃ Hun	i: 57%	
	120				FCC PART 1	5 C				
	110									
	100									
	90								~	h
Ē	80 70								FCC PART 15 C-PK L	init
Учар	60		1			4.				
Level[dBµV/m]	50	القور فكالأولية والمتحاولة والمتحافظ والمحافظ المحافظ	wide to international and the for the to the to the total of the total and total and the total and	ann de Miller en Miller en Miller de Martin anna est de Miller de	ed a design for a second s					_
-	40									
	30 -									
	20									
	20 10	2.3194G	2.3288G	2 3382G 2.347			2.3758G	2.3852G	2.3946G	 2.404G
	20 10 0				Frequency[ł		2.3758G	2.3852G	2.3946G	2.404G
	20	2.3194G — PK Limit — PK Detector		2 3382G 2 347 ertical PK — Vertical	Frequency[ł		2.3758G	2.3852G	2.3946G	2.404G
	20	— PK Limit —	— AV Limit — Ve		Frequency[ł		2.3758G	2.3852G	2.3946G :	
	20	PK Limit – PK Detector	AV Limit Ve	ertical PK — Vertical	Frequency[Hz]		2.3852G	2.3946G	2.404G
ſ	20	PK Limit - PK Detector	AV Limit Ve AV Detector	ertical PK Vertical	Frequency[i AV Factore	Hz] Limit⊷'	Margin↩	2.3852G	23946G	
	20 10 2.31G	PK Limit PK Detector Freq. 44 [MHz] 43	AV Limit Ve ♦ AV Detector Reading [dBµV/m]	ertical PK — Vertical Level↔ [dBµV/m]₽	Frequency(ا AV Factor،ا [dB]	tz] Limit↩ [dΒμV/m]↩	Margin⊷ [dB]↩	Trace₽	Polarity∉	
	20 10 2.31G NO.~	PK Limit PK Detector Freq.≁ [MHz]₽ 2330.00	AV Limit Ve AV Detector Ve Reading- [dBµV/m]√ 22.94+3	ertical PK — Vertical Level↔ [dBµV/m]↔ 58.35↔	Frequency(F AV Factor [dB] 35.41+3	Limit.↔ [dBµV/m]↔ 74.00↔	Margin↩ [dB]↩ 15.65↩	Trace- PK+ ³	Polarity Vertical∗	
	20 10 0 231G NO.~	PK Limit PK Detector Freq. 4 ² [MHz] 4 ² 2330.00 2330.00	AV Limit → Ve AV Detector Reading → [dBµV/m] → 22.94 → 14.70 →	Eevel [dBµV/m] 58.35+ 50.11+	Frequency[i AV Factor.e [dB].e 35.41.e 35.41.e	Limit (ط8µV/m] 74.00 54.00	Margin↩ [dB]↩ 15.65↩ 3.89↩	Trace PK+ AV+	Polarity∉ Vertical∗ Vertical∗	
	20 10 0 231G	PK Limit PK Detector [MHz] 4 2330.00 2330.00 2360.00	AV Limit	Eevel↔ [dBµV/m]↔ 58.35↔ 50.11↔ 50.73↔	Frequency[AV Factor. [dB] 35.41 35.41 35.63	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩ 54.00↩	Margin⊌ [dB]₽ 15.65₽ 3.89₽ 3.27₽	Trace PK↔ AV↔ AV↔	Polarity∢ Vertical∢ Vertical∢ Vertical	, , , ,
	20 10 2,31G NO.≁ 1+³ 2+³ 3+³ 4+³	PK Limit PK Detector [MHz] ↔ 2330.00 2360.00 2360.00	AV Limit	Eevel↔ [dBµV/m]↔ 58.35↔ 50.11↔ 50.73↔ 57.55↔	Frequency() AV Factor [dB] 35.41 35.63 35.63 35.63 35.63 35.63	Limit.↓ [dBµV/m]↓↓ 74.00↓↓ 54.00↓↓ 54.00↓↓ 74.00↓↓	Margin [dB] 15.65+3 3.89€ 3.27€ 16.45+3	Trace- PK+ AV- AV- PK+	Polarity Vertical+ Vertical+ Vertical+	3 - 3 - 3 - 3 -
	20 10 0 231G	PK Limit PK Detector [MHz] 4 2330.00 2330.00 2360.00	AV Limit	Eevel↔ [dBµV/m]↔ 58.35↔ 50.11↔ 50.73↔	Frequency[AV Factor. [dB] 35.41 35.41 35.63	Limit↩ [dBµV/m]↩ 74.00↩ 54.00↩ 54.00↩	Margin⊌ [dB]₽ 15.65₽ 3.89₽ 3.27₽	Trace PK↔ AV↔ AV↔	Polarity∢ Vertical∢ Vertical∢ Vertical	2 · · · · · · · · · · · · · · · · · · ·

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

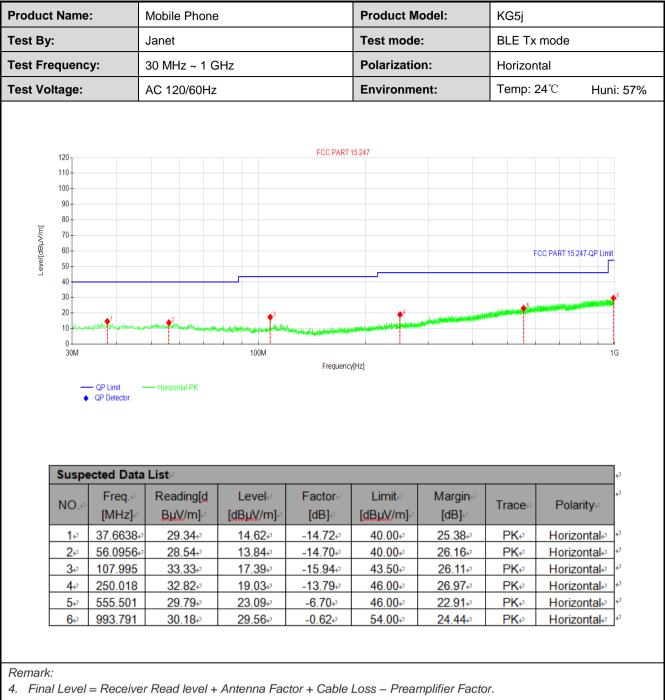
6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	205 and 1	15.209			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RB	SW V	BW	Remark	
	30MHz-1GHz Quasi-p		k 120l	KHz 30	OKHz	Quasi-peak Value	
		Peak	1M	Hz 3I	ИНz	Peak Value	
	Above 1GHz	RMS	1M	Hz 3l	ИНz	Average Value	
Limit:	Frequency Limit (dBuV/m @3m) Remark						
	30MHz-88M	Hz	4	0.0	0	Quasi-peak Value	
	88MHz-216N	/Hz	4	3.5	0	Quasi-peak Value	
	216MHz-960			6.0	1	Quasi-peak Value	
	960MHz-1G	Hz		4.0	0	Quasi-peak Value	
	Above 1GH	17		4.0		Average Value	
				4.0	<u> </u>	Peak Value table 0.8m(below	
	 The table of highest rad The EUT antenna, we tower. The antenni the ground Both horized make the n For each se case and the meters and to find the n The test-rest specified E If the emission the limit sp of the EUT have 10 dE 	was rotated liation. was set 3 hich was m ha height is to determ ontal and v neasuremen suspected e hen the and the rota ta maximum re eceiver sys Bandwidth w sion level of ecified, ther would be n B margin wo	d 360 deg meters a nounted o s varied f ine the r vertical point. emission, tenna wa able was t eading. stem was vith Maxin f the EUT n testing o reported. puld be re	rees to deter away from n the top of rom one me naximum va plarizations of the EUT v s tuned to l urned from s set to Pe num Hold M could be sto Otherwise to -tested one	ermine the inte a varia eter to alue of of the a vas arra neights 0 degre vak De ode was pped a he emi by one	a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and s 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data	
Test setup:	Below 1GHz	3m			Antenna Search Antenn F Test ecceiver –	1	

Project No.: JYTSZE2111024

Report No: JYTSZB-R12-2102447

	AE EUT Horn Aritema Antenna Tower Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.


Measurement Data (worst case):

Below 1GHz:

	roduct Name:		Mobile Phone			odel:	KG5j		
est By:		Janet		Test mode:		BLE Tx mode			
Fest Frequer	icy:	30 MHz ~ 1 GHz			Polarization:		Vertical		
Fest Voltage	:	AC 120/60Hz			Environme	ent:	Temp: 24	4℃ H	luni: 57%
120 110 100 90 80 70 60 50 40 30 20				FCC PART	15 247		FC(C PART 15247-QP	
10 + w 0 30M	QP Limit QP Detector	- Vertical PK	100M	Frequenc	y[Hz]				16
0 30M	QP Limit QP Detector	List							1G
0 30M	QP Limit • QP Detector		100M Level√ [dBµV/m]↔	Frequenc Frequenc Factor⊷ [dB]∂	y[Hz] Limit⊷ [dBµV/m]∾	Margin⊮ [dB]₀	Trace	Polarity	¢-
0 30M Susp NO.4 1+3	• QP Limit • QP Detector • Pected Data • Freq.~ [MHz].0 51.0511.4	List Reading[d BµV/m] 30.05	Level₄ [dBµV/m]↩ 15.36₄᠈	Factor⊮ [dB]∞ -14.69⊷	Limit/ [dBµV/m]⊮ 40.00	[dB]⊬ 24.64⊮	PK₽	Vertical	
0 30M Susp NO.4 1+2 2+2	QP Limit QP Detector QP Detector Freq4 [MHz].4 51.0511.4 56.0956.43	List Reading[d BµV/m] 30.05 28.75	Level₀ [dBµV/m]↔ 15.36↔ 14.05↔	Factor⊮ [dB]⊮ -14.69⊮ -14.70⊮	Limit-/ [dBµV/m]-/ 40.00+/ 40.00+/	[dB]↔ 24.64↔ 25.95↔	PK↩ PK↩	Vertical Vertical	
Susp NO.4 1+ ³ 2+ ³ 3+ ³	QP Limit ◆ QP Detector → QP Detector → Preq	List Reading[d BµV/m] 30.05 28.75 42.13	Levele [dBµV/m]- 15.36e 14.05e 26.19e	Factor₊ [dB]- -14.69₊ -14.70₊ -15.94₊	Limit-/ [dBµV/m]-/ 40.00./ 40.00./ 43.50./	[dB]↔ 24.64↔ 25.95↔ 17.31↔	PK↔ PK↔ PK↔	Vertical Vertical Vertical	
Susp NO.4 1+ ² 2+ ³ 3+ ² 4+ ³	QP Limit ◆ QP Detector Pected Data Freq/ [MHz]/ 56.0956/ 107.995 250.018	List Reading[d BµV/m] 30.05 28.75 42.13 37.01 42.13	Level.↓ [dBµV/m].↓ 15.36.↓ 14.05.↓ 26.19.↓ 23.22.↓	Factor₊ [dB].₀ -14.69₊ -15.94₊ -15.94₊ -13.79₊	Limit. [dBµV/m] 40.00¢ 40.00¢ 43.50¢ 46.00¢	[dB] 24.64 25.95 17.31 22.78	PK.₀ PK.₀ PK.₀ PK.₀	Vertical Vertical Vertical Vertical	
Susp NO.4 1+2 3+2	QP Limit ◆ QP Detector → QP Detector → Preq	List Reading[d BµV/m] 30.05 28.75 42.13	Levele [dBµV/m]- 15.36e 14.05e 26.19e	Factor₊ [dB]- -14.69₊ -14.70₊ -15.94₊	Limit-/ [dBµV/m]-/ 40.00./ 40.00./ 43.50./	[dB]↔ 24.64↔ 25.95↔ 17.31↔	PK↔ PK↔ PK↔	Vertical Vertical Vertical	

Report No: JYTSZB-R12-2102447

5. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

PHY: 1MHz

			annel: Lowest ch			
	1	Det	tector: Peak Valu	le	1	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	55.96	-9.60	46.36	74.00	27.64	Vertical
4804.00	54.67	-9.60	45.07	74.00	28.93	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	48.29	-9.60	38.69	54.00	15.31	Vertical
4804.00	47.27	-9.60	37.67	54.00	16.33	Horizonta
		Test ch	annel: Middle ch	annel		
			ector: Peak Valu			
Frequency	Read Level		Level	Limit Line	Margin	T
(MHz)	(dBuV)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarizatio
4884.00	56.38	-9.04	47.34	74.00	26.66	Vertical
4884.00	54.46	-9.04	45.42	74.00	28.58	Horizonta
	1	Dete	ctor: Average Va	lue	1	-1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	48.36	-9.04	39.32	54.00	14.68	Vertical
4884.00	47.29	-9.04	38.25	54.00	15.75	Horizonta
			annel: Highest ch			
Frequencia	Deedleyel	Det	ector: Peak Valu		Morain	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	55.90	-8.45	47.45	74.00	26.55	Vertical
4960.00	54.30	-8.45	45.85	74.00	28.15	Horizonta
	T	Dete	ctor: Average Va	lue	T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	48.77	-8.45	40.32	54.00	13.68	Vertical
4960.00	47.60	-8.45	39.15	54.00	14.85	Horizonta

1. Final Level =Receiver Read level + Factor.

PHY: 2MHz

		Test ch	annel: Lowest ch	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	54.36	-9.60	44.76	74.00	29.24	Vertical
4804.00	55.20	-9.60	45.60	74.00	28.40	Horizontal
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4804.00	47.23	-9.60	37.63	54.00	16.37	Vertical
4804.00	47.89	-9.60	38.29	54.00	15.71	Horizontal
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4884.00	54.81	-9.04	45.77	74.00	28.23	Vertical
4884.00	55.07	-9.04	46.03	74.00	27.97	Horizontal
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4884.00	47.39	-9.04	38.35	54.00	15.65	Vertical
4884.00	47.94	-9.04	38.90	54.00	15.10	Horizontal
			annel: Highest cl			
_	_	Dei	tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4960.00	54.32	-8.45	45.87	74.00	28.13	Vertical
4960.00	54.84	-8.45	46.39	74.00	27.61	Horizontal
	1	Dete	ctor: Average Va	llue	1	1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4960.00	47.16	-8.45	38.71	54.00	15.29	Vertical
1000.00			39.00	54.00	15.00	Horizontal

Coded PHY, S=2

			annel: Lowest ch			
	T	De	tector: Peak Valu	le	1	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	55.16	-9.60	45.56	74.00	28.44	Vertical
4804.00	54.98	-9.60	45.38	74.00	28.62	Horizonta
		Dete	ctor: Average Va	lue		•
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	48.04	-9.60	38.44	54.00	15.56	Vertical
4804.00	47.29	-9.60	37.69	54.00	16.31	Horizonta
			annel: Middle ch			
	T	Det	tector: Peak Valu			1
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	54.68	-9.04	45.64	74.00	28.36	Vertical
4884.00	54.91	-9.04	45.87	74.00	28.13	Horizonta
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	47.99	-9.04	38.95	54.00	15.05	Vertical
4884.00	47.40	-9.04	38.36	54.00	15.64	Horizonta
			annel: Highest cl tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	55.46	-8.45	47.01	74.00	26.99	Vertical
4960.00	54.97	-8.45	46.52	74.00	27.48	Horizonta
	•	Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
(11112)	40.04	-8.45	39.86	54.00	14.14	Vertical
4960.00	48.31	0.40				

Coded PHY, S=8

Frequency (MHz) 4804.00	Read Level		ector: Peak Valu			
(MHz)			L av rad			
4804.00	(dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatior
4004.00	55.66	-9.60	46.06	74.00	27.94	Vertical
4804.00	54.84	-9.60	45.24	74.00	28.76	Horizontal
		Deteo	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	47.47	-9.60	37.87	54.00	16.13	Vertical
4804.00	47.54	-9.60	37.94	54.00	16.06	Horizontal
			annel: Middle ch			
		Det	ector: Peak Valu		T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	55.38	-9.04	46.34	74.00	27.66	Vertical
4884.00	54.37	-9.04	45.33	74.00	28.67	Horizonta
		Deteo	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4884.00	47.89	-9.04	38.85	54.00	15.15	Vertical
4884.00	47.59	-9.04	38.55	54.00	15.45	Horizonta
		Test cha	annel: Highest ch	nannel		
		Det	ector: Peak Valu	Ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	55.26	-8.45	46.81	74.00	27.19	Vertical
4960.00	54.86	-8.45	46.41	74.00	27.59	Horizonta
		Deteo	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	47.35	-8.45	38.90	54.00	15.10	Vertical
4960.00	47.05	-8.45	38.60	54.00	15.40	Horizonta