

Please Contact with WSCT www.wsct-cert.com

FCC SAR Compliance Test Report

For

TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET

FOTAN NT HONGKONG

Model: K16SDA

Test Engineer:

Zeng Longhao

Report Number: WSCT-A2LA-R&E240300014A-SAR

Report Date:

13 September 2024

FCC ID:

2ADYY-K16SDA

Check By:

Wei Liangmei

Wei Liangmo

Approved By:

Liu Fuxin

World Standardization Certification & Testing Group

(Shenzhen) Co., Ltd.

Prepared By:

Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong,

China

Tel: +86-755-26996192

Fax: +86-755-86376605

HOM * . PI

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Table of contents

1 3	General information	Z 177	5741	A16791		1
41	Notes					
1.2	Application details					4
1.3	Statement of Compliance	- Lucia	- 100121		1160	5
1.4	EUT Information					
2	Testing laboratory	<u> </u>		Arran A		7
3	ACCREDITATIONS					
4	Test Environment	X	X		X	7
5	Applicant and Manufacturer	77474	17274		1727#	7
6	Test standard/s:					
6.1	RF exposure limits					
6.2	SAR Definition	AV.	517	11991		75
7	SAR Measurement System					
1	The Measurement System					
7.1	Robot	ATHE	17274		17794	.10
7.2						1
7.3	Probe					
7.4	Measurement procedure					
7.5	Description of interpolation/ex					
7.6	Phantom					
7.7	Device Holder	AVATA A	12414		WATER	.15
7.8	Video Positioning System					16
7.9	Tissue simulating liquids: diel	ectric properties	Δ			17
7.10	Tissue simulating liquids: para	ameters	579 6	AWSET	A	.18
8	System Check		V		\vee	.19
8.1	System check procedure					.19
8.2	16791	1 1 1 H	1674		17479	20
U.	-,					

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

9 SA	R Test Test Configuration	21
9.1	Wi-Fi Test Configuration	21
9.2	WiFi 5G SAR Test Procedures	22
10	Detailed Test Results	
10.1	Conducted Power measurements	24
10.1.1	Conducted Power of Wi-Fi 2.4G	24
10.1.2	Conducted Power of Wi-Fi 5G	27
10.1.3	Conducted Power of BT	
10.1.4	Tune-up powertolerance	32
10.2	SAR test results	33
10.2.1	Results overview of Wi-Fi 2.4G	
10.2.2	Results overview of Wi-Fi 5G	
10.2.3	Results overview of BT	
11	Multiple Transmitter Information	37
11.1.1	Stand-alone SAR test exclusion	38
11.1.2	Simultaneous Transmission SAR Summation Scenario	39
11.2	Measurement uncertainty evaluation for SAR test	40
11.3	Measurement uncertainty evaluation for system check	42
12	Test equipment and ancillaries used for tests	
Annex	A: System performance verification	45
Annex	Y Y	-
Annex	C: Calibrationreports	45
Annex	D: Photographs	45

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Certificate #5768.01

For Question,
Please Contact with WSCT

Modified History

REV.	Modification Description	Issued Date	Remark
REV.1.0	Initial Test Report Relesse	13 September 2024	Liu Fuxin
X	X	\times	

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in this test report. QTC Certification & Testing Co., Ltd. does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report is not to be reproduced or published in full without the prior written permission.

1.2 Application details

Date of receipt of test item: 2024-04-09

Start of test: 2024-04-10 End of test: 2024-06-10

VETATI AVETATI

Selfication & Testing Q

DUOM * PIT

(She)

W57-7

WSET

WSET

AVISTON.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992306 FAX:86-758-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

Page 4 of 45

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for K16SDA is as below:

7	Band	Position	MAX ReportedSAR _{1g} (W/kg)	Limit (W/kg)
	2.4G WIFI	Body-Worn 0mm	0.294	
	5.2G WIFI	Body-Worn 0mm	0.165	\wedge
	5.4G WIFI	Body-Worn 0mm	0.157	1.6 WS
	5.6G WIFI	Body-Worn 0mm	0.209	1.0
X	5.8G WIFI	Body-Worn 0mm	0.3193	X
	BT E	Body-Worn 0mm	0.080	
Max.Simultaneous Transmission SAR(W/kg)			17579	
	Items	B	Body SAR (Gap 0mm)	1.6
	Sum SAR		0.374	1.0

The device is in compliance with Specific Absorption Rate(SAR) for general population/uncontraolled exposure limits of 1.6W/Kg as averaged over any 1g tissue according to the FCC rule§2.1093,the ANSI/IEEEC95.1:2005, the NCRP Report Number 86 forun controlled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/ Uncontrolled exposure, and had been tested in accord ance with the measurement methods and proceduresspecified in IEEE Std1528-2013.

OHOM * PI

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

EUT Information

ZIFIHEL ZIFIHEL			174 A	
Device Information:				
Product Type:	Laptop Computer		\wedge	
Model:	K16SDA	1111	1000	Sec.
Brand Name:	TECNO	TAR PARTY	1	
Device Type:	Portable device		V	
Exposure Category:	uncontrolled enviro	nment / genera	l population	
Production Unit or Identical Prototype:	Production Unit		प्रका	1
Antenna Type :	Integral Antenna			
Antenna Gain:	BT: 3.52dBi 2.4GWIFI: MAIN AN 5GWIFI: MAIN ANT	The state of the s	/ 1 / 6 7 8	Зі
Device Operating Configurations:				
Supporting Mode(s):	Wi-Fi , BT	1		
Modulation:	DSSS, OFDM/OFD GFSK/π/4-DQPSK		SK	1
Device Class :	Class B, No DTM M	1ode (X	
	Band Wi-Fi	TX(MHz)	RX(MHz) 12~2462	
Operating Frequency Range(s):	Wi-Fi (5G)	Band 1: 5 Band 2: 5 Band 3: 5	5180-5240 MHz 5260-5320 MHz 5500-5700 MHz 5745-5825 MHz	
	BT	2402~2480	2402~2480	/
Power Source:	Model: K16S Nominal Voltage: 1 Rated Capacity: 60 Rated nergy: 70.00	60mAh Wh	NIETO	
	Limited Charge Vol	tage: 13.2V		

Note:

- 1. The test results of this test report relate exclusively to the test item specified in this test report. World Standardization Certification & Testing Group (Shenzhen) Co., Ltd does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report is not to be reproduced or published in full without the prior written permission.
- 2. Per KDB 616217 D04 SAR for laptop and tablets, The standalone and simultaneous transmission SAR tests required for tablets are more conservative than the hotspot mode use configurations; therefore, additional testing for hotspot SAR is not required.

2

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Testing laboratory

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

No.	
Test Site	World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.
Test Location	Building A-B, Baoshi Science & Technology Park, Baoshi Road,
1 est Location	Bao'an District, Shenzhen, Guangdong, China
Telephone	+86-755-26996192
Fax	+86-755-86376605

ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

CNAS (Registration Number: L3732) China A2LA (Certificate Number: 5768.01) **USA**

Copies of granted accreditation certificates are available for downloading from our web site, http://www.wsct-cert.com

Test Environment

	V	
	Required	Actual
Ambient temperature:	18 – 25 °C	22 ± 2 °C
Tissue Simulating liquid:	22 ± 2 °C	22 ± 2 °C
Relative humidity content:	30 – 70 %	30 – 70 %

Applicant and Manufacturer

	Applicant/Client Name:	TECNO MOBILE LIMITED
<	Applicant Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
3	Manufacturer Name:	TECNO MOBILE LIMITED
Manufacturer Address: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTERS SHAN MEI STREET FOTAN NT HONGKONG		FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

6 Test standard/s:

67	9 1779	[[[] [] [] [] [] [] [] [] []
	IEC/IEEE 62209-1528	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices:Measurement Techniques
>	RSS-102	Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands(Issue 5 March 2015)
23	KDB447498 D01	General RF Exposure Guidance v06
	KDB616217 D04	SAR for laptop and tabletsv01r03
	KDB248227D01	SARmeas for 802.11a/b/g v02r02
	KDB865664D01	SAR Measurement 100 MHz to 6 GHz v01r04
	KDB865664D02	RF Exposure Reporting v01r02

	WATER	WEIGH	WEIGH	WEIGH	VETT
X	X	X	\times	$\langle \ \rangle$	
ATHA	WHITE	WEIGH	NV519	NVET	7
	WEIGHT.	NETER	NISIO	WISITE	WHI
X	X	X	X		
AVSTATA	WSET	WIFET	TIFFE	ATTES	

Group (Shenzhen) 世标检测认证股份 MONOW * PIT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-66376605 E-mail:Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 8 of 45

Certificate #5768.01

For Question, with WSCT

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

6.1 RF exposure limits

HumanExposure	UncontrolledEnvironment GeneralPopulation	ControlledEnvironment Occupational
SpatialPeakSAR* (Brain/Body/Arms/Legs)	1.60mW/g	8.00mW/g
SpatialAverageSAR** (WholeBody)	0.08mW/g	0.40mW/g
SpatialPeakSAR*** (Heads/Feet/Ankle/Wrist)	4.00mW/g	20.0 <mark>0</mark> mW/g

The limit applied in this test report is shown in bold letters

Notes:

- * TheSpatial PeakvalueoftheSAR averagedover any1gram oftissue(definedasatissue volumeintheshapeofacube) andovertheappropriateaveragingtime.
- ** TheSpatial AveragevalueoftheSARaveragedoverthewholebody.
- *** TheSpatial PeakvalueoftheSAR averagedover any10gramsoftissue(definedasatissue volumeintheshapeofacube) andovertheappropriateaveragingtime.

UncontrolledEnvironmentsaredefinedaslocationswherethereistheexposureofindividuals whohavenoknowledgeor control oftheir exposure.

ControlledEnvironmentsaredefinedaslocationswherethereisexposurethatmaybeincurred bypersonswhoareawareofthepotential for exposure, (i.e. asaresultofemploymentor occupation.

6.2 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (p).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

MOM * PI

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

7 **SAR Measurement System**

7.1 **The Measurement System**

ComosarisasystemthatisabletodeterminetheSARdistributioninsideaphantomofhumanbeing accordingtodifferentstandards. The Comosarsystem consists of the following items:

- -Maincomputerto control allthesystem
- -6 axisrobot
- Dataacquisitionsystem
- -Miniature E-fieldprobe
- -Device holder
- Head simulatingtissue

The followingfigure shows the system.

Member of the WSCT/INC

The EUT undertestoperating at the maximum power level is placed in the phone holder, under the phantom, which is filled with heads imulating liquid. The E-Field probe measures the electric field insidethephantom. TheOpenSARsoftwarecomputestheresultstogiveaSARvalueina1gor10g mass.

S

DUOM * PI

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 28992300 FAX:86-758-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com Page 10 of 45

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

7.2 Robot

The COMOSAR system uses the high precision robots KR 6 R900 sixx type out of the newer series from Satimo SA (France). Forthe 6-axis controller COMOSAR system, the KUKA robot controller version from Satimo is used. The KR 6 R900 sixx robot series have many features that are important for

our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

7.3 Probe

For themeasurements the Specific Dosimetric E-Field Probe SSE 5 with following specifications is used

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

- Dynamicrange: 0.01-100W/kg

Probe Length	330 mm
Lengthof Individual Dipoles	4.5 mm
Maximum externaldiameter	8 mm
ProbeTip ExternalDiameter	5 mm
Distance betweendipoles/ probeextremity	2.7 mm

-Calibration range: 300MHzto 3GHzfor head&body simulating liquid.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992306 FAX:66-758-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com Page 11 of 45

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Anglebetween probeaxis(evaluation axis) and suface normal line:less than 30°

Figure 2 – MVG COMOSAR Dosimetric E field Dipole

Dynamicrange:0.01-100W/kg

Probe Length	330 mm
Lengthof Individual Dipoles	2 mm
Maximum externaldiameter	8 mm
ProbeTip ExternalDiameter	2.5 mm
Distance betweendipoles/ probeextremity	1 mm

-Calibration range: 5GHzto 6GHzfor head&body simulating liquid.

Anglebetween probeaxis(evaluation axis) and suface normal line: less than 30°

NETE	77579	11514	NISTA .	175	4
			1519	NV214	776743
Wester	WSGT	Wister	N/ST 0	N/Z	
NV.			1514	WETH	W-5141
AU-HAI	WETGE	WEIGHT	WISTON		
Son & Te			1570	White a	VI-57-00

(Shenz

S DUOM * PIT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992306 FAX:86-758-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Page 12 of 45

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Measurement procedure 7.4

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Description of interpolation/extrapolation scheme

- The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.
- An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on afourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.
- The measurements have to be performed over a limited time(due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR average over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

7.6 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2groupisused. Thephantomisapolyurethaneshellintegratedinawoodentable. The thickness of the phantomamounts to 2mm +/- 0.2mm.lt enables the dosimetric evaluation of left and right phantom age and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

SystemMaterial	Permittivity	LossTangent		
Delrin	W517 3.7	0.005		

WEIGHT WEIGHT WEIGHT

WSCT GOW TOWN (Shensher) Co. Ltd.

WSTAT

STATE STATE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992306 FAX:66-758-66376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com Page 14 of 45

Member of the WSCT-INC.

ALPISES

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

ilac-MRA

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Device Holder 7.7

The positioning systemallows obtaining cheekand tilting position witha verygood accuracy.In compliancewithCENELEC, the tiltangle uncertainty is lower than 1°.

ZIPIZIA

Customs Material	Downsitti vitu	LasaTammant	
17/5/17	Deviceholder	11/2/9	11/5/4

SystemMaterial	Permittivity	LossTangent	
Delrin	3.7	0.005	

(Shenz 世标检测认证股份 Mouom * PIT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992306 FAX:86-758-86376605 E-mail:Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com Page 15 of 45 Member of the WSCT/INC

Certificate #5768.01

For Question,
Please Contact with WSCT

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

7.8 Video Positioning System

S

DUOM * PI

世标检测认证股份

- The video positioning system is used in OpenSAR to check theprobe. Which is composed of a camera, LED, mirror andmechanical parts. The camera is piloted by the main computerwith firewire link.
- During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.
- The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. Duringprobe rotations, the probe tip will keep its actual position.

Page 16 of 45

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-765-26986192 26992306 FAX:66-758-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question, with WSCT

7.9 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials. (Liquids used for testsare marked with \boxtimes):

Ingredients(% ofweight)			ИHz)		
frequency band	<u></u> 450	835	1800	1900	2450
Tissue Type	Head	Head	Head	Head	Head
Water	38.56	41.45	52.64	55.242	62.7
Salt (NaCl)	3.95	1.45	0.36	0.306	0.5
Sugar	56.32	56.0	0.0	0.0	0.0
HEC	0.98	1.0	0.0	0.0	0.0
Bactericide	0.19	0.1	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	36.8
DGBE	0.0	0.0	47.0	44.542	0.0
Ingredients(% ofweight)			Frequency (I	MHz)	
frequency band	450	835	1800	1900	
Tissue Type	Body	Body	Body	Body	Body
Water	51.16	52.4	69.91	69.91	73.2
Salt (NaCl)	1.49	1.40	0.13	0.13	0.04
Sugar	46.78	45.0	0.0	0.0	0.0
HEC	0.52	1.0	0.0	0.0	0.0
Bactericide	0.05	0.1	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	29.96	29.96	26.7
	Tissue Type Water Salt (NaCl) Sugar HEC Bactericide Triton X-100 DGBE Ingredients(% ofweight) frequency band Tissue Type Water Salt (NaCl) Sugar HEC Bactericide Triton X-100	frequency band □450 Tissue Type Head Water 38.56 Salt (NaCl) 3.95 Sugar 56.32 HEC 0.98 Bactericide 0.19 Triton X-100 0.0 DGBE 0.0 Ingredients(% ofweight) frequency band Tissue Type Body Water 51.16 Salt (NaCl) 1.49 Sugar 46.78 HEC 0.52 Bactericide 0.05 Triton X-100 0.0	frequency band □450 □835 Tissue Type Head Head Water 38.56 41.45 Salt (NaCl) 3.95 1.45 Sugar 56.32 56.0 HEC 0.98 1.0 Bactericide 0.19 0.1 Triton X-100 0.0 0.0 DGBE 0.0 0.0 Ingredients(% ofweight) □835 Tissue Type Body Body Water 51.16 52.4 Salt (NaCl) 1.49 1.40 Sugar 46.78 45.0 HEC 0.52 1.0 Bactericide 0.05 0.1 Triton X-100 0.0 0.0	frequency band □450 □835 □1800 Tissue Type Head Head Head Water 38.56 41.45 52.64 Salt (NaCl) 3.95 1.45 0.36 Sugar 56.32 56.0 0.0 HEC 0.98 1.0 0.0 Bactericide 0.19 0.1 0.0 Triton X-100 0.0 0.0 0.0 DGBE 0.0 0.0 47.0 Ingredients(% ofweight) Frequency (I frequency band □450 □835 □1800 Tissue Type Body Body Body Water 51.16 52.4 69.91 Salt (NaCl) 1.49 1.40 0.13 Sugar 46.78 45.0 0.0 HEC 0.52 1.0 0.0 Bactericide 0.05 0.1 0.0 Triton X-100 0.0 0.0 0.0	frequency band 450 835 1800 1900 Tissue Type Head Head Head Head Water 38.56 41.45 52.64 55.242 Salt (NaCl) 3.95 1.45 0.36 0.306 Sugar 56.32 56.0 0.0 0.0 0.0 HEC 0.98 1.0 0.0 0.0 0.0 Bactericide 0.19 0.1 0.0 0.0 0.0 Triton X-100 0.0 0.0 0.0 0.0 0.0 0.0 DGBE 0.0 0.0 47.0 44.542 1900

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose

Water: De-ionized, $16M\Omega$ + resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Simulating Head Liquid for 5G(HBBL3500-5800MHz), Manufactured by SPEAG:

Ingredients		(% by weight)	
Water		50-65%	
Mineral oil	X	10-30%	X
Emulsifiers		8-25%	
Sodium salt	1757	0-1.5%	185

Simulating Body Liquid for 5G(MBBL3500-5800MHz), Manufactured by SPEAG:

Ingredients	(% by weight)				
Water	60-80%				
Esters, Emulsifiers, Inhibitors	20-40%				
Sodium salt	0-1.5%				

16141

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

7.10 Tissue simulating liquids: parameters

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

÷		Long	-	Logo		harry	_		harm	Towns of the last
2	Tianua	Measured		Target	Tissue		Meas Tis:	sured sue	Lieusial	
	Tissue Type	Frequency (MHz)	TargetPer mittivity ε _r	Range of ±5%	TargetCondu ctivity σ (S/m)	Range of ±5%	٤r	σ (S/m)	Liquid Temp.	Test Date
	100	2410	52.80	50.16~55.44	1.91	1.81~2.00	52.50	1.94	1	AWS
\	2450MHz	2435	52.70	50.07~55.34	1.94	1.84~2.04	52.52	1.95	21.6°C	2024-06-10
1	Body	2450	52.70	50.07~55.34	1.95	1.85~2.05	52.73	1.96		
7	14	2460	52.70	50.07~55.34	1.96	1.86~2.06	52.76	1.99	114	W M
		5200	49.00	46.55~51.45	5.30	5.03~5.56	49.86	5.19		\times
	5G Body	5300	48.90	46.05~51.35	5.42	5.15 <mark>~5</mark> .69	48.32	5.27	21.6°C	2024-06-10
1		5800	48.20	45.79~50.61	6.00	5.70~6.30	47.74	6.09	1	
1		1		ε _r = Relative _l	oermittivity, σ= C	onductivity	1			

WESTER WE

Ward Stan Lindby Less Centrolises (On Strong (Shenzher) Co. Ltd.

AVSET

WSET

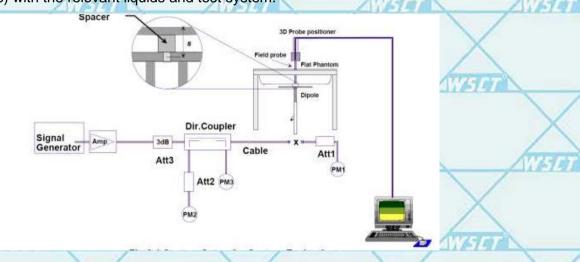
47179

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992308 FAX'86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wsct-cert.com

Page 18 of 45

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com


ReportNo.: WSCT-A2LA-R&E240300014A-SAR

8 System Check

System check procedure

The System check is performed by using a System check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the System check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

silication & Testino (Sher 世标检测认证股份

DUOM * PI

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 6-756-66376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.co

Page 19 of 45

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

System check results

(She)

DHOM * PI

The system Check is performed for verifying the accuracy of the complete measurement system and performance of the software. The following table shows System check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

		Target SAR (1W) (+/-10%) Measured SAR (Normalized to 1W)						Liannial	
	System Check	1-g (W/g)	Range of \pm 10% 1-g (W/g)	10-g (W/g)	Range of \pm 10% 10-g (W/g)	1-g (W/g)	10-g (W/g)	Liquid Temp.	Test Date
×	D2450V2 Head	51.39	46.25~56.53	23.63	21.27~25.99	53.630	22.650	21.6°C	2024-06-10
5	D5200V2 Head	163.36	147.03~179.69	57.09	51.39~62.79	167.180	59.640	21.6°C	2024-06-10
	D5300V2 Head	166.22	149.60~182.84	57.22	51.50~62.94	165.370	58.820	21.6°C	2024-06-10
	D5800V2 Head	177.10	159.39~194.81	59.95	53.96~65.94	179.660	60.800	21.6°C	2024-06-10
			Note: All CAD	1					/

Note: All SAR values are normalized to 1W forward power.

Note:5G band system check USES standard waveguide, so the test results are standard en62209-2 table B2

Wister	Wester	WEIGH	WEIGH	WEIGH
\times	NIST NIST			
11/51/97	W/-51-97	W-19	WASTON	AVISTAL
X	F191 N/F1		A NV	
		N. S.		X 100

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992306 FAX:66-758-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com Page 20 of 45 Member of the WSCT-INC

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

9 **SAR Test Test Configuration**

9.1 Wi-Fi Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for Wi-Fi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1,6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. 802.11b/g operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g modes are tested on channel 1, 6, 11; however, if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than

0.25dB higher than that measured on the corresponding 802.11b channels.

Mode	Band	GHz	Channel	"Default	Test Channels"
Wode	Bana	0112	Onz Chamer.		802.11g
TIES .	44	2412	1#		1127
802.11b/g	2.4 GHz	2437	6	1	Δ
	Array Control	2462	11#	1	Δ

Notes:

 $\sqrt{\ }$ = "default test channels"

 \triangle = possible 802.11g channels with maximum average output ¼ dB the "default test channels"

= when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

802.11 Test Channels per FCC Requirements

incation & Test S MOM * PI

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 28992300 FAX:86-758-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Page 21 of 45

Certificate #5768.01

with WSCT ert com

WiFi 5G SAR Test Procedures

A)U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

1)When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.

2) When different maximum output power is specified for the bands, begin SAR measurement in theband with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg. SAR is not required for the band with lower maximum output power in that test configuration; otherwise. both bands are tested independently for SAR.

3)The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

B)U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements, when Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 – 5.65 GHz must be included to apply the SAR test reduction and measurement procedures.

When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 66376605 E-mail: Fengbing Wang@wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

C)OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- 1)The largest channel bandwidth configuration is selected among the multiple configurations with thesame specified maximum output power.
- 2) If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3)If multiple configurations have the same specified maximum output power, largest channel bandwidthand lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4)When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.
- 1)The channel closest to mid-band frequency is selected for SAR measurement.
- 2) For channels with equal separation from mid-band frequency; for example, high and low channels ortwo midband channels, the higher frequency (number) channel is selected for SAR measurement.

D)SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 a/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

10 **Detailed Test Results**

10.1 Conducted Power measurements

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Themeasuringconductedaveragepower(Unit:dBm)isshownasbelow.

10.1.1 Conducted Power of Wi-Fi 2.4G

MAIN ANT1

		/ \		
	Mode		802.11b	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
	Average Power(dBm)	21.12	22.44	21.63
X	Mode		802.11g	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
7	Average Power(dBM)	25.93	26.05	26.17
	Mode		802.11n(HT20)	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
	Average Power(dBM)	25.80	26.00	26.02
	Mode		802.11n(HT40)	
	Channel/Frequency(MHz)	3(2422)	6(2437)	9(2452)
	Average Power(dBm)	25.32	26.15	26.33
X	Mode		802.11ax 20	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
3	Average Power(dBM)	26.20	26.25	26.53
I	Mode		802.11ax40	
	Channel/Frequency(MHz)	3(2422)	6(2437)	9(2452)
	Average Power(dBM)	25.98	26.25	26.12

	Average Power(dBM)	25.98		26.25	26.12	
	WEITE	WEI W	NISTE .	NI STATE		NETE I
				\vee	X	
AVISTATI	WSI	NHI	1	7519	1/474	
	V	V	V	X		\bigvee
	WSIG	WESTER	WETER	WSDI		VISIT
$\overline{}$		V		\vee		
NI STATE	WSIAI	NEI H	1	7519	17674	
		V		V		\bigvee
X		ATTENDANCE OF THE PARTY OF THE	ATTE AND ADDRESS OF THE PARTY O	MI3.2		777.00

(Shen S DUOM * PIT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992306 FAX:66-758-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

AUX ANT2

	7171111			
	Mode		802.11b	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
	Average Power(dBm)	18.72	18.71	18.69
	Mode		802.11g	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
	Average Power(dBM)	20.22	20.13	19.90
	Mode		802.11n(HT20)	
Æ	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
	Average Power(dBM)	20.22	20.13	19.85
	Mode		802.11n(HT40)	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
4	Average Power(dBm)	20.51	20.40	20.31
	Mode		802.11ax 20	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
	Average Power(dBm)	20.45	20.34	19.84
	Mode		802.11ax 40	
	Channel/Frequency(MHz)	3(2422)	6(2437)	9(2452)
	Average Power(dBm)	20.72	20.42	20.43

MIMO Mode

	Z116788	Z11 6-7 H M		Z I I I I I I I I I I I I I I I I I I I
	Mode		802.11n(HT20)	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
	Average Power(dBM)	26.86	27.00	26.96
	Mode		802.11n(HT40)	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
1	Average Power(dBm)	26.56	27.17	27.30
	Mode		802.11ax 20	
	Channel/Frequency(MHz)	1(2412)	6(2437)	11(2462)
-	Average Power(dBm)	27.22	27.24	27.37
4	Mode		802.11ax 40	
	Channel/Frequency(MHz)	3(2422)	6(2437)	9(2452)
	Average Power(dBm)	27.11	27.26	27.16

Saffication & Testing Group (Shenzh

MONOW * PIT

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-66376605 E-mail:Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

S MONON * PIT

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

WATER STATES

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

- (1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.
- (2) For Wi-Fi 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

WSIE	WEST	WIS		519	WHI
WEIGH	WHE	() J. 14 ()	WHITE	WHITE	
WEIDT	NV-ST BY			F14 6	NE STATE OF THE ST
NIE THE	WSG	Wister	NISTO	Wester	
Wister	X			15141	NE OF
775147	WESTER	175747	NISTE OF	Wester	
X	X	AVE		(F) (F)	N.H.
WSET	Group (Shen			777	

Page 26 of 45

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX:66-755-86376605 E-mail:Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

7.00 ±1.0

6.83

Certificate #5768.01

For Question, with WSCT

No

10.1.2 Conducted Power of Wi-Fi 5G

802.11ax-HT80

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

10.1.2 Conducted Power of Wi-Fi 3G								
			Ant 1					
Band	Mode	Channel	Frequency(MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)		
/	000 44 -	36	5180	17.00 ±1.0	16.64	Yes		
	802.11a	48	5240	14.50 ±1.0	14.26	NO		
	802.11n-HT20	36	5180	14.50 ±1.0	14.16	No		
	002.1111 - 11120	48	5240	14.50 ±1.0	14.47	No		
7	802.11n-HT40	38	5190	6.00 ± 1.0	5.61	No		
	802.11II-H140	46	5230	13.50 ±1.0	13.13	No		
	802.11ac-VHT20	36	5180	7.50 ± 1.0	7.00	No		
U-NII-1		48	5240	7.50 ± 1.0	7.32	No		
(5150-5250)	802.11ac-VHT40	38	5190	14.00 ±1.0	13.69	No		
KITTEL	802.11ac-V11140	46	5230	14.00 ±1.0	13.85	No		
17414	802.11ac-VHT80	42	5210	12.50 ± 1.0	12.48	No		
/	802.11ax-HT20	36	5180	16.00 ± 1.0	15.64	No		
	802.11ax-11120	48	5240	15.50 ± 1.0	15.11	No		
	802.11ax-HT40	38	5190	12.50 ± 1.0	12.02	No		
	002.11dX-11140	46	5230	11.00 ± 1.0	10.65	No		

Ant 2

5210

802.11a 36 5180 19.00 ± 1.0 18.53 No 48 5240 16.00 ± 1.0 15.76 No 802.11n-HT20 36 5180 16.50 ± 1.0 16.26 No 802.11n-HT40 38 5190 16.00 ± 1.0 15.53 No 802.11ac-VHT20 36 5180 17.00 ± 1.0 14.08 No 802.11ac-VHT40 38 5190 16.00 ± 1.0 15.67 No 802.11ac-VHT40 38 5190 16.50 ± 1.0 15.67 No 802.11ac-VHT40 38 5190 16.50 ± 1.0 16.36 No 802.11ac-VHT80 42 5210 14.00 ± 1.0 13.78 No 802.11ac-HT40 38 5190 16.50 ± 1.0 16.27 No 802.11ac-HT40 36 5180 16.50 ± 1.0 15.54 No 802.11ac-HT40 48 5240 16.00 ± 1.0 15.54 No 802.11ac-HT40 48 5240 16.00 ± 1.0 15.54 No 802.11ac-HT40 46 5230 14.00 ± 1.0 15.54 No 802.11ac-HT40 46 5230 14.00 ± 1.0 13.85 No 802.11ac-HT40 42 5210 13.00 ± 1.0 13.85 No 802.11ac-HT40 42 5210 13.00 ± 1.0 12.84 No 802.11ac-HT40 42 5210 13.00 ± 1.0 12.84 No	Band	Mode	Channel	Frequency(MHz)	Tune-up	Average Power (dBm)	(Yes/No)
802.11n-HT20		902.110	36	5180	19.00 ± 1.0	18.53	No
802.11n-HT20	117733	002.11a	48	5240	16.00 ± 1.0	15.76	No
802.11n-HT40 38 5190 16.00 ±1.0 15.53 No 802.11ac-VHT20 36 5180 17.00 ±1.0 16.56 Yes 15150-5250 802.11ac-VHT40 38 5190 16.50 ±1.0 16.36 No 802.11ac-VHT80 42 5210 14.00 ±1.0 15.24 No 802.11ac-VHT80 42 5210 14.00 ±1.0 13.78 No 802.11ac-VHT80 48 5240 16.50 ±1.0 15.54 No 802.11ac-VHT80 49 36 5180 16.50 ±1.0 16.27 No 802.11ac-VHT80 38 5190 16.50 ±1.0 15.54 No 802.11ac-VHT80 38 5190 16.50 ±1.0 15.54 No 802.11ac-VHT80 38 5190 15.50 ±1.0 15.54 No 802.11ac-VHT40 38 5190 15.50 ±1.0 15.54 No 802.11ac-VHT40 38 5190 15.50 ±1.0 15.24 No 802.11ac-VHT40 38 5190 15.50 ±1.0 15.50 ±1.0 802.11ac-VHT40 5100 ±1.0 15.	1519	902 115 UT20	36	5180	16.50 ± 1.0	16.26	No
S02.11n-HT40		802.11II-H120	48	5240	16.00 ± 1.0	15.87	No
U-NII-1 (5150-5250) 802.11ac-VHT20 48 5240 16.00 ±1.0 15.67 No (5150-5250) 802.11ac-VHT40 46 5230 15.50 ±1.0 15.24 No (802.11ac-VHT80 42 5210 14.00 ±1.0 15.67 No (802.11ac-VHT80 42 5210 14.00 ±1.0 13.78 No (802.11ac-VHT80 42 5240 16.50 ±1.0 16.27 No (802.11ac-VHT80 42 5240 16.50 ±1.0 15.54 No (802.11ac-VHT80 48 5240 16.00 ±1.0 15.54 No (802.11ac-VHT40 48 5240 16.00 ±1.0 15.54 No (802.11ac-VHT40 48 5230 15.50 ±1.0 15.54 No (802.11ac-VHT40 46 5230 14.00 ±1.0 15.54 No (802.11ac-VHT40 46 5230 14.00 ±1.0 13.85 No	(902 11p HT40	38	5190	16.00 ± 1.0	15.53	No
U-NII-1 (5150-5250) 802.11ac-VHT20 48 5240 16.00 ±1.0 15.67 No (5150-5250) 802.11ac-VHT40 46 5230 15.50 ±1.0 15.24 No (802.11ac-VHT80 42 5210 14.00 ±1.0 13.78 No (802.11ax-HT20 48 5240 16.50 ±1.0 15.54 No (802.11ax-HT20 48 5240 16.00 ±1.0 15.54 No (802.11ax-HT40 48 5240 16.00 ±1.0 15.54 No (802.11ax-HT40 46 5230 14.00 ±1.0 15.54 No (802.11ax-HT40 46 5230 14.00 ±1.0 13.85 No (802.11ax-HT40 46 5230 14.00 ±1.0 13.85 No		802.1111-H140	46	5230	14.50 ± 1.0	14.08	No
U-NII-1 (5150-5250) 802.11ac-VHT40 38 5240 16.00 ±1.0 15.67 No 802.11ac-VHT40 46 5230 16.50 ±1.0 16.36 No 802.11ac-VHT80 42 5210 14.00 ±1.0 13.78 No 802.11ax-HT20 48 5240 16.50 ±1.0 16.27 No 802.11ax-HT40 38 5240 16.00 ±1.0 15.54 No 802.11ax-HT40 38 5190 15.50 ±1.0 15.24 No 802.11ax-HT40 38 5190 15.50 ±1.0 15.24 No 802.11ax-HT40 46 5230 14.00 ±1.0 13.85 No		802 11ac-VHT20	36	5180	17.00 ± 1.0	16.56	Yes
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U-NII-1	802.11ac-v11120	48	5240	16.00 ± 1.0	15.67	No
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(5150-5250)	/	38	5190	16.50 ± 1.0	16.36	No
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			46	5230	15.50 \pm 1.0	15.24	No
802.11ax-HT20			42	5210	14.00 ± 1.0	13.78	No
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		802 11av-HT20	36	5180	16.50 ± 1.0	16.27	No
802.11ax-HT40 46 5230 14.00 ±1.0 13.85 No	1777-17	002.11ax-11120	48	5240	16.00 ± 1.0	15.54	No
46 5230 14.00 ±1.0 13.85 No	- Collected	802 11av-HT40	38	5190	15.50 ± 1.0	15.24	No
802.11ax-HT80 42 5210 13.00 ± 1.0 12.84 No	/	002.11dX-11140	46	5230	14.00 ± 1.0	13.85	No
0210		802.11ax-HT80	42	5210	13.00 ± 1.0	12.84	No

	MIMO								
5	Band	Mode	Channel	Frequency(MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)		
		802.11n-HT20	36	5180	18.50 ±1.0	18.35	No		
		602.11II - H120	48	5240	18.50 ± 1.0	18.24	No		
		802.11n-HT40	38	5190	16.00 ±1.0	15.95	No		
	802.11h-H140	46	5230	17.00 ± 1.0	16.64	No			
	11514	802.11ac-VHT20	36	5180	17.50 ± 1.0	17.02	No		
	- Julia	802.11ac-VH120	48	5240	16.50 ±1.0	16.26	No		
	U-NII-1	802.11ac-VHT40	38	5190	18.50 ± 1.0	18.24	No		
3	(5150-5250)	(5150-5250) 802.11ac-VH140	46	5230	18.00 ± 1.0	17.61	No		
•	1	802.11ac-VHT80	42	5210	16.50 ± 1.0	16.19	No		
	Santano)	802.11ax-HT20	36	5180	19.00 ± 1.0	18.98	Yes		
		802.11ax-H120	48	5240	18.50 ± 1.0	18.34	No		
		802.11ax-HT40	38	5190	17.00 ±1.0	16.93	No		
		602.11ax-H140	46	5230	16.00 ± 1.0	15.55	No		
		802.11ax-HT80	42	5210	14.00 ± 1.0	13.81	No		

Group (Shenz)

Mouom * PT

世标检测认证股份

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Certificate #5768.01

For Question,
Please Contact with WSCT

ert com Ant 1 Frequency Average Power SAR Test Band Mode Channel Tune-up (Yes/No) (MHz) (dBm) 14.00 ± 1.0 13.92 52 5260 Yes 802.11a 13.89 64 5320 14.00 ± 1.0 No 52 5260 14.00 ± 1.0 13.74 No 802.11n-HT20 64 5320 13.50 ± 1.0 13.41 No 54 5270 12.50 ± 1.0 12.20 No 802.11n-HT40 62 5310 12.50 ± 1.0 12.48 No 6.47 52 5260 6.50 ± 1.0 No 802.11ac-VHT20 6.60 U-NII-2a 64 5320 7.00 ± 1.0 No (5250-5350)12.95 54 5270 13.00 ± 1.0 No 802.11ac-VHT40 12.38 12.50 ± 1.0 62 5310 No 802.11ac-VHT80 58 5290 12.00 ± 1.0 11.71 No 52 14.25 5260 14.50 ± 1.0 Yes 802.11ax-HT20 14.22 64 No 5320 14.50 ± 1.0 12.52 54 13.00 ± 1.0 No 5270 802.11ax-HT40 62 5310 14.00 ± 1.0 13.98 No 802.11ax-HT80 9.89 58 5290 10.00 ± 1.0 No Ant 2 SAR Test Frequency Average Power Channel Band Mode Tune-up (MHz) (dBm) (Yes/No) 52 15.50 ± 1.0 15.36 5260 No 802.11a 15.56 64 16.00 ± 1.0 No 5320 15.50 No 52 5260 15.50 ± 1.0 802.11n-HT20 64 5320 15.50 ± 1.0 15.18 No 14.50 ± 1.0 14.05 No 54 5270 802.11n-HT40 62 14.50 ± 1.0 14.33 No 5310 52 5260 15.50 ± 1.0 15.18 No 802.11ac-VHT20 15.62 U-NII-2a 64 5320 16.00 ± 1.0 Yes (5250 - 5350)14.23 54 5270 14.50 ± 1.0 No 802.11ac-VHT40 15.09 No 62 5310 15.50 ± 1.0 802.11ac-VHT80 13.30 No 58 5290 13.50 ± 1.0 52 14.96 No 5260 15.00 ± 1.0 802.11ax-HT20 64 14.91 No 5320 15.00 ± 1.0 54 13.52 No 5270 14.00 ± 1.0 802.11ax-HT40 62 5310 13.00 ± 1.0 12.80 No 802.11ax-HT80 58 5290 12.50 ± 1.0 12.38 No MIMO Frequency Average Power SAR Test Band Mode Channel Tune-up (dBm) (MHz) (Yes/No) 52 5260 18.00 ± 1.0 17.72 Yes 802.11n-HT20 5320 17.50 ± 1.0 17.39 No 64 16.23 54 5270 16.50 ± 1.0 No 802.11n-HT40 62 5310 17.00 ± 1.0 16.51 No 15.73 52 5260 16.00 ± 1.0 No 802.11ac-VHT20 No 16.13 64 5320 16.50 ± 1.0 U-NII-2a 54 5270 17.00 ± 1.0 16.65 No 802.11ac-VHT40 (5250-5350)16.95 Nο 62 5310 17.00 ± 1.0 802.11ac-VHT80 16.00 ± 1.0 15.59 No 58 5290 17.63 No 52 5260 18.00 ± 1.0 802.11ax-HT20 17.59 No 18.00 ± 1.0 64 5320 54 5270 16.50 ± 1.0 16.06 No

Selfication & Testing

MONOM * PI

世标检测认证股份

S

802.11ax-HT40

802.11ax-HT80

62

58

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-66-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

 16.50 ± 1.0

 14.50 ± 1.0

5310

5290

No

No

16.44

14.32

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Certificate #5768.01

Question, with WSCT

1/			\ /		Certificate #5768.	For Question
		1	Ant 1			<u> </u>
Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)
VIII 3 T S	A1173	100	5500	14.00 ±1.0	13.70	No
Z11814B	802.11a	140	5700	14.50 ± 1.0	14.12	No
		100	5500	13.50 ±1.0	13.44	No
	802.11n-HT20	140	5700	14.50 ± 1.0	14.49	Yes
		102	5510	11.50 ± 1.0	11.48	No
	802.11n-HT40	134	5670	13.00 ± 1.0	12.85	No
	17279	100	5500	6.00 ± 1.0	5.94	No
	802.11ac-VHT20	140	5700	7.50 ± 1.0	7.30	No
LI AIII Os		102	5510	11.50 ± 1.0	11.23	No
U-NII-2c (5470-5725)	802.11ac-VHT40	134			12.69	No
(3470-3723)			5670	13.00 ±1.0	10.03	
(TOTAL)	802.11ac-VHT80	106	5530	10.50 ±1.0	10.79	No
11-141	1169	122	5610	11.00 ±1.0	1 400 3 100 200 5	No
	802.11ax-HT20	100	5500	10.00 ±1.0	9.67	No
		140	5700	12.50 ± 1.0	12.18	No
	802.11ax-HT40	102	5510	13.50 ± 1.0	13.05	No
	302.11	134	5670	14.50 ± 1.0	14.00	No
730	802.11ax-HT80	106	5530	10.00 ± 1.0	9.71	No
	802.11ax-11160	122	5610	9.50 ±1.0	9.23	No
			Ant 2			
			Frequency	_	Average Power	SAR Test
Band	Mode	Channel	(MHz)	Tune-up	(dBm)	(Yes/No)
	000 44-	100	5500	14.50 ±1.0	14.50	No
AUZSTEI	802.11a	140	5700	15.00 ±1.0	14.67	No
1		100	5500	15.00 ± 1.0	14.80	No
	802.11n-HT20	140	5700	14.50 ±1.0	14.23	No
	X	102	5510	13.00 ± 1.0	12.99	No
	802.11n-HT40	134	5670	14.50 ± 1.0	14.06	No
	Acres de la constante de la co	100	5500	14.50 ± 1.0	14.28	No
	802.11ac-VHT20	140	5700	15.00 ± 1.0	14.56	Yes
U-NII-2c		102	5510	13.50 ± 1.0	13.23	No
(5470-5725)	802.11ac-VHT40	134	5670	14.50 ± 1.0	14.05	No
(0410 3123)				14.50 ± 1.0 12.50 ± 1.0	12.31	
	802.11ac-VHT80	106 122	5530		13.56	No
ATTZZZZZ	ATTY		5610	14.00 ±1.0	And the second s	No
CIPIT	802.11ax-HT20	100	5500	14.00 ±1.0	13.68	No
/		140	5700	14.50 ±1.0	14.38	No
	802.11ax-HT40	102	5510	13.00 ±1.0	12.75	No
		134	5670	13.50 ± 1.0	13.20	No
	802.11ax-HT80	106	5530	11.50 ±1.0	11.28	No
	ATT I WAS	122	5610	12.00 ± 1.0	11.77	No
			MIMO			
Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Power	SAR Test
Danu	Mode	Charmer	riequency (Minz)	rune-up	(dBm)	(Yes/No)
	802.11n-HT20	100	5500	17.50 ± 1.0	17.18	No
Acres 1	002.1111-11120	140	5700	17.50 ± 1.0	17.37	Yes
15791	902 44 n LIT40	102	5510	15.50 ± 1.0	15.31	No
	802.11n-HT40	134	5670	17.00 ± 1.0	16.51	No
				45.00 4.0	44.0-	
		100	5500	15.00 ± 1.0	14.87	No
	802.11ac-VHT20	100 140	5500 5700	15.00 ± 1.0 15.50 ± 1.0	14.87 15.31	No No
	802.11ac-VHT20					
U-NII-2c		140 102	5700 5510	15.50 ±1.0	15.31	No No
U-NII-2c (5470-5725)	802.11ac-VHT20 802.11ac-VHT40	140 102 134	5700 5510 5670	15.50 ± 1.0 15.50 ± 1.0 16.50 ± 1.0	15.31 15.35	No No No
	802.11ac-VHT20	140 102 134 106	5700 5510 5670 5530	15.50 ±1.0 15.50 ±1.0 16.50 ±1.0 14.50 ±1.0	15.31 15.35 16.43 14.33	No No No
	802.11ac-VHT20 802.11ac-VHT40 802.11ac-VHT80	140 102 134 106 122	5700 5510 5670 5530 5610	$\begin{array}{c} 15.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 14.50 \pm 1.0 \\ 15.50 \pm 1.0 \end{array}$	15.31 15.35 16.43 14.33 15.40	No No No No
	802.11ac-VHT20 802.11ac-VHT40	140 102 134 106 122 100	5700 5510 5670 5530 5610 5500	$\begin{array}{c} 15.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 14.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ \end{array}$	15.31 15.35 16.43 14.33 15.40 15.13	No No No No No
(5470-5725)	802.11ac-VHT20 802.11ac-VHT40 802.11ac-VHT80 802.11ax-HT20	140 102 134 106 122 100 140	5700 5510 5670 5530 5610 5500 5700	$\begin{array}{c} 15.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 14.50 \pm 1.0 \\ 14.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ \end{array}$	15.31 15.35 16.43 14.33 15.40 15.13 16.43	No
(5470-5725)	802.11ac-VHT20 802.11ac-VHT40 802.11ac-VHT80 802.11ax-HT20	140 102 134 106 122 100 140	5700 5510 5670 5530 5610 5500 5700 5510	$\begin{array}{c} 15.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 14.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 16.00 \pm 1.0 \\ \end{array}$	15.31 15.35 16.43 14.33 15.40 15.13 16.43 15.91	No N
(5470-5725)	802.11ac-VHT20 802.11ac-VHT40 802.11ac-VHT80 802.11ax-HT20	140 102 134 106 122 100 140 102 134	5700 5510 5670 5530 5610 5500 5700 5510 5670	$\begin{array}{c} 15.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 14.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 16.00 \pm 1.0 \\ 17.00 \pm 1.0 \\ \end{array}$	15.31 15.35 16.43 14.33 15.40 15.13 16.43 15.91	No N
	802.11ac-VHT20 802.11ac-VHT40 802.11ac-VHT80 802.11ax-HT20	140 102 134 106 122 100 140	5700 5510 5670 5530 5610 5500 5700 5510	$\begin{array}{c} 15.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 14.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 15.50 \pm 1.0 \\ 16.50 \pm 1.0 \\ 16.00 \pm 1.0 \\ \end{array}$	15.31 15.35 16.43 14.33 15.40 15.13 16.43 15.91	No N

W5ET

MOUDIN * PIT

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992306 FAX:66-755-86376605 E-mail:Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Certificate #5768.01

WSCT

					PERMITAL TRACTICES	For Ques
Dond	Mode	Channal	Ant 1	T	Averege Down(dDm)	SAR Test
Band	iviode	Channel	Frequency (MHz)	Tune-up	Average Powe(dBm)	(Yes/No)
AUZSTE	802.11a	149	5745	15.00 ± 1.0	14.55	No
1	002.114	165	5825	14.50 ±1.0	14.37	No
	802.11n-HT20	149	5745	15.00 ± 1.0	14.87	No
	002.11111120	165	5825	15.00 ± 1.0	14.52	No
	802.11n-HT40	151	5755	15.50 ± 1.0	15.15	Yes
7	002.11111140	159	5795	15.00 ± 1.0	14.54	No
	802.11ac-VHT20	149	5745	8.00 ±1.0	7.56	No
U-NII-3	002.11dC-V11120	165	5825	7.50 ±1.0	7.44	No
(5725-5825)	802.11ac-VHT40	151	5755	15.00 ±1.0	14.67	No
X	002.11ac-V11140	159	5795	15.00 ±1.0	14.61	No
	802.11ac-VHT80	155	5775	13.50 ±1.0	13.02	No
-	802.11ax-HT20	149	5745	13.50 ± 1.0	13.33	No
114741	802.11dx-H120	165	5825	12.00 ±1.0	11.91	No
/	902 11av HT40	151	5755	14.00 ±1.0	13.8	No
	802.11ax-HT40	159	5795	11.50 ± 1.0	11.24	No
	802.11ax-HT80	155	5775	11.00 ±1.0	10.59	No
			Ant 2			
Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Powe(dBm)	SAR Test (Yes/No)
	000.44	149	5745	16.00 ±1.0	15.56	No
	802.11a	165	5825	15.50 ±1.0	15.04	No
X	000 11 11700	149	5745	15.50 ±1.0	15.46	No
	802.11n-HT20	165	5825	15.00 ±1.0	14.84	No
ATTERES	X	151	5755	14.50 ±1.0	14.21	No
11/19	802.11n-HT40	159	5795	14.50 ±1.0	14.41	No
/		149	5745	16.00 ± 1.0	15.75	No
U-NII-3	802.11ac-VHT20	165	5825	15.00 ± 1.0	14.76	No
(5725-5825)		151	5755	15.00 ±1.0	14.81	No
(, , , , , , , , , , , , , , , , , , ,	802.11ac-VHT40	159	5795	15.00 ±1.0	14.61	No
	802.11ac-VHT80	155	5775	13.50 ±1.0	13.36	No
	CIPTE	149	5745	15.00 ±1.0	14.92	No
\ /	802.11ax-HT20	165	5825	14.50 ±1.0	14.09	No
		151	5755	14.00 ±1.0	13.89	No
	802.11ax-HT40	159	5795	14.00 ± 1.0	13.85	Yes
	802.11ax-HT80	155	5775	13.00 ± 1.0	12.77	No
	502.11dx 11100		MIMO	10.00 ± 1.0		110
Band	Mode	Channel	Frequency (MHz)	Tune-up	Average Powe(dBm)	SAR Test (Yes/No)
	.X.	149	5745	18.50 ±1.0	18.19	Yes
V.	802.11n-HT20	165	5825	18.00 ±1.0	17.69	No
7		151	5755	18.00 ± 1.0	17.72	No
	802.11n-HT40	159	5795	17.50 ±1.0	17.49	No
		149	5745	16.50 ± 1.0	16.36	No
\ /	802.11ac-VHT20	165	5825	15.50 ±1.0	15.50	No
U-NII-3	×	151	5755	18.00 ± 1.0	17.75	No
(5725-5825)	802.11ac-VHT40				17.62	
(3123-3023)	902 44ee \// IT00	159	5795	18.00 ±1.0		No
111577	802.11ac-VHT80	155	5775	16.50 ±1.0	16.20	No
- LUCIA	802.11ax-HT20	149	5745	17.50 ±1.0	17.21	No
	1	165	5825	16.50 ±1.0	16.15	No
	802.11ax-HT40	151	5755	17.00 ±1.0	16.86	No
	OULT TUN TITTO	159	E70E	16 00 110	15.75	No
v.	802.11ax-HT80	155	5795 5775	16.00 ± 1.0 15.00 ± 1.0	14.83	No

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

For WLAN 5 GHz, the initial test configuration was selected according to the transmission mode with thehighest maximum output power. When the reported SAR of initial test configuration is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is <= 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and it is <= 1.2 W/kg.

DUOM * PI

世标检测认证数份

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

10.1.3 Conducted Power of BT

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

The maximum output power of BT is:

Mode	GFSK mode						
Channel/Frequency(MHz)	0(2402)	39(2441)	78(2480)				
Peak Power(dBm)	16.00	15.94	15.65				
Mode							
Channel/Frequency(MHz)	0(2402)	39(2441)	78(2480)				
Peak Power(dBm)	17.31	11.49	11.30				
Mode							
Channel/Frequency(MHz)	0(2402)	39(2441)	78(2480)				
Peak Power(dBm)	12.14	11.90	11.70				

The maximum output power of BLE is:

Mode		1Mbps	
Channel/Frequency(MHz)	0(2402)	19(2440)	39(2480)
Peak Power(dBm)	10.41	10.28	10.02
Mode		2Mbps	
Channel/Frequency(MHz)	0(2402)	19(2440)	39(2480)
Peak Power(dBm)	10.56	10.38	10.16

AVETA	17234	N/FIE	WHAT	Wister	
		$\langle \ \rangle$		X	X
WE	TTT AVI	741	14	7674	AVETTE
X			X	\times	
N/5141	TISTAT	WETATA	NV5197	WESTER	/
		19 NV	100	VESTILI	AUSIA
					211779
NIE III	WSI	THE	77574	WASSI	
	1	Δ		\triangle	
ation & 7	een .	947 AV	LI	VSLT	AVISTO

世标检测认证股份

(Shenz

Mouom * PT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-66376605 E-mail:Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

10.1.4 Tune-up powertolerance

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Band	(VISION)		Tune-up power tolerand	ce(dBm)	W4300
		1	802.11b	Max output	power =22.5±1.0dbm
			802.11g	Max output	power =26.5±1.0dbm
	2.4G	\wedge	802.11n (HT20)	Max output	power =26.5±1.0dbm
- 6	(MAIN AN	Γ1)	802.11n (HT40)	Max output	power =26.5±1.0dbm
	774	217-79 E	802.11ax20	Max output	power =27.0±1.0dbm
\/			802.11ax40	Max output	power =26.5±1.0dbm
X	X		802.11b	Max output	power =19.0±1.0dbm
			802.11g	Max output	power =20.5±1.0dbm
VSET	2.4G		802.11n (HT20)		power =20.5±1.0dbm
	(AUX ANT	2)	802.11n (HT40)		power =21.0±1.0dbm
WIFI			802.11ax20		power = 20.5±1.0dbm
VVIFI	\wedge	\sim	802.11ax40)		power =18.5±1.0dbm
A	777	ATTEN	802.11n (HT20)		power =27.0±1.0dbm
	2.4G		802.11n (HT40)		power =27.5±1.0dbm
\/	(MIMOMod	de)	802.11ax20	Max output	power =27.5±1.0dbm
X	X		802.11ax40		power =27.5±1.0dbm
	U-NII-1	Ant 1	802.11a		power =17.0±1.0dbm
175757	(5150-5250)	Ant 2	802.11ac (VHT20)		power =17.0±1.0dbm
	(0100 0200)	MIMO	802.11ac (VHT20)		power =19.0±1.0dbm
	U-NII-2a	Ant 1	802.11ax (HT20)		power =14.5±1.0dbm
	(5250-5350)	Ant 2	802.11ac (VHT20)		power =16.0±1.0dbm
A	(6266 6666)	MIMO	802.11n (HT20)		power =18.0±1.0dbm
() () ()	U-NII-2c	Ant 1	802.11n(HT20)		power =14.5±1.0dbm
//	(5470-5725)	Ant 2	802.11n(HT20)		power =15.0±1.0dbm
WIFI	(01100120)	MIMO	802.11n(HT20)		power =17.5±1.0dbm
	U-NII-3	Ant 1	802.11n(HT40)		power =15.5±1.0dbm
WSET \	(5725-5825)	Ant 2	802.11ac(VHT20)		power =16.0±1.0dbm
		MIMO	802.11n (HT20)		power =18.0±1.0dbm
	X	GFSK mo			power =16.5±1.0dbm
BT		Pi/4DQPSK			power =17.5±1.0dbm
- /	17444	8DPSK m			power =12.5±1.0dbm
BLE	FIGE	1Mbps Po			power =10.5±1.0dbm
		2Mbps Po	ower	Max output	power =11.0±1.0dbm

Salication & Testing Group (Shenza 世标检测认证股份 Buom * PIT

Certificate #5768.01

Please Contact with WSC1 www.wsct-cert.com

10.2 SAR test results

Notes:

- 1) Per KDB447498 D01v05 r02, the SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the scaled SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.
- 2) Per KDB447498 D01v05r02, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.
- 3)Per KDB447498 D01v06, All measurement SAR result is scaled-up to account for tune-up tolerance is compliant.
- 4) Per KDB648474 D04v01r03, body-worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn with headset SAR.
- 5)Per KDB248227 D01v02r02, the procedures required to establish specific device operating configurations for testing the SAR of 802.11 a/b/g transmitters.
- 6) Per KDB865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%, and the measured SAR <1.45W/Kg, only one repeated measurement is required.
- 7) Per KDB865664 D02v01r02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix B for details)
- 8) Per KDB6162147 D04v01r02, the SAR requirements for laptop and tablet computers, and its to determine the minimum test separation distance.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

10.2.1 Results overview of Wi-Fi 2.4G

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

14	774	11/14		11/6/14			7798		A74		1
	Mode	Test Position	Test	SAR Valu	e (W/kg)	Power Drift	Conducted	Tune-up	Scaled	Scaling	
	Wode	of Body with 0mm	channel /Freq.(MHz)	1-g	10-g	(%)	Power (dBm)	Limit (dBm)	SAR1-g (W/kg)	Factor	
				WLA	N2.4g(gap	0mm)					L
1	802.11ax 20	Front	1/2412	0.206	0.100	-2.790	26.53	27.00	0.230	1.114	2
	MAIN ANT1	Back	1/2412	0.233	0.123	-0.610	26.53	27.00	0.260	1.114	ĺ
,	802.11b	Front	1/2412	0.190	0.082	-3.130	20.72	21.00	0.203	1.067	
17	AUX ANT2	Back	1/2412	0.222	0.113	-4.310	20.72	21.00	0.237	1.067	į
	802.11ax 20 MIMO	Front	1/2412	0.240	0.124	1.330	27.37	27.50	0.247	1.030	
		Back	1/2412	0.285	0.166	1.580	27.37	27.50	0.294	1.030	
						1	/			/	

WEIGHT WEIGHT

AVE/G1	West of the Control o	775741	WSIT	Wister
	\times	THE ATE	$\langle \ \rangle$	
NVF14	WSI	WEIDI	NV519	N/519
	\times	197		
NIE IN I	17514	VI-SI 91	N/S/G/	Wester

Group (Shenza MOHOM * PIT 世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-66376605 E-mail:Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 34 of 45

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

10.2.2 Results overview of Wi-Fi 5G

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Mode	Test Position of Body with	Test channel	SAR Valu	e (W/kg)	Power Drift	Conducted Power	Tune-up Limit	Scaled SAR1-g	Scaling
	0mm	/Freq.(MHz)	1-g	10-g	(%)	(dBm)	(dBm)	(W/kg)	Factor
			WLAN5	5.2g(gap 0r	mm)				
802.11a	Front	36/5180	0.116	0.060	-0.890	16.64	17.00	0.126	1.086
ANT1	Back	36/5180	0.124	0.063	3.740	16.64	17.00	0.135	1.086
802.11ac-VHT80	Front	36/5180	0.130	0.067	-4.620	16.56	17.00	0.144	1.107
ANT2	Back	36/5180	0.147	0.080	-4.990	16.56	17.00	0.163	1.107
802.11ac-VHT20	Front	36/5180	0.135	0.074	1.150	18.98	19.00	0.136	1.005
MIMO-ANT	Back	36/5180	0.164	0.101	0.200	18.98	19.00	0.165	1.005
Mode	Test Position	Test channel	SAR Valu	e (W/kg)	Power	Conducted Power	Tune-up Limit	Scaled SAR1-g	Scaling
Wiode	of Body with 0mm	/Freq.(MHz)	1-g	10-g	Drift (%)	(dBm)	(dBm)	(W/kg)	Factor
			WLANS	5.4g(gap 0r	mm)				
802.11ax- HT20	Front	52/5260	0.111	0.039	-3.420	14.25	14.50	0.118	1.059
ANT1	Back	52/5260	0.128	0.061	2.260	14.25	14.50	0.136	1.059
802.11ac-VHT20	Front	64/5320	0.087	0.055	-3.650	15.62	16.00	0.095	1.091
ANT2	Back	64/5320	0.118	0.063	3.630	15.62	16.00	0.129	1.091
802.11n-HT20	Front	52/5260	0.122	0.060	4.520	17.72	18.00	0.130	1.067
MIMO-ANT	Back	52/5260	0.147	0.085	2.470	17.72	18.00	0.157	1.067
			WLAN5	5.6g(gap 0r	mm)				
802.11n-HT20	Front	140/5700	0.159	0.073	-4.090	14.49	14.50	0.159	1.002
ANT1	Back	140/5700	0.193	0.089	4.800	14.49	14.50	0.193	1.002
802.11n-HT20	Front	100/5500	0.169	0.098	-1.370	14.80	15.00	0.177	1.047
ANT2	Back	100/5500	0.180	0.102	1.050	14.80	15.00	0.188	1.047
802.11n-HT20	Front	140/5700	0.176	0.089	-1.740	17.37	17.50	0.181	1.030
MIMO-ANT	Back	140/5700	0.203	0.115	-0.700	17.37	17.50	0.209	1.030
			WLANS	5.8g(gap 0r	mm)				
802.11n-HT40	Front	151/5755	0.130	0.068	2.390	15.15	15.50	0.141	1.084
ANT1	Back	151/5755	0.136	0.054	1.360	15.15	15.50	0.147	1.084
802.11ac-VHT40	Front	149/5745	0.152	0.066	-0.140	15.75	16.00	0.161	1.059
ANT2	Back	149/5745	0.164	0.078	3.210	15.75	16.00	0.174	1.059
802.11n-HT20	Front	149/5745	0.145	0.075	0.870	18.19	18.50	0.156	1.074
MIMO-ANT	Back	149/5745	0.180	0.098	1.380	18.19	18.50	0.193	1.074
A STATE OF THE STA			A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			AND PROPERTY.		THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-66376605 E-mail:Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 35 of 45

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

10.2.3 Results overview of BT

	Test Position of	Test channel	Test		Value 'kg)	Power Drift	Conducted Power	Tune-up	Scaled SAR _{1-q}	Scalig
	Body with 0mm	/Freq.(MHz)	Mode	1-g	10-g	(%)	(dBm)	Limit(dBm)	(W/kg)	factor
Ī		1			BTant	enna to sid	e		V	
Ī	Front side	39/2441	GFSK	0.067	0.027	3.680	17.31	17.50	0.070	1.045
	Rear side	39/2441	GFSK	0.077	0.041	0.310	17.31	17.50	0.080	1.045
	Left side	39/2441	GFSK	0.049	0.029	0.320	17.31	17.50	0.051	1.045
	Top side	39/2441	GFSK	0.051	0.016	-1.340	17.31	17.50	0.053	1.045

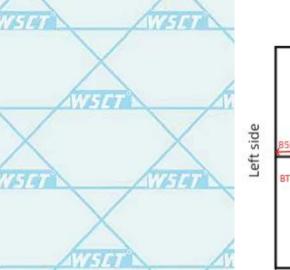
	1779	1777	NIST	175197	AVETTE
AVE		NVS			
	WEIRI	MISTER	WHE	Wista	WESTER
NIF.					
	WEIGH	AVISTATA	WATER	WASTER	WESTER
ATTE		W.E			W .
	Carl Street		7510	7,100	1

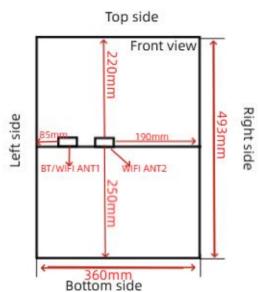
Group (Shenzh 世标检测认证股份 MONOW * PIT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-66376605 E-mail:Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 36 of 45

ReportNo.: WSCT-A2LA-R&E240300014A-SAR




Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

11 **Multiple Transmitter Information**

The SAR measurement positions of each side are as below:

Side	Wi-Fi/BT antenna (0 degree) to Side
	SAR Consideration
Front Side	Yes
Rear Side	Yes
Left Side	Yes
Right Side	Yes
Top Side	Yes
Bottom Side	No

<Rear Side>

Note: According to section 6.1.4.5 device with swivel antennas, if the antennas can be rotated to two planes, an evaluation should be performed and documented on the report to decide the highest exposure conditions, and only that position need consideration.

In addition, in case of this antenna, the two representative positions 0degree and 90degree shall be evaluated independently for each required EUT edge. When evaluating the test surfaces, the nearest distance between the antenna and the edges is applicable.

DUOM * PI

(Shen

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 28992300 FAX:86-758-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Page 37 of 45

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

11.1.1 Stand-alone SAR test exclusion

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Body-Wornposition

	Mode	Pmax(dBm)	Pmax(mW)	Distance(mm)	f(GHz)	х	Estimated 1-gSAR(W/Kg)
A.	BT	17 31	53.83	5.00	2.45	7.5	2.247

NV S	The state of the s	747	W.ST.	AVELDE	WEIGH
WHAT	WATER	Wister	NVSIE	X	
			W5100	W-5147	AVESTOR
775141	WEIGH	VIETE	Wister	\times	
			X	X	X

DUOM * PI

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 28992300 FAX:86-758-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Monday Mil

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

11.1.2 Simultaneous Transmission SAR Summation Scenario

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

	A					
	Mode	Position	Ant 1WIFI 1g(W/kg)	Ant 1 BT 1g(W/kg)	Ant 1 WIFI+ BT 1g(W/kg)	
	2.4Gwifi	Front	0.247	0.070	0.317	
	(MIMO)	Back	0.294	0.080	0.374	
WSET	5.2Gwifi	Front	0.136	0.070	0.206	
714-1-4	(MIMO)	Back	0.165	0.080	0.245	
	5.4Gwifi	Front	0.130	0.070	0.200	
	(MIMO)	Back	0.157	0.080	0.237	
	5.6Gwifi	Front	0.181	0.070	0.251	
	(MIMO)	Back	0.209	0.080	0.289	
	5.8Gwifi	Front	0.156	0.070	0.226	
1	(MIMO)	Back	0.193	0.080	0.273	

1	17519	THE STATE OF THE S	7759	7779	NEI O
NIE!	$\langle \ \rangle$	$\langle \hspace{0.1cm} \rangle$			19.0
	WELT	WESTER	WEIGH	WHI I	WEIGH
AVF3					79
	Wister	NV5101	WETO	Wister	WSW

175141	WSTEE	WSH	NATE OF	176741

Salification & Testing Group (Shenzh

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-66376605 E-mail:Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

Page 39 of 45

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

11.2 Measurement uncertainty evaluation for SAR test

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Satimo. The breakdown of the individual uncertainties is as follows:

Satimo. The breakdown of the individual uncertainties is as follows.									
	Measure	ment Un	certain	ty eval	uation for	SAR test	2		
6	Uncertainty Component	Tol. (±%)	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g U _i (±%)	10g U _i (±%)	Vi
	measurement system	(± /0)	Dist.		(19)	(10g)	(±/0)	(± /0)	
	Probe Calibration	5.8	N	1	1	1 /	5.8	5.8	∞
	Axial Isotropy	3.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	$(1-C_p)^{1/2}$	1.43	1.43	∞
	Hemispherical Isotropy	5.9	R	$\sqrt{3}$	√Cp	√Cp	2.41	2.41	∞
	Boundary Effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
	Linearity	4.7	R	$\sqrt{3}$	1/	1	2.71	2.71	∞
Z	system Detection Limits	1/17	R	$\sqrt{3}$	1772	/#/ 1_	0.58	0.58	∞
	Modulation response	3	N	1	/ 1	1	3.00	3.00	∞ w
	Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
	Response Time	0	R	$\sqrt{3}$	1	1 /	0.00	0.00	∞
	Integration Time	1.4	R	$\sqrt{3}$	1	1/00	0.81	0.81	~
	RF Ambient Conditions-Noise	3	R	$\sqrt{3}$	1	/1	1.73	1.73	8
	RF Ambient Conditions- Reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	8
Z	Probe Positioner Mechanical Tolerance	1.4	s R	$\sqrt{3}$	TIVE		0.81	0.81	8
	Probe positioning with respect to Phantom Shell	1.4	R	√3	1	1	0.81	0.81	∞
	Extrapolation, interpolation and Integration Algorithms for Max.SAR Evaluation	2.3	R	$\sqrt{3}$	1	1/3	1.33	1.33	∞
1	Test sample Related								
	Test Sample Positioning	2.6	N	1	1 /	1	2.60	2.60	11
7	Device Holder Uncertainty	3	N	1	1/	_1	3.00	3.00	7
74	Output Power Variation-SAR drift measurement	5	R	√3	110		2.89	2.89	8
	SAR scaling	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞

HAI NETAL METAL

11/19

SET AWSET

TO STIFT OF

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992306 FAX:86-758-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

Page 40 of 45

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

ilac-MRA

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Phantom and Tissue Parameters Phantom Uncertainty $\sqrt{3}$ 4 R 1 2.31 2.31 (shape and thickness tolerances) Uncertainty in SAR correction for deviation 2 Ν 1 0.84 2.00 1.68 1 ∞ (in permittivity and conductivity) N 1.08 Liquid conductivity (meas.) 2.5 0.64 0.43 1.60 5 $\sqrt{3}$ R 1.24 Liquid conductivity (target.) 5 0.64 0.43 1.85 5 Liquid Permittivity (meas.) 2.5 N 1 0.60 0.49 1.50 1.23 Liquid Permittivity (target.) $\sqrt{3}$ 1.73 5 R 0.60 0.49 1.42 **Combined Standard Uncertainly** Rss 10.63 10.54 Expanded Uncertainty (95%) 21.26 21.08 k **CONFIDENCE INTERRVAL**

WESTER WESTER WESTER WESTER WESTER WESTER WESTER

WSはTO Company (ADDY Strong (Shenzhen) Co. Ltd.

AVSTATA

WSLT

ALTHOU

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Page 41 of 45

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

AWSET

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

WSET

11.3 Measurement uncertainty evaluation for system check

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Satimo. The breakdown of the individual uncertainties is as follows:

	Uncer	rtainty	For Syste	em Perf	ormance (Check	/		
	Uncertainty Component	Tol. (±%)	Prob. Dist.	Div.	C _i 1g	C _i 10g	1g U _i (±%)	10g U _i (±%)	Vi
	measurement system								
	Probe Calibration	5.8	N/	1	1	/1	5.80	5.80	∞
	Axial Isotropy	3.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	$(1-C_p)^{1/2}$	1.43	1.43	∞
	Hemispherical Isotropy	5.9	R	$\sqrt{3}$	√Cp	√Cp	2.41	2.41	∞
Z	Boundary Effect	_1/	R	$\sqrt{3}$	1072		0.58	0.58	∞
	Linearity	4.7	R	$\sqrt{3}$	/ 1	1	2.71	2.71	∞
	system detection Limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	8
	Modulation response	0	N	1/	1	1 🧳	0.00	0.00	∞
	Readout Electronics	0.5	N	1023	1	1 /0	0.50	0.50	
	Response Time	0	R /	$\sqrt{3}$			0.00	0.00	∞
1	Integration Time	1.4	R	$\sqrt{3}$	1	/ 1	0.81	0.81	8
1	RF ambient Conditions - Noise	3	R	$\sqrt{3}$	1 /	1	1.73	1.73	∞
7	RF ambient Conditions – Reflections	3	/ 5 R	$\sqrt{3}$	ATTE		1.73	1.73	8
	Probe positioned Mechanical Tolerance	1.4	R	√3	1	1	0.81	0.81	8
	Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
	Extrapolation, interpolation and	A WILLY		TIP!		111	-14	_	TANTE
1	integration Algorithms for Max. SAR Evaluation	2.3	R	√3	1	1	1.33	1.33	∞
	Dipole								
Z	Deviation of experimental source from numerical source	4	N	1	1576	196	4.00	4.00	∞
	Input power and SAR drift measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
	Dipole axis to liquid Distance	2	R	$\sqrt{3}$	1	1 /2	1.16	1.16	∞

W.51年 (Special Control of Contr

175/11

WSLT

AWSET

AVISET

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail:Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

ilac-MRA

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

	Phantom and Tissue Parameters									
	Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	1	1/11	2.31	2.31	√ ∞	
\	Uncertainty in SAR correction for deviation (in permittivity and conductivity)	2	Z	1	1	0.84	2.00	1.68	8	
Z	Liquid conductivity (meas.)	2.5	N	1	0.64	0.43	1.60	1.08	5	
	Liquid conductivity (target.)	5	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	5	1
	Liquid Permittivity (meas.)	2.5	N	1×	0.60	0.49	1.50	1.23	∞	
	Liquid Permittivity (target.)	5	R	$\sqrt{3}$	0.60	0.49	1.73	1.41	√ ∞ /	į
	Combined Standard Uncertainty		Rss		1	/	10.28	9.98		
	Expanded Uncertainty (95% Confidence interval)		k				20.57	19.95		

Saffication & Testing

Group (Shenzhen)

Monday Mil

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-66376605 E-mail:Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 43 of 45

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Certificate #5768.01

Please Contact with WSCT

12 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

7	4	Manufact	AVSTAL	Type(Model)	Serial number	calibr	ation	
		urer	Device Type	Type(Model)	Serial Humber	Last Cal.	Due Date	,
	\boxtimes	SATIMO	COMOSAR DOSIMETRIC E FIELD PROBE	SSE2	3323-EPGO-424	2023-07-09	2024-07-08	
>		SATIMO	COMOSAR 750 MHz REFERENCE DIPOLE	SID750	SN 48/16 DIP0G750-444	2023-06-25	2026-06-24	
3		SATIMO	COMOSAR 835 MHz REFERENCE DIPOLE	SID835	SN 14/13 DIP0G835-235	2023-06-25	2026-06-24	
		SATIMO	COMOSAR 900 MHz REFERENCE DIPOLE	SID900	SN 14/13 DIP0G900-231	2023-06-25	2026-06-24	
		SATIMO	COMOSAR 1800 MHz REFERENCE DIPOLE	SID1800	SN 14/13 DIP1G800-232	2023-06-25	2026-06-24	
	7	SATIMO	COMOSAR 1900 MHz REFERENCE DIPOLE	SID1900	SN 14/13 DIP1G900-236	2023-06-25	2026-06-24	1
>		SATIMO	COMOSAR 2000 MHz REFERENCE DIPOLE	SID2000	SN 14/13 DIP2G000-237	2023-06-25	2026-06-24	
7		SATIMO	COMOSAR 2450 MHz REFERENCE DIPOLE	SID2450	SN 14/13 DIP2G450-238	2023-06-25	2026-06-24	
		SATIMO	COMOSAR 2600 MHz REFERENCE DIPOLE	SID2600	SN 28/14 DIP2G600-327	2023-06-25	2026-06-24	(
	\boxtimes	SATIMO	Software	OPENSAR	N/A	N/A	N/A	
		SATIMO	Phantom	COMOSAR IEEE SAM PHANTOM	SN 14/13 SAM99	N/A	N/A	1
	X	R&S	Universal Radio Communication Tester	CMU 200	119733	2023-11-02	2024-11-01	
2	\boxtimes	R&S	Universal Radio Communication Tester	CMW500	144459	2023-11-02	2024-11-01	
		R&S	Universal Radio Communication Tester	E7515B	MY60192341	2023-11-02	2024-11-01	
		HP	Network Analyser	8753D	3410A08889	2023-11-02	2024-11-01	
		HP	Signal Generator	E4421B	GB39340770	2023-11-02	2024-11-01	Ī
>		Keithley	Multimeter	Keithley 2000	4014539	2023-11-02	2024-11-01	
- 7		SATIMO	Amplifier	Power Amplifier	MODU-023-A- 0004	2023-11-02	2024-11-01	
		Agilent	Power Meter	E4418B	GB43312909	2023-11-02	2024-11-01	
	\boxtimes	Agilent	Power Meter Sensor	E4412A	MY41500046	2023-11-02	2024-11-01	K

115747

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26986192 26992306 FAX:86-758-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Annex A: System performance verification

(Please See the SAR Measurement Plots of annex A.)

ReportNo.: WSCT-A2LA-R&E240300014A-SAR

Annex B: Measurement results

(Please See the SAR Measurement Plots of annex B.)

ent Flots of affilex b.)

Annex C: Calibrationreports

(Please See the Calibration reports of annex C.)

Annex D: Photographs

Salication & Testing

DUOM * PIT

(Shen

WSET WSET WSET WSET WSET

176741

WSET WSET WSET AWSET

AVISTATI AVISTATI AVISTATI

WISTER WISTER WISTER WISTER

AVSTOT AVSTOT AVSTOT

1779

世級检測认证表的
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
p(Shenzhen) Co. Un
TEL:86,755-26986192 26992306 FAX:86-755-66376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 45 of 45

Annex A: System Check

Tested Model: K16SDA

Report Number:

WSCT-A2LA-R&E240300014A-SAR

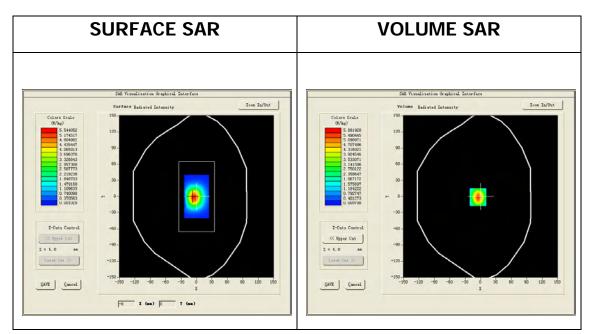
BODY

Type: Validation measurement (Complete)

Date of measurement: 10/6/2024

Measurement duration: 10 minutes 43 seconds

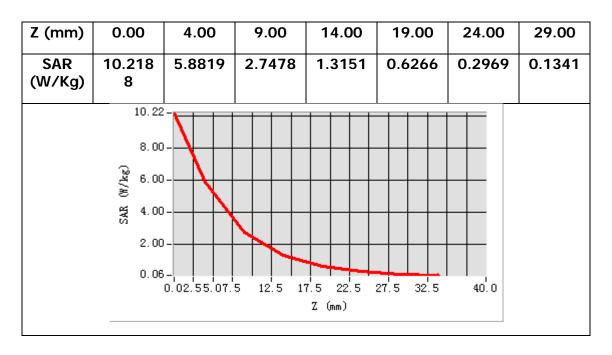
A. Experimental conditions.

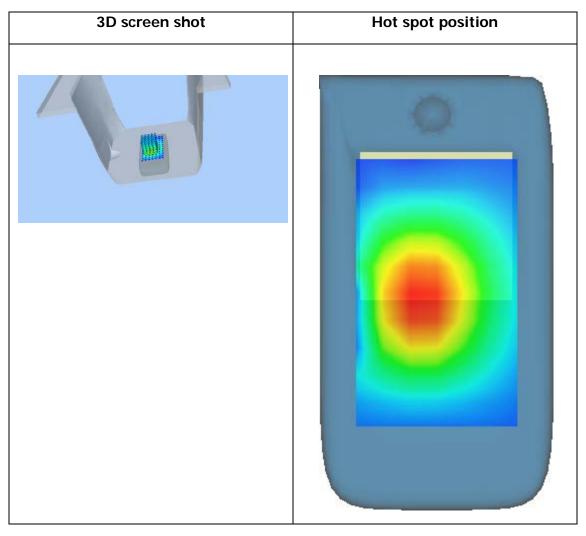

<u>Area Scan</u>	dx=8mm dy=8mm
<u>ZoomScan</u>	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Dipole</u>
<u>Band</u>	<u>CW2450</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Crest factor: 1.0)

B. SAR Measurement Results

Middle Band SAR (Channel -1):

Frequency (MHz)	2450.000000
Relative permittivity (real part)	52.735699
Relative permittivity (imaginary part)	14.017300
Conductivity (S/m)	1.907910
Variation (%)	0.390000




Maximum location: X=-5.00, Y=-1.00

SAR Peak: 10.96 W/kg

SAR 10g (W/Kg)	2.265453
SAR 1g (W/Kg)	5.363343

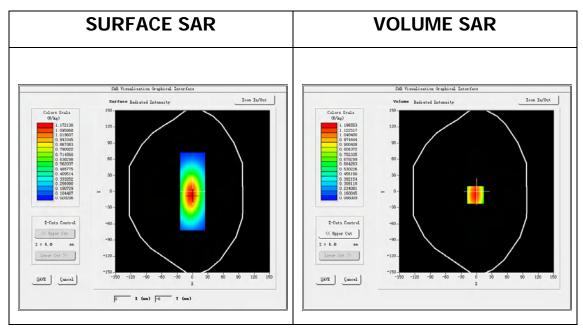
BODY

Type: Validation measurement (Complete)

Date of measurement: 10/6/2024

Measurement duration: 27 minutes 45 seconds

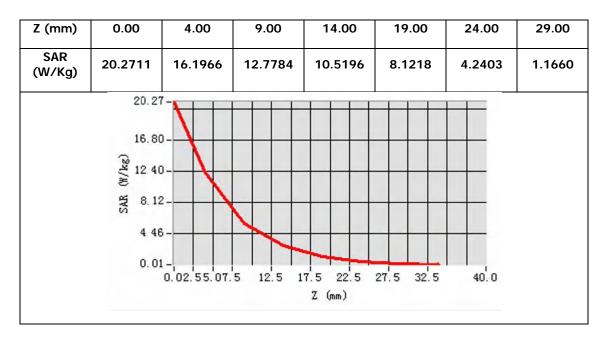
A. Experimental conditions.

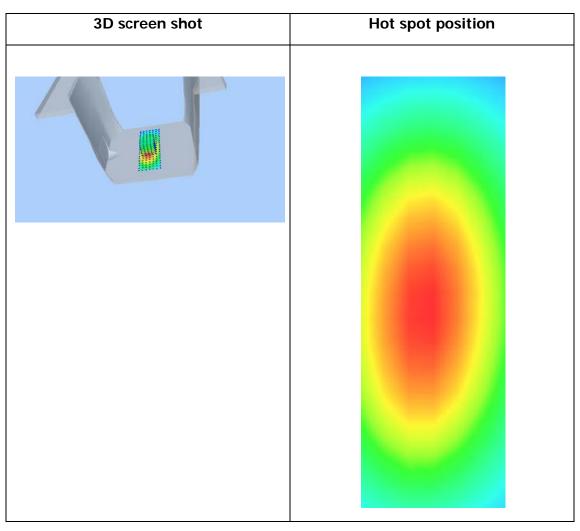

Area Scan	dx=10mm dy=10mm
<u>ZoomScan</u>	8x8x7,dx=4mm dy=4mm dz=2mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Waveguide</u>
<u>Band</u>	<u>CW5200</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Duty cycle:1:1)

B. SAR Measurement Results

Middle Band SAR (Channel -1):

Frequency (MHz)	5200.000000
Relative permittivity (real part)	50.422599
Relative permittivity (imaginary part)	18.202492
Conductivity (S/m)	5.26371
Variation (%)	0.270000




Maximum location: X=-2.00, Y=-6.00

SAR Peak: 20.27 W/kg

SAR 10g (W/Kg)	5.964061
SAR 1g (W/Kg)	16.7183141

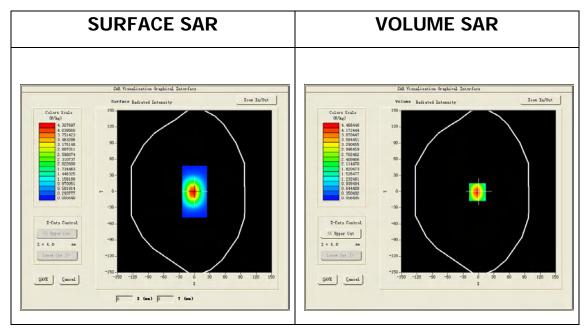
BODY

Type: Validation measurement (Complete)

Date of measurement: 10/6/2024

Measurement duration: 29 minutes 31 seconds

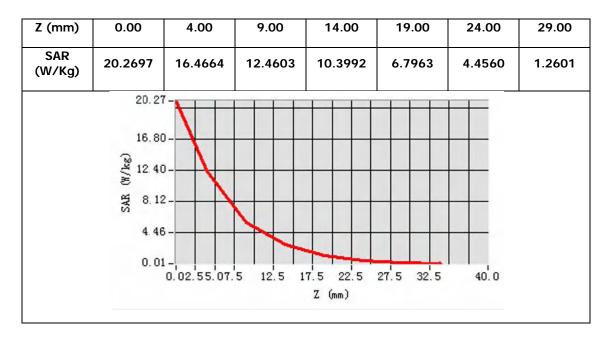
A. Experimental conditions.

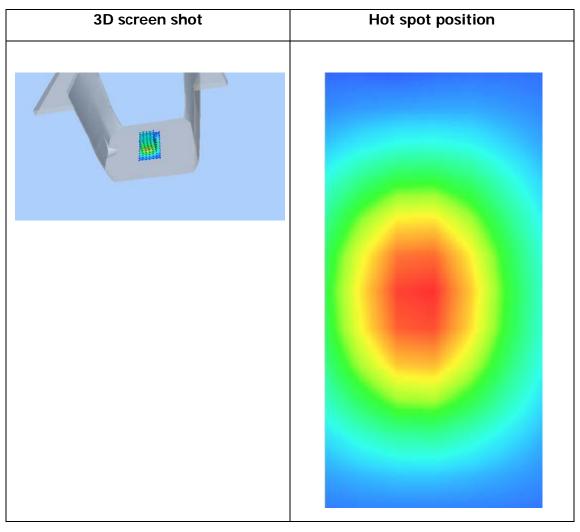

<u>Area Scan</u>	dx=10mm dy=10mm
<u>ZoomScan</u>	8x8x7,dx=4mm dy=4mm dz=2mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Waveguide</u>
<u>Band</u>	<u>CW5300</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Duty cycle:1:1)

B. SAR Measurement Results

Middle Band SAR (Channel -1):

Frequency (MHz)	5300.000000
Relative permittivity (real part)	47.944300
Relative permittivity (imaginary part)	18.167566
Conductivity (S/m)	5.353919
Variation (%)	-0.350000




Maximum location: X=-2.00, Y=-1.00

SAR Peak: 20.27 W/kg

SAR 10g (W/Kg)	5.882155
SAR 1g (W/Kg)	16.537029

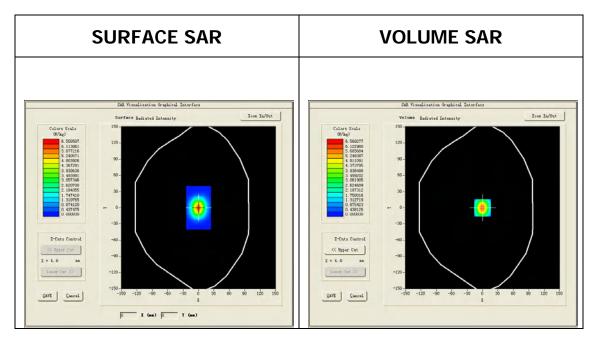
BODY

Type: Validation measurement (Complete)

Date of measurement: 10/6/2024

Measurement duration: 31 minutes 30 seconds

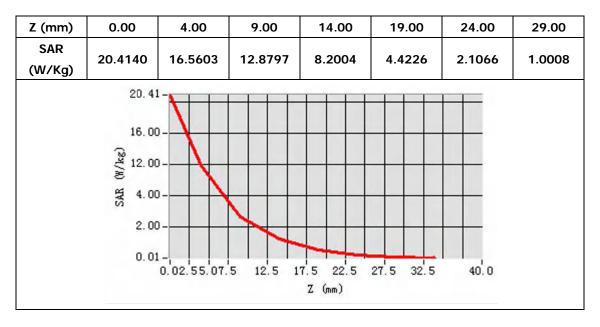
A. Experimental conditions.


Area Scan	dx=10mm dy=10mm	
<u>ZoomScan</u>	8x8x7,dx=4mm dy=4mm	
	<u>dz=2mm,Complete</u>	
<u>Phantom</u>	<u>Validation plane</u>	
<u>Device Position</u>	<u>Waveguide</u>	
<u>Band</u>	<u>CW5800</u>	
<u>Channels</u>	<u>Middle</u>	
<u>Signal</u>	CW (Duty cycle:1:1)	

B. SAR Measurement Results

Middle Band SAR (Channel -1):

Frequency (MHz)	5800.000000
Relative permittivity (real part)	48.090699
Relative permittivity (imaginary part)	19.043921
Conductivity (S/m)	6.14163
Variation (%)	0.010000




Maximum location: X=0.00, Y=0.00

SAR Peak: 20.41 W/kg

SAR 10g (W/Kg)	6.080196
SAR 1g (W/Kg)	17.965831

Annex B: Measurement Results

Tested Model: K16SDA

Report Number:

WSCT-A2LA-R&E240300014A-SAR

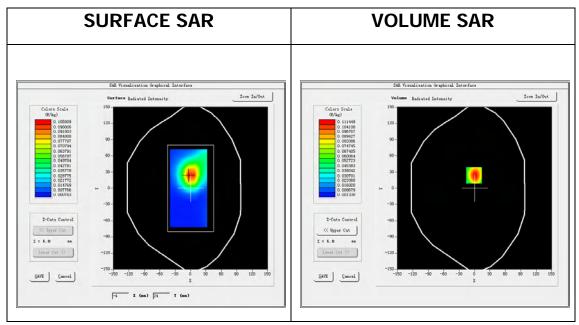
Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 10/6/2024

Measurement duration: 11 minutes 11 seconds

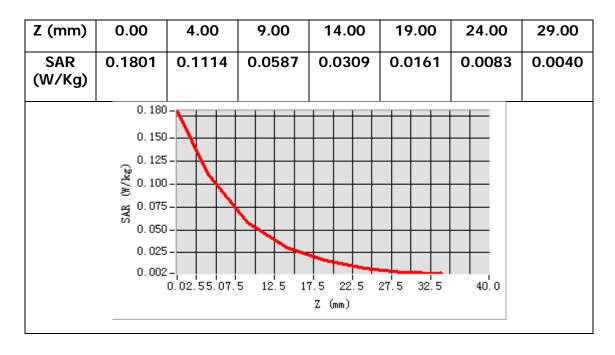
A. Experimental conditions.

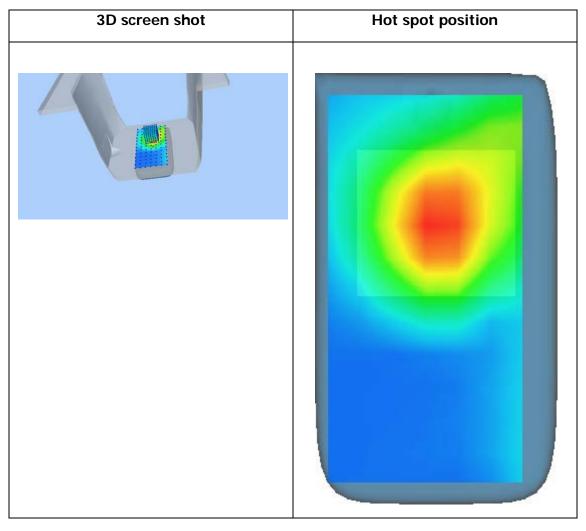

Area Scan	<u>dx=15mm dy=15mm</u>
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	<u>IEEE 802.11b ISM</u>
<u>Channels</u>	Low
<u>Signal</u>	IEEE802.b (Crest factor: 1.0)

B. SAR Measurement Results

Middle Band SAR (Channel 1):

Frequency (MHz)	2412.000000
Relative permittivity (real part)	52.756401
Relative permittivity (imaginary part)	14.076200
Conductivity (S/m)	1.909671
Variation (%)	1.580000




Maximum location: X=-1.00, Y=24.00

SAR Peak: 0.16 W/kg

SAR 10g (W/Kg)	0.165714
SAR 1g (W/Kg)	0.284620

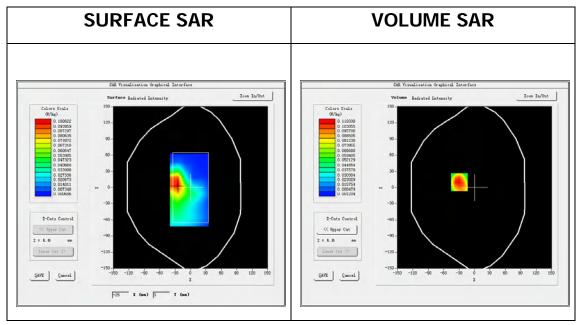
Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 10/6/2024

Measurement duration: 10 minutes 44 seconds

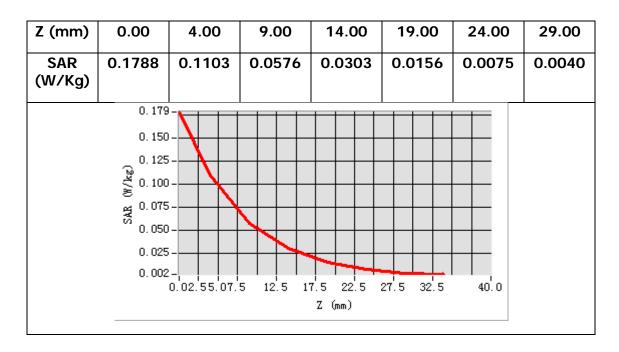
A. Experimental conditions.

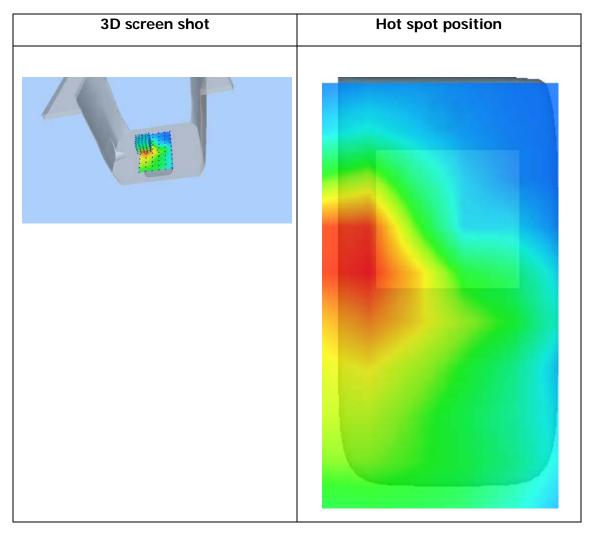

<u>Area Scan</u>	dx=10mm dy=10mm	
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm,Complete	
<u>Phantom</u>	Validation plane	
<u>Device Position</u>	Body	
<u>Band</u>	<u>IEEE 802.11a U-NII-1</u>	
<u>Channels</u>	<u>Middle</u>	
<u>Signal</u>	Duty cycle:1:1	

B. SAR Measurement Results

Lower Band SAR (Channel 36):

Frequency (MHz)	5180.000000
Relative permittivity (real part)	49.858526
Relative permittivity (imaginary part)	17.828438
Conductivity (S/m)	5.194532
Variation (%)	0.2000000




Maximum location: X=-30.00, Y=10.00

SAR Peak: 0.19 W/kg

SAR 10g (W/Kg)	0.101250
SAR 1g (W/Kg)	0.164137

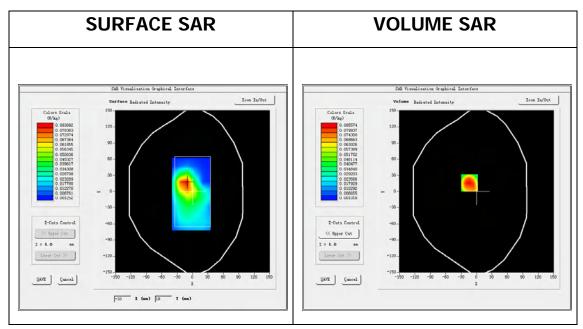
Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 10/6/2024

Measurement duration: 16 minutes 21 seconds

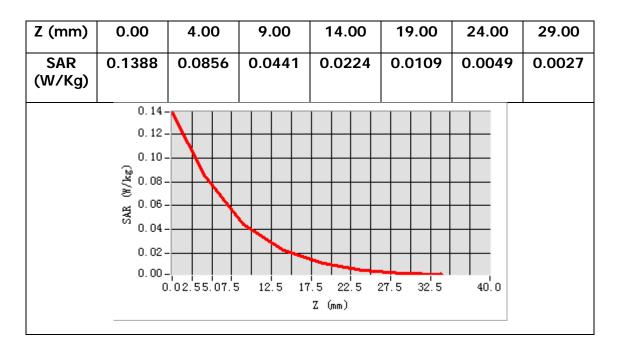
A. Experimental conditions.

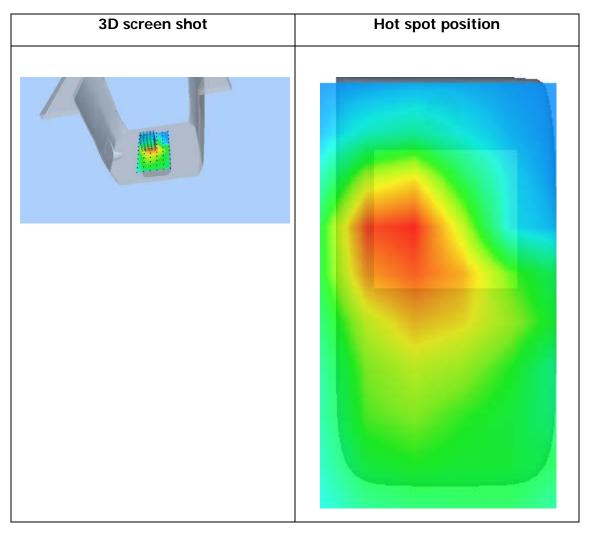

Area Scan	<u>dx=10mm dy=10mm</u>
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	Body
<u>Band</u>	<u>IEEE 802.11a U-NII-2a</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	Duty cycle:1:1

B. SAR Measurement Results

Middleer Band SAR (Channel 52):

Frequency (MHz)	5260.000000
Relative permittivity (real part)	48.139400
Relative permittivity (imaginary part)	19.154900
Conductivity (S/m)	6.205808
Variation (%)	2.470000




Maximum location: X=-14.00, Y=16.00

SAR Peak: 0.15 W/kg

SAR 10g (W/Kg)	0.085143
SAR 1g (W/Kg)	0.147431

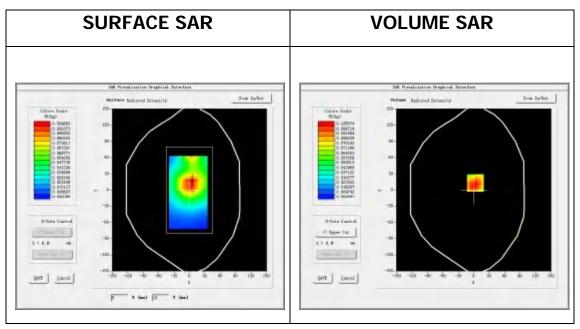
Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 10/6/2024

Measurement duration: 8 minutes 31 seconds

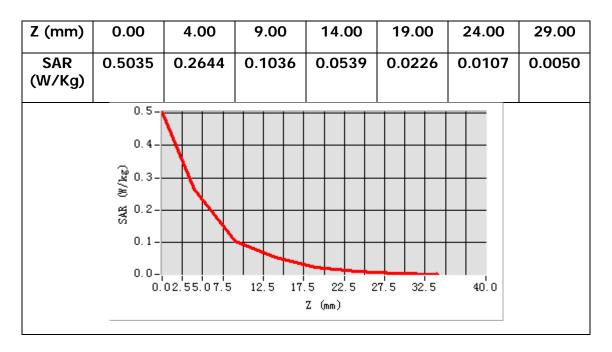
A. Experimental conditions.

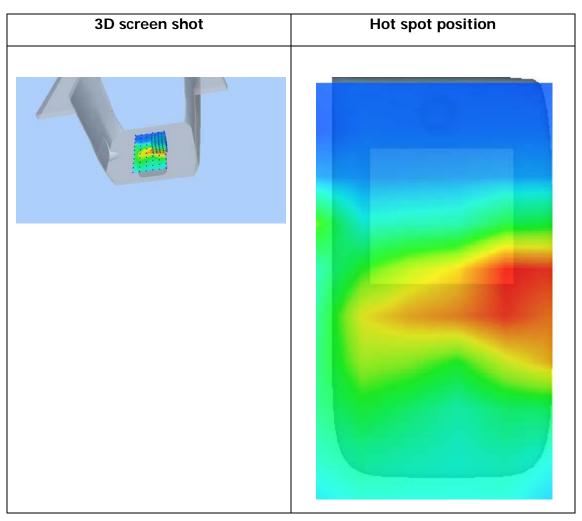

<u>Area Scan</u>	dx=10mm dy=10mm	
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm,Complete	
<u>Phantom</u>	Validation plane	
Device Position	Body	
<u>Band</u>	<u>IEEE 802.11a U-NII-2c</u>	
<u>Channels</u>	<u>Middle</u>	
<u>Signal</u>	<u>Duty cycle:1:1</u>	

B. SAR Measurement Results

Middleer Band SAR (Channel 140):

Frequency (MHz)	5700.000000
Relative permittivity (real part)	48.235748
Relative permittivity (imaginary part)	19.060800
Conductivity (S/m)	6.173560
Variation (%)	-0.070000




Maximum location: X=3.00, Y=13.00

SAR Peak: 0.17 W/kg

SAR 10g (W/Kg)	0.114758
SAR 1g (W/Kg)	0.203108

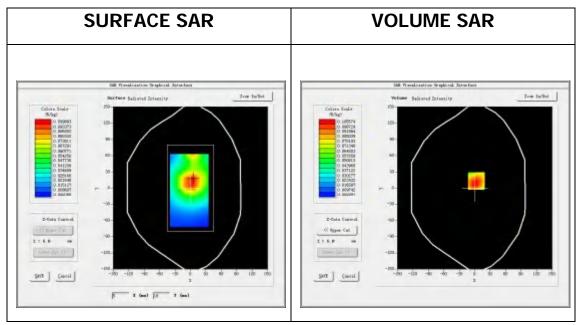
Rear-side-middle

Type: Phone measurement (Complete)

Date of measurement: 10/6/2024

Measurement duration: 8 minutes 31 seconds

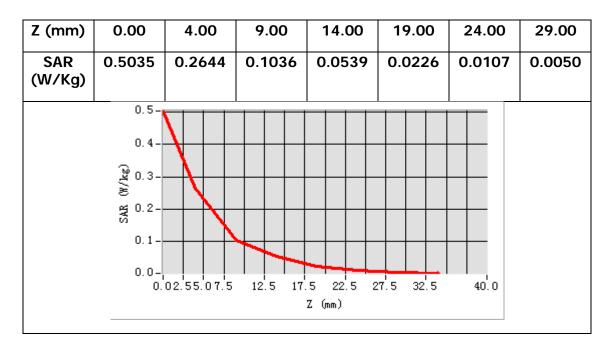
A. Experimental conditions.

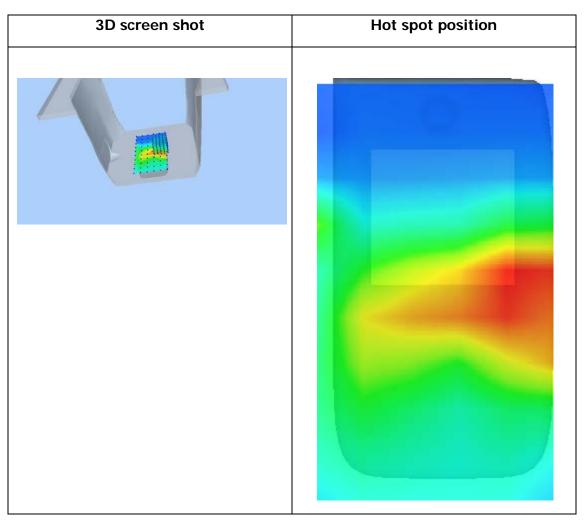

<u>Area Scan</u>	dx=10mm dy=10mm	
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm,Complete	
<u>Phantom</u>	Validation plane	
Device Position	Body	
<u>Band</u>	IEEE 802.11a U-NII-3	
<u>Channels</u>	<u>Middle</u>	
<u>Signal</u>	Duty cycle:1:1	

B. SAR Measurement Results

Middleer Band SAR (Channel 155):

Frequency (MHz)	5775.000000
Relative permittivity (real part)	48.235748
Relative permittivity (imaginary part)	19.060800
Conductivity (S/m)	6.173560
Variation (%)	1.380000




Maximum location: X=3.00, Y=13.00

SAR Peak: 0.17 W/kg

SAR 10g (W/Kg)	0.098471
SAR 1g (W/Kg)	0.179251

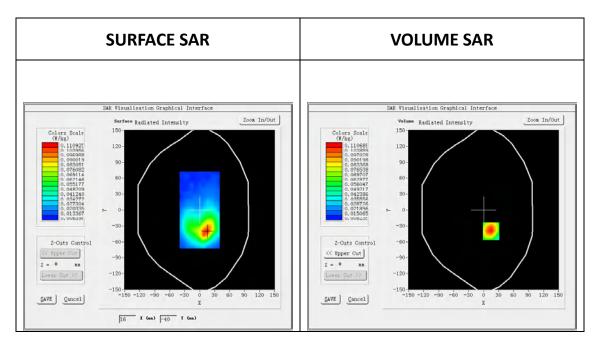
MEASUREMENT 6

Type: Phone measurement (Complete)

Date of measurement: 10/6/2024

Measurement duration: 11 minutes 11 seconds

A. Experimental conditions.

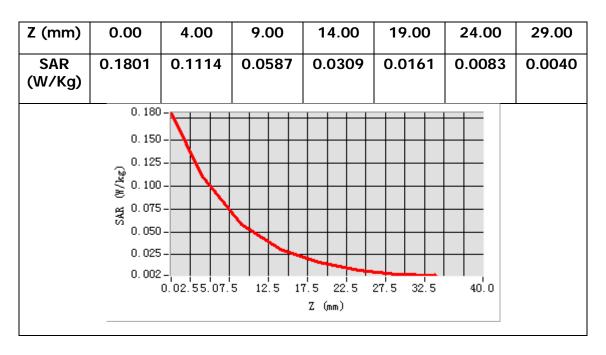

<u>Area Scan</u>	dx=15mm dy=15mm
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
Device Position	<u>Body</u>
<u>Band</u>	<u>Bluetooth</u>
<u>Channels</u>	<u>Low</u>
<u>Signal</u>	Bluetooth (Crest factor: 1.0)

B. SAR Measurement Results

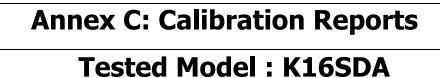
Middle Band SAR (Channel 39):

Frequency (MHz)	2441.000000
Relative permittivity (real part)	39.160000
Relative permittivity (imaginary part)	13.290000
Conductivity (S/m)	1.831067
Variation (%)	0.3100000

SATIMO 225, rue Pierre Rivoalon 29200 Brest - France Tel:+33 (0)2 98 05 13 34; Fax: +33 (0)2 98 05 53 87; www.satimo.com



Maximum location: X=15.00, Y=-40.00


SAR Peak: 0.18 W/kg

SAR 10g (W/Kg)	0.041200
SAR 1g (W/Kg)	0.077125

SATIMO

Report Number:

WSCT-A2LA-R&E240300014A-SAR

SAR Reference Dipole Calibration Report

Ref: ACR.313.16.23.BES.A

WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO.,LTD

BLOCK A, BAO SHI SCIENCE PARK,BAO SHI ROAD, BAO'AN DISTRICT

SHENZHEN 518108, P.R. CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: 3723-DIP2G450-738

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 09/11/2023

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	11/9/2023	28
Checked & approved by:	Jérôme Luc	Technical Manager	11/9/2023	JES
Authorized by:	Yann Toutain	Laboratory Director	11/9/2023	Gann TOUTAAN

Signature Yann numérique de Yann Toutain ID Date: 2023.11.09 16:44:40 +01'00'

	Customer Name
Distribution :	World
	Standardization
	Certification &
	Testing Group Co
	.,Ltd

Initial release
_

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test4	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Mechanical Requirements	
	4.2	S11 parameter Requirements	
	4.3	SAR Requirements	
5	Mea	surement Uncertainty5	
	5.1	Mechanical dimensions	
	5.2	S11 Parameter	5
	5.3	SAR	5
6	Calil	oration Results6	
	6.1	Mechanical Dimensions	(
	6.2	S11 parameter	
	6.3	SAR	(
7	List	of Equipment8	

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2450	
Serial Number	3723-DIP2G450-738	
Product Condition (new / used)	New	

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

4 MEASUREMENT METHOD

4.1 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

4.2 S11 PARAMETER REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.3 SAR REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

5 MEASUREMENT UNCERTAINTY

5.1 MECHANICAL DIMENSIONS

For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions.

For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions.

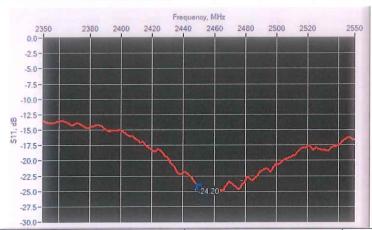
5.2 S11 PARAMETER

The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions.

5.3 SAR

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions.


6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

L mm		L mm h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
51.74	51.50 +/- 2%	30.50	30.40 +/- 2%	3.60	3.60 +/- 2%

6.2 S11 PARAMETER

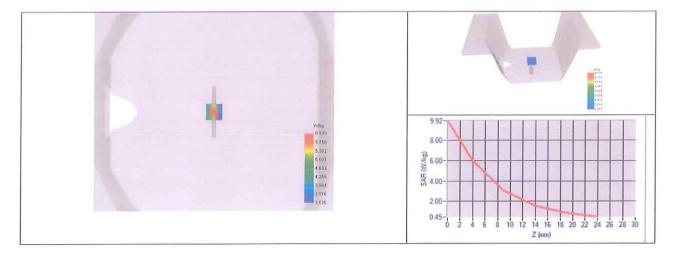
6.2.1 S11 parameter in Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
2450	-24.20	-20	$46.4\Omega + 4.7j\Omega$

6.3 **SAR**

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid


The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps': 42.8 sigma: 1.87
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	requency 1g SAR (W/kg)		10g SAR (W/kg)			
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
2450 MHz	5.33	53.30	52.40	2.51	25.11	24.00

LIST OF EQUIPMENT

MANUEL STATES	Equi	pment Summary S	Sheet	No.
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

COMOSAR E-Field Probe Calibration Report

Ref: ACR.250.20.23.BES.A

WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO.,LTD

BLOCK A, BAO SHI SCIENCE PARK,BAO SHI ROAD,
BAO'AN DISTRICT
SHENZHEN 518108,P.R. CHINA
MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: 3323-EPGO-424

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 09/07/2023

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

	Name	Function	Date	Signature
Prepared by:	Pedro Ruiz	Measurement Responsible	9/7/2023	feduraling
Checked & approved by:	Jérôme Luc	Technical Manager	9/7/2023	JS
Authorized by:	Yann Toutain	Laboratory Director	9/11/2023	Gann TOUTANN

	Customer Name
	World
	Standardization
Distribution:	Certification &
	Testing Group Co
	.,Ltd

Issue	Name	Date	Modifications
A	Pedro Ruiz	9/7/2023	Initial release

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3	Meas	surement Method4	
	3.1	Sensitivity	4
	3.2	Linearity	5
	3.3	Isotropy	5
	3.4	Boundary Effect	5
4	Meas	surement Uncertainty6	
5	Calib	oration Results6	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6	Verif	fication Results9	
7	List	of Equipment10	

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	3323-EPGO-424		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-7.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.233 MΩ		
	Dipole 2: R2=0.221 MΩ		
	Dipole 3: R3=0.224 MΩ		

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm sten}$ along lines that are approximately normal to the surface:

$$\mathrm{SAR}_{\mathrm{univertainty}} [\%] = \delta \mathrm{SAR}_{\mathrm{be}} \, \frac{\left(d_{\mathrm{be}} + d_{\mathrm{step}}\right)^2}{2d_{\mathrm{step}}} \frac{\left(e^{-d_{\mathrm{be}}/(\delta/2)}\right)}{\delta/2} \quad \text{for } \left(d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \; \mathrm{mm}$$

where

SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect

 d_{be} is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 Δ_{step} is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

 δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;

△SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the

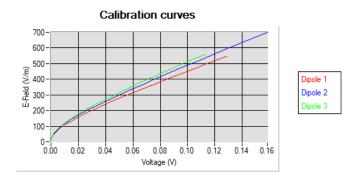
distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition			
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} (1 + \frac{V_{i}}{DCP_{i}})}{Norm_{i}}$$

where

Vi=voltage readings on the 3 channels of the probe

DCPi=diode compression point given below for the 3 channels of the probe

Normi=dipole sensitivity given below for the 3 channels of the probe

		Normz dipole
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
0.94	0.82	0.75

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
109	103	104

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^{I} = \frac{\rho \, SAR}{\sigma}$$

where

 σ =the conductivity of the liquid

ρ=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

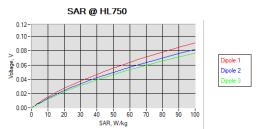
where

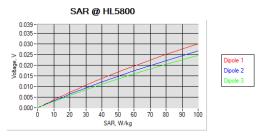
c=the specific heat for the liquid dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4p_W}{ab\delta}e^{\frac{-3z}{\delta}}$$

where

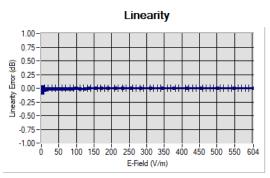

a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ=the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid



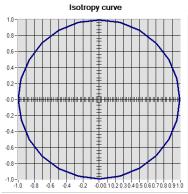
The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

Liquid	Frequency	ConvF
	(MHz*)	
HL750	750	1.62
BL750	750	1.48
HL850	835	1.56
BL850	835	1.47
HL900	900	1.53
BL900	900	1.50
HL1800	1800	1.79
BL1800	1800	1.73
HL1900	1900	2.02
BL1900	1900	1.86
HL2000	2000	2.06
BL2000	2000	1.89
HL2450	2450	2.11
BL2450	2450	2.17
HL2600	2600	2.02
BL2600	2600	2.17
HL3300	3300	1.76
BL3300	3300	1.91
HL3900	3900	2.35
BL3900	3900	1.98
HL4200	4200	2.15
BL4200	4200	2.12
HL4600	4600	2.12
BL4600	4600	2.25
HL4900	4900	2.00
BL4900	4900	2.01
HL5200	5200	2.19
BL5200	5200	2.17
HL5400	5400	2.31
BL5400	5400	2.09
HL5600	5600	2.27
BL5600	5600	2.01
HL5800	5800	2.26
BL5800	5800	2.16

^(*) Frequency validity is +/-50MHz below 600MHz, +/-100MHz from 600MHz to 6GHz and +/-700MHz above 6GHz



Page: 8/11



6 VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is ± -0.2 dB for linearity and ± -0.15 dB for axial isotropy.

Linearity:+/-1.94% (+/-0.09dB)

Isotropy:+/-0.37% (+/-0.02dB)

7 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025	
Multimeter	Keithley 2000	4013982	02/2023	02/2026	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2024	
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025	
Coaxial cell	MVG		Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.	

Page: 10/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG		Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Dielectric Probe Calibration Report

Ref: ACR317.11.23.BES.A

WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP CO.,LTD

BLOCK A, BAO SHI SCIENCE PARK, BAO SHI ROAD, BAO'AN DISTRICT

SHENZHEN 518108, P.R. CHINA

MVG LIMESAR DIELECTRIC PROBE

FREQUENCY: 0.15-7.5 GHZ

SERIAL NO.: 0923-OCPG-091

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 10/31/2023

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited Dielectric Probe calibration performed at MVG, using the LIMESAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	11/13/2023	23
Checked & approved by:	Jérôme Luc	Technical Manager	11/13/2023	JS
Authorized by:	Yann Toutain	Laboratory Director	11/13/2023	Yann TOUTAAN

Yann
Signature
numérique de Yann
Toutain ID
Date: 2023.11.13
15:50:42 +01'00'

	Customer Name
	World
	Standardization
Distribution :	Certification &
	Testing Group Co
	.,Ltd

Issue	Name	Date	Modifications
A	Cyrille ONNEE	11/13/2023	Initial release
			_

TABLE OF CONTENTS

1	1 Introduction	4
2	2 Device Under Test	4
3	Product Description	4
	3.1 General Information	
	4 Measurement Method	
	4.1 Liquid complex Permittivity Measurements	5
5	Measurement Uncertainty	5
6	6 Calibration Results	5
	6.1 Liquid complex Permittivity Measurement	5
7	7 List of Equipment	7

1 INTRODUCTION

This document contains a summary of the suggested methods and requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for liquid permittivity measurements and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	LIMESAR DIELECTRIC PROBE		
Manufacturer	MVG		
Model	SCLMP		
Serial Number	0923-OCPG-091		
Product Condition (new / used)	New		

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's Dielectric Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the LIMESAR test bench only.

Figure 1 – MVG LIMESAR Dielectric Probe

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards outline techniques for dielectric property measurements. The LIMESAR test bench employs one of the methods outlined in the standards, using a contact probe or open-ended coaxial transmission-line probe and vector network analyzer. The standards recommend the measurement of two reference materials that have well established and stable dielectric properties to validate the system, one for the calibration and one for checking the calibration. The LIMESAR test bench uses De-ionized water as the reference for the calibration and either Ethanediol or Methanol as the reference for checking the calibration. The following measurements were performed to verify that the product complies with the fore-mentioned standards.

4.1 LIQUID COMPLEX PERMITTIVITY MEASUREMENTS

The complex permittivity of a liquid with known dielectric properties was measured and the measurement results compared to the values provided in the fore mentioned standards.

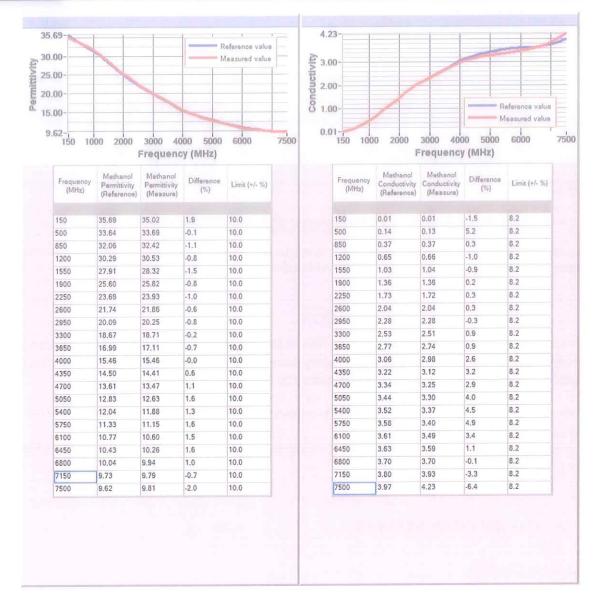
5 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for relative permittivity is +/-10% with respect to measurement conditions.

The estimated expanded uncertainty (k=2) in calibration for conductivity (S/m) is +/-8.2% with respect to measurement conditions.

6 CALIBRATION RESULTS


Measurement Condition

Software	LIMESAR
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

6.1 LIQUID COMPLEX PERMITTIVITY MEASUREMENT

A liquid of known characteristics (methanol or ethanediol) is measured with the probe and the results (complex permittivity ϵ '+j ϵ '') are compared with the reference values for this liquid.

LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
LIMESAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Liquid measurement probe	MVG	SN 35/10 OCPG37	11/2022	11/2023	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025	
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024	

