

RF Test Report

For

Applicant Name:

TECNO MOBILE LIMITED

Address:

EUT Name:

Brand Name:

Model Number:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG Laptop Computer TECNO **K16AS** Series Model Number: Refer to Section 2

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou

Community, Songgang Street, Bao'an District, Shenzhen, China

Issued By

BTF Testing Lab (Shenzhen) Co., Ltd.

Company Name:

Address:

Report Number: Test Standards:

BTF231027R00204 47 CFR Part 15E

Test Conclusion: FCC ID: Test Date: Date of Issue:

Pass 2ADYY-K16AS 2023-09-25 to 2023-10-26 2023-10-27

Prepared By:

Date:

Approved By:

Date:

Shen hris d Ju Chris Liu / Project Ehgineer 2023-10-27

Ryan.CJ / EMC Manager 2023-10-27

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 1 of 193

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-10-27	Original	
		·	

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 193BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Table of Contents

1	INTR	RODUCTION	5
	1.1	Identification of Testing Laboratory	5
	1.2	Identification of the Responsible Testing Location	5
	1.3	Announcement	5
2	PRO	DUCT INFORMATION	
	2.1	Application Information	6
	2.2	Manufacturer Information	6
	2.3	General Description of Equipment under Test (FUT)	
	2.5	Technical Information	
3	SUM	IMARY OF TEST RESULTS	7
	31	Test Standards	7
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	7
4	TES	T CONFIGURATION	
	4.1	Test Equipment List	
	4.2	Test Auxiliary Equipment	14
	4.3	Test Modes	
	4.4	Table of Parameters of Text Software Setting	
5	EVA	LUATION RESULTS (EVALUATION)	
	5.1	Antenna requirement	
		5.1.1 Conclusion:	16
6	RAD	DIO SPECTRUM MATTER TEST RESULTS (RF)	17
	6.1	Conducted Emission at AC power line	17
		6.1.1 E.U.T. Operation:	17
		6.1.2 Test Setup Diagram:	
		6.1.3 Test Data:	
	6.2		
		6.2.1 E.U.I. Operation:	
	6.3	Maximum conducted output power	21
	010	6.3.1 FUT Operation:	22
		6.3.2 Test Data:	
	6.4	Power spectral density	23
		6.4.1 E.U.T. Operation:	
		6.4.2 Test Data:	
	6.5	Emission bandwidth and occupied bandwidth	25
		6.5.1 E.U.T. Operation:	
		6.5.2 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.I. Operation:	
		6.6.3 Test Data	
	67	Undesirable emission limits (below 1GHz)	
		6.7.1 E.U.T. Operation:	38
		6.7.2 Test Setup Diagram:	
		6.7.3 Test Data:	40

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 3 of 193BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF231027R00204

6.8	Unde	sirable emission limits (above 1GHz)	
	6.8.1	E.U.T. Operation:	
	6.8.2	Test Data:	
APPENDIX	(

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 4 of 193BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Introduction 1

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

2 **Product Information**

2.1 Application Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.3 Factory Information

Company Name:	SHENZHEN TECNO TECHNOLOGY CO.,LTD. Dongguan Bmorn Technology Co., LTD.
Address:	101,Building 24,Waijing Industrial Park,Fumin Community,Fucheng Street,Longhua District,Shenzhen City,P.R.China 101Room,6No. Huanzhuli Industrial Road, Changping Town, Dongguan City, Guangdong

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Laptop Computer
Test Model Number:	K16AS
Series Model Number:	N/A
Software Version:	Windows 11
Hardware Version:	V2.2

2.5 Technical Information

Power Supply:	Rechargeable Li-ion Polymer Battery: K16 Rated Voltage: 11.55V Rated Capacity: 6060mAh Rated nergy: 70Wh Limited Charge Voltage: 13.2V
Operation Frequency:	Band 1: 5180-5240 MHz Band 2: 5260-5320 MHz Band 3: 5500-5700 MHz Band 4: 5745-5825 MHz
Number of Channels:	Refer to Section 4.4
Modulation Type:	IEEE 802.11a/n/ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)
Antenna Type:	PIFA Antenna
MIAN Antenna Gain [#] :	3.9dBi
AUX Antenna Gain	3.0dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 6 of 193

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: 47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB
The following measurement uncertainty levels have been estimated for tests	s performed on the EUT as
specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty	ainty expressed at approximately

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

3.3 Summary of Test Result

the 95% confidence level using a coverage factor of k=2

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Duty Cycle					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Power spectral density						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Emission bandwidth and occupied bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	echy TR1029-1 / 2022-11-2	TR1029-1 / 2022-11-24 2023-1	29-1 / 20 29-2 / 20	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Availability Check Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 193

MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23				
U-NII Detection Bandwidth									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	/	V1.00	/	/	/				
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23				
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23				
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23				
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23				
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23				

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Move Time, Channel Closing Transmission Time							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 193

Test Report Number: BTF231027R00204

WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

DFS Detection Thresholds							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Band edge emissions (Radiated)									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23				
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23				

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 11 of 193

Test Report Number: BTF231027R00204

RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission	Undesirable emission limits (below 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23				
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23				
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23				
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/				
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27				
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23				
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23				
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/				
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23				
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21				
EZ_EMC	Frad	FA-03A2 RE+	/	/	/				
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/				
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27				

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 12 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Undesirable emission limits (above 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/			
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27			
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23			
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/			
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23			
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21			
EZ_EMC	Frad	FA-03A2 RE+	/	/	/			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/			
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27			

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	2
Test Mode:		

Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is
	95.70%)

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Description
Mode 1	802.11a
Mode 2	802.11n20
Mode 3	802.11n40
Mode 4	802.11ac20
Mode 5	802.11ac40
Mode 6	802.11ac80

Note:

(1) The measurements are performed at the highest, lowest available channels.

(2) The EUT use new battery.

(3) Record the worst case of each test item in this report.

Test		*#9646633#*								
program										
Mada				Test	Frequei	ncy (MH	lz)			
wode					NCB: 20)MHz				
902 110	5180	5240	5260	5320	5500	5700	5745	5825		
002.11a	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
902 11n	5180	5240	5260	5320	5500	5700	5745	5825		
002.1111	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
802 1120	5180	5240	5260	5320	5500	5700	5745	5825		
002.11ac	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
		NCB: 40MHz								
902 11p	5190	5230	5270	5310	5510	5670	5755	5795		
002.TTT	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
902 1100	5190	5230	5270	5310	5510	5670	5755	5795		
002.1140	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		
		NCB: 80MHz								
902 1100	5210	5290	5530	5610	5775					
002.11aC	MHz	MHz	MHz	MHz	MHz					
				N	ICB. 16					

4.4 Table of Parameters of Text Software Setting

NCB: 160MHz During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 15 of 193BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

MAIN ANT

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 16 of 193 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6 Radio Spectrum Matter Test Results (RF)

6.1 Conducted Emission at AC power line

T IN I I	Refer to ANSI C63 10-2013 section	0.0 standard tast models all				
lest Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					
Test Limit:	Frequency of emission (MHz) 0.15-0.5 0.5-5 5-30	Conducted limit (dBµV) Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50			

6.1.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.1.2 Test Setup Diagram:

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

6.1.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1780	28.11	10.45	38.56	64.57	-26.01	QP
2		0.2660	3.08	10.47	13.55	51.24	-37.69	AVG
3		0.3300	25.52	10.48	36.00	59.45	-23.45	QP
4		0.4340	12.58	10.50	23.08	47.18	-24.10	AVG
5		0.7220	10.63	10.53	21.16	46.00	-24.84	AVG
6	*	0.7539	23.82	10.54	34.36	56.00	-21.64	QP
7		1.0980	10.65	10.57	21.22	46.00	-24.78	AVG
8		1.5580	9.55	10.64	20.19	46.00	-25.81	AVG
9		1.8700	17.66	10.69	28.35	56.00	-27.65	QP
10		3.3140	15.00	10.72	25.72	56.00	-30.28	QP
11		3.4020	1.14	10.72	11.86	46.00	-34.14	AVG
12	ŝ	15.4100	8.53	11.19	19.72	60.00	-40.28	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 18 of 193

					Limit: — AVG: —
Ť					
	Wull it.				
why AW	. An Mithydau an	What which we want the start of	MMHAMMAANA	Child Harrison	want to a tax stalli
When	Num Uliy And Mark	helder have been here here here here here here here h	White metallow variation	ant the manufacture	married and a second and the second and the second s

Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1700	36.15	10.45	46.60	64.96	-18.36	QP
2		0.1712	6.23	10.45	16.68	54.90	-38.22	AVG
3		0.4300	26.29	10.50	36.79	57.25	-20.46	QP
4		0.4300	12.30	10.50	22.80	47.25	-24.45	AVG
5		0.7220	10.90	10.53	21.43	46.00	-24.57	AVG
6		0.7260	22.70	10.53	33.23	56.00	-22.77	QP
7		1.0980	19.00	10.57	29.57	56.00	-26.43	QP
8		1.5580	10.86	10.64	21.50	46.00	-24.50	AVG
9		1.7660	17.83	10.67	28.50	56.00	-27.50	QP
10		2.1060	4.30	10.71	15.01	46.00	-30.99	AVG
11		4.8140	12.01	10.74	22.75	56.00	-33.25	QP
12		26.6220	1.36	<mark>11.15</mark>	12.51	50.00	-37.49	AVG

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 19 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Result: (Meet requirements)

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 20 of 193BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.3 Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater
	than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 21 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	For the band 5.725-5.850 GHz, the maximum conducted output power over the
	frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	 Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control
Brooduro	level for the
	intervals) or
	at duty cycle $>=$ 98%, and if each transmission is entirely at the maximum power
	then the trigger shall be set to "free run "
	h) Trace average at least 100 traces in power averaging (rms) mode
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.
	OBVV of the spectrum.

6.3.1 E.U.T. Operation:

Operating Environment:				
Temperature:	25.5 °C			
Humidity:	50.6 %			
Atmospheric Pressure:	1010 mbar	1.00		

6.3.2 Test Data:

Please Refer to Appendix for Details.

6.4 Power spectral density

	47 CFR Part 15.407(a)(1)(i)			
	47 CFR Part 15.407(a)(1)(ii)			
Test Requirement:	47 CFR Part 15.407(a)(1)(III) 47 CFP Part 15.407(a)(1)(iv)			
	47 CFR Part 15.407(a)(1)(N)			
	47 CFR Part 15.407(a)(3)(i)			
Test Method:	ANSI C63.10-2013, section 12.5			
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum			
	power spectral density shall not exceed 17 dBm in any 1 megahertz band.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the			
	directional gain of the antenna exceeds 6 dBi			
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum			
	power spectral density shall not exceed 17 dBm in any 1 megahertz band.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the			
	directional gain of the antenna exceeds 6 dBi			
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the			
	maximum power spectral density shall not exceed 17 dBm in any 1 megahertz			
	pano. Fixed point-to-point U-NII devices may employ antennas with directional gain up to			
	23 dBi without any corresponding reduction in the maximum power spectral			
	density. For fixed point-to-point transmitters that employ a directional antenna gain			
	greater than 23 dBi, a 1 dB reduction in maximum power spectral density is			
	required for each 1 dB of antenna gain in excess of 23 dBi.			
	omnidirectional applications, and multiple collocated transmitters transmitting the			
Test Limite	same information. The operator of the U-NII device, or if the equipment is			
rest Limit.	professionally installed, the installer, is responsible for ensuring that systems			
	employing high gain directional antennas are used exclusively for fixed,			
	point-to-point operations.			
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density			
	shall not exceed 11 dBm in any 1 megahertz band.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the			
	directional gain of the antenna exceeds 6 dBi			
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral			
	density shall not exceed 11 dBm in any 1 megahertz band.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi.			
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not			
	If transmitting antennas of directional gain greater than 6 dRi are used, the			
	maximum power spectral density shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII			
	devices operating in this band may employ transmitting antennas with directional			
	gain greater than 6 dBi without any corresponding reduction in transmitter			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 23 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 23 of 193

	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed the installer is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed
	noint-to-noint operations
	a) Create an everage newer execting for the EUT exercting mode being tested by
	following the
	instructions in 12.3.2 for measuring maximum conducted output power using a
	spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2,
	SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled,
	"Compute
	power" (This procedure is required even if the maximum conducted output
	power
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the spectrum
	c) Make the following adjustments to the peak value of the spectrum if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log $(1 / D)$], where D is the duty
	cycle to the neak of the spectrum
	2) If method SA-3A was used and the linear mode was used in step h) of 12 3 2 7
	add
	1 dB to the final result to compensate for the difference between linear averaging
Procedure:	and
	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz resolution
	bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory
	authorities. This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided
	that the
	measured power is integrated to show the total power over the measurement
	bandwidth" (i e
	1 MHz) If measurements are performed using a reduced resolution bandwidth and
	integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply:
	1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	2) Set VBW >= [3 × RBW].
	3) Care shall be taken such that the measurements are performed during a period
	of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Data:

Please Refer to Appendix for Details.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 24 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.5 Emission bandwidth and occupied bandwidth

	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	
	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	KDB 789033 D02 Clause C 2
	U-NII 1 U-NII 2A U-NII 2C: No limits only for report use
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Procedure:	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 25 of 193BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

99.5% of the
total is reached; that frequency is recorded as the upper frequency. The 99%
power bandwidth is
the difference between these two frequencies.
 h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled.
Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured
in the fundamental emission.

6.5.1 E.U.T. Operation:

Operating Environment:					
Temperature:	25.5 °C				
Humidity:	50.6 %				
Atmospheric Pressure:	1010 mbar				

6.5.2 Test Data:

Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

Toot Poquiromont:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2)							
Test Requirement:	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)							
Test Method:	47 CFR Part 15.407(D)	ANSI C63 10-2013 section 12.7.4 12.7.5 12.7.6						
	For transmitters operat	ing in the 5 15-5 25 GE	.7.0 Iz band: All emis	ssions outside of the				
	5.15-5.35 GHz band sh	hall not exceed an e.i.r.	p. of -27 dBm/N	IHz.				
	For transmitters operat 5.15-5.35 GHz band sh	ing in the 5.25-5.35 GF nall not exceed an e.i.r.	Iz band: All emis p. of −27 dBm/N	ssions outside of the 1Hz.				
	For transmitters operat All emissions shall be I or below the band edge	ing solely in the 5.725- imited to a level of −27 e increasing linearly to	5.850 GHz band dBm/MHz at 75 10 dBm/MHz at	l: MHz or more above 25 MHz above or				
	below the band edge, a linearly to a level of 15. from 5 MHz above or b	and from 25 MHz above .6 dBm/MHz at 5 MHz a below the band edge inc	e or below the ba above or below t creasing linearly	and edge increasing the band edge, and to a level of 27				
	dBm/MHz at the band	edge.						
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	0.495-0.505	16.69475-16.69525	608-614	5.35-5.40				
	2.1735-2.1905	16.80425-16.80475	960-1240	1.20-1.10				
	4.125-4.120 A 17725-A 17775	25.5-25.07	1/35-1626 5	0.020-0.0				
	4.17725-4.17775	73-74 6	1645 5-1646	9.0-9.2				
	4.20725-4.20775	75-74.0	5	9.5-9.5				
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
To at 1 los it.	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4				
lest Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(²)				
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.							
	² Above 38.6							
	The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated							
	based on the average 15.35apply to these me	value of the measured easurements.	emissions. The j	provisions in §				
	Except as provided elsewhere in this subpart, the emissions from an intentional							

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Page 27 of 193

Test Report Number: BTF231027R00204

	radiator shall not exceed th	e field strength levels specified	in the following table:			
	Frequency (MHz)	Field strength	Measurement			
		(microvolts/meter)	distance			
		,	(meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	Above 1GHz:					
	a. For above 1GHz, the EU	T was placed on the top of a ro	tating table 1.5 meters			
	above the ground at a 3 me	eter fully-anechoic chamber. Th	e table was rotated 360			
	degrees to determine the p	osition of the highest radiation.				
	b. The EUT was set 3 meter	rs away from the interference-r	eceiving antenna, which			
	was mounted on the top of	a variable-height antenna towe	r.			
	c. The antenna height is va	ried from one meter to four met	ers above the ground to			
	determine the maximum va	lue of the field strength. Both h	orizontal and vertical			
	polarizations of the antenna	a are set to make the measurer	nent.			
	d. For each suspected emission, the FUT was arranged to its worst case and then					
	the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency					
	of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table					
	was turned from 0 degrees to 360 degrees to find the maximum reading					
	e. The test-receiver system	was set to Peak Detect Function	on and Specified			
	Bandwidth with Maximum H	Hold Mode.				
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit					
	specified, then testing could	d be stopped and the peak valu	es of the EUT would be			
	reported. Otherwise the em	issions that did not have 10dB	margin would be			
	re-tested one by one using	peak or average method as spe	ecified and then reported			
Procedure:	in a data sheet.					
	g. Test the EUT in the lowes	st channel, the middle channel,	the Highest channel.			
	h. The radiation measurements are performed in X, Y, Z axis positioning for					
	Transmitting mode, and found the X axis positioning which it is the worst case.					
	i. Repeat above procedures	s until all frequencies measured	was complete.			
	Remark:					
	1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor					
	2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The					
	points marked on above plots are the highest emissions could be found when					
	testing, so only above point	ts had been displayed. The am	plitude of spurious			
	emissions from the radiator	which are attenuated more that	in 20dB below the limit			
	need not be reported.					
	3. As shown in this section,	for frequencies above 1GHz, t	he field strength limits			
	are based on average limits	s. However, the peak field stren	gth of any emission shall			
	not exceed the maximum p	ermitted average limits specifie	d above by more than 20			
	dB under any condition of n	nodulation. For the emissions w	hose peak level is lower			
	than the average limit, only	the peak measurement is show	vn in the report.			
	4. The disturbance above 1	8GHz were very low and the ha	armonics were the			
	highest point could be foun	d when testing, so only the abo	ve harmonics had been			
	displayed.					

6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 28 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 28 of 193

To power supply

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 29 of 193BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.6.3 Test Data:

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Channel Low (5745MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

40MHzIEEE 802.11n/ac Channel Low (5190MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Channel Low (5755MHz)

Channel High (5795MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

80MHzIEEE 802.11ac Channel Low (5210MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Channel Low (5775MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 35 of 193BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

160MHzIEEE 802.11ax Channel Low (5250MHz)

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Undesirable emission limits (below 1GHz) 6.7

Test Requirement:	47 CFR Part 15.407(b)(9)					
Test Method:	ANSI C63.10-2013, section	on 12.7.4, 12.7.5, 12.7.6				
Test Limit:	Unwanted emissions belo limits set forth in § 15.209 Except as provided elsew radiator shall not exceed Frequency (MHz)	ow 1 GHz must comply with t here in this subpart, the emit the field strength levels spect Field strength (microvolts/meter) 2400/F(kHz)	the general field strength issions from an intentional cified in the following table: Measurement distance (meters) 300			
	0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960	24000/F(kHz) 30 100 ** 150 ** 200 ** 500	30 30 3 3 3 3 3 3			
Procedure:	SV-co 100 3 88-216 150 ** 3 216-960 200 ** 3 Below 1GHz: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 36 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground t determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and theight he antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retradiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. h. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan fro					

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 37 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

BLAB

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which
was mounted on the top of a variable-height antenna tower.
c. The antenna height is varied from one meter to four meters above the ground to
determine the maximum value of the field strength. Both horizontal and vertical
polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then
the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency
of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table
was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified
Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10dB lower than the limit
specified, then testing could be stopped and the peak values of the EUT would be
reported. Otherwise the emissions that did not have 10dB margin would be
re-tested one by one using peak or average method as specified and then reported
in a data sheet.
g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
h. The radiation measurements are performed in X, Y, Z axis positioning for
Transmitting mode, and found the X axis positioning which it is the worst case.
i. Repeat above procedures until all frequencies measured was complete.
Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The
points marked on above plots are the highest emissions could be found when
testing, so only above points had been displayed. The amplitude of spurious
emissions from the radiator which are attenuated more than 20dB below the limit
need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits
are based on average limits. However, the peak field strength of any emission shall
not exceed the maximum permitted average limits specified above by more than 20
ab under any condition of modulation. For the emissions whose peak level is lower
than the average limit, only the peak measurement is shown in the report.
4. I ne disturbance above 18GHz were very low and the narmonics were the
nignest point could be found when testing, so only the above harmonics had been
aispiayea.

6.7.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 38 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.2 Test Setup Diagram:

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 39 of 193BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.3 Test Data:

Note: All the mode have been tested, and only the worst case mode are in the report Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

No. N	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.2111	10.36	23.59	33.95	40.00	-6.05	QP
2		49.0145	4.57	24.38	28.95	40.00	-11.05	QP
3	8	150.0108	5.44	24.92	30.36	43.50	-13.14	QP
4	8	258.3264	8.32	22.75	31.07	46.00	-14.93	QP
5	3	839.1818	3.56	34.36	37.92	46.00	-8.08	QP
6	1	989.5355	5.08	36.93	42.01	54.00	-11.99	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 40 of 193

72.0 dBuV/m Limit: Margin 32 -8 30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.000

Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		30.1054	6.92	23.59	30.51	40.00	-9.49	QP
2		60.0691	8.41	23.47	31.88	40.00	-8.12	QP
3		147.9214	4.98	24.80	29.78	43.50	-13.72	QP
4	}	370.7023	5.47	25. <mark>5</mark> 5	31.02	46.00	-14.98	QP
5	*	890.7278	5.44	35.52	40.96	46.00	-5.04	QP
6		996.4996	5.20	37.03	42.23	54.00	-11.77	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 41 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.8 Undesirable emission limits (above 1GHz)

	47 CFR Part 15.407(b)(1)								
Test Description	47 CFR Part 15.407(b)(2)								
Test Requirement:	47 CFR Part 15.407(b))(4)							
	47 CFR Part 15.407(b))(10)							
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6								
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the								
	5.15-5.35 GHz band sl	hall not exceed an e.i.r.	p. of -27 dBm/M	1Hz.					
	For transmitters operation	For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the							
	5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.								
	For transmitters operation	ting solely in the 5.725-	5.850 GHz band	1:					
	All emissions shall be	limited to a level of -27	dBm/MHz at 75	MHz or more above					
	or below the band edg	e increasing linearly to	10 dBm/MHz at	25 MHz above or					
	below the band edge,	and from 25 MHz above	e or below the ba	and edge increasing					
	linearly to a level of 15	.6 dBm/MHz at 5 MHz	above or below t	the band edge, and					
	from 5 MHz above or b	pelow the band edge inc	creasing linearly	to a level of 27					
	dBm/MHz at the band	edge.							
	MHz	MHz	MHz	GHz					
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
	0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
	4.1//25-4.1///5	37.5-38.25	1435-1626.5	9.0-9.2					
	4.20725-4.20775	73-74.6	1645.5-1646. 5	9.3-9.5					
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4					
			2						
Toot Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5					
Test Linnt.	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4					
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
	12.57675-12.57725	322-335.4	3600-4400	(²)					
	13.36-13.41								
¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6									
	The field strength of er	nissions appearing with	in these frequer	ncy bands shall not					
	exceed the limits show	In In § 15.209. At freque	encies equal to c	or less than 1000					
	MHZ, compliance with	the limits in § 15.2095h	SDD guasi pool	ated using					
		with the omission limit	SFR quasi-peak	l be demonstrated					
	hased on the average	value of the measured	emissions The	nrovisions in 8					
	15.35apply to these m	easurements.							
	Execution provided els	owhore in this subsert	the omissions f	rom an intentional					
	radiator shall not ever	ed the field strength lev	als specified in t						
	Frequency (MHz)	Field strength		Measurement					

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF231027R00204

		(microvolts/meter)	distance
		(merovoits/meter)	(motors)
	0.000.0.100	$2400/\Gamma(1/1-)$	
	0.009-0.490	2400/F(KHZ)	300
	0.490-1.705	24000/F(KHZ)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Procedure:	 a. For above 1GHZ, the EL above the ground at a 3 medegrees to determine the pb. The EUT was set 3 metewas mounted on the top of c. The antenna height is vare determine the maximum vare polarizations of the antenna d. For each suspected emitthe antenna was tuned to hof below 30MHz, the antenna was turned from 0 degreess e. The test-receiver system Bandwidth with Maximum Hf. If the emission level of the specified, then testing coul reported. Otherwise the emitter adata sheet. g. Test the EUT in the lower h. The radiation measurem Transmitting mode, and four i. Repeat above procedure Remark: 1. Level= Read Level+ Cat 2. Scan from 18GHz to 400 points marked on above plutesting, so only above point emissions from the radiation need not be reported. 3. As shown in this section are based on average limit, only 4. The disturbance above from the displayed. 	JT was placed on the top of a ro- eter fully-anechoic chamber. The position of the highest radiation. Are saway from the interference-ra- a variable-height antenna towe and from one meter to four meta- alue of the field strength. Both ha a are set to make the measurent ssion, the EUT was arranged to heights from 1 meter to 4 meters na was tuned to heights 1 meter to 360 degrees to find the max news set to Peak Detect Function Hold Mode. e EUT in peak mode was 10dB d be stopped and the peak value hissions that did not have 10dB peak or average method as spec- est channel, the middle channel, nents are performed in X, Y, Z ab- und the X axis positioning which is until all frequencies measured obs are the highest emissions co to had been displayed. The amp r which are attenuated more that for frequencies above 1GHz, the s. However, the peak field stren- nermitted average limits specifier modulation. For the emissions we the peak measurement is show 18GHz were very low and the had a d when testing, so only the above	etating table 1.5 meters e table was rotated 360 receiving antenna, which fr. ters above the ground to orizontal and vertical nent. is worst case and then s (for the test frequency r) and the rotatable table imum reading. on and Specified lower than the limit res of the EUT would be margin would be ecified and then reported the Highest channel. kis positioning for a it is the worst case. d was complete. mp Factor GHz was very low. The politude of spurious an 20dB below the limit he field strength limits gth of any emission shall d above by more than 20 whose peak level is lower wn in the report. armonics were the we harmonics had been

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 43 of 193

6.8.2 Test Data:

Note: All the mode have been tested, and only the worst case mode are in the report

Free	Low channel: 5180MHz								
Freq. (MHz)	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)			
	H/V	PK	AV	PK	AV	PK	AV		
10360	V	62.04	44.00	74	54	-11.96	-10.00		
15540	V	63.86	50.23	74	54	-10.14	-3.77		
10360	Н	69.35	50.98	74	54	-4.65	-3.02		
15540	Н	71.75	46.84	74	54	-2.25	-7.16		

Free	Low channel: 5180MHz							
Freq.	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)	
(IVI⊓∠)	H/V	PK	AV	PK	AV	PK	AV	
10360	V	63.77	43.33	74	54	-10.23	-10.67	
15540	V	68.88	49.71	74	54	-5.12	-4.29	
10360	H	66.87	43.23	74	54	-7.13	-10.77	
15540	Н	69.12	41.61	74	54	-4.88	-12.39	

Гиса	Low channel: 5180MHz							
Freq.	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)	
	H/V	PK	AV	PK	AV	PK	AV	
10360	V	63.42	44.15	74	54	-10.58	-9.85	
15540	V	67.34	45.44	74	54	-6.66	-8.56	
10360	Н	62.73	44.38	74	54	-11.27	-9.62	
15540	Н	63.70	49.28	74	54	-10.30	-4.72	

Free	Low channel: 5180MHz							
Freq.	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)	
(IVI⊓∠)	H/V	PK	AV	PK	AV	PK	AV	
10360	V	66.67	49.78	74	54	-7.33	-4.22	
15540	V	71.00	44.17	74	54	-3.00	-9.83	
10360	Н	70.68	47.18	74	54	-3.32	-6.82	
15540	Н	62.10	43.31	74	54	-11.90	-10.69	

Note:

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.

2. Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit $(dB\mu V) =$ Limit stated in standard

Margin (dB) = Level (dB μ V) – Limits (dB μ V)

3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 44 of 193

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 45 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 45 of 193

1. Bandwidth

1.1 OBW

1.1.1 Test Result

-26dB Bandwidth

Mode	Frequency (MHz)	Antenna	-26 dB Bandwidth (MHz)	Limit -26 dB Bandwidth (MHz)	Verdict
а	5180	Ant1	22.743	0.5	Pass
а	5240	Ant1	22.093	0.5	Pass
а	5260	Ant1	23.295	0.5	Pass
а	5320	Ant1	22.415	0.5	Pass
а	5500	Ant1	22.826	0.5	Pass
а	5700	Ant1	22.659	0.5	Pass
n20	5180	Ant1	23.173	0.5	Pass
n20	5240	Ant1	22.878	0.5	Pass
n20	5260	Ant1	22.866	0.5	Pass
n20	5320	Ant1	23.191	0.5	Pass
n20	5500	Ant1	22.361	0.5	Pass
n20	5700	Ant1	22.931	0.5	Pass
n40	5190	Ant1	42.564	0.5	Pass
n40	5230	Ant1	43.125	0.5	Pass
n40	5270	Ant1	42.276	0.5	Pass
n40	5310	Ant1	41.608	0.5	Pass
n40	5510	Ant1	42.81	0.5	Pass
n40	5670	Ant1	42.709	0.5	Pass
ac20	5180	Ant1	22.694	0.5	Pass
ac20	5240	Ant1	23.631	0.5	Pass
ac20	5260	Ant1	23.028	0.5	Pass
ac20	5320	Ant1	22.953	0.5	Pass
ac20	5500	Ant1	23.278	0.5	Pass
ac20	5700	Ant1	22.963	0.5	Pass
ac40	5190	Ant1	43.121	0.5	Pass
ac40	5230	Ant1	42.742	0.5	Pass
ac40	5270	Ant1	43.709	0.5	Pass
ac40	5310	Ant1	40.794	0.5	Pass
ac40	5510	Ant1	42.807	0.5	Pass
ac40	5670	Ant1	42.39	0.5	Pass
ac80	5210	Ant1	80.122	0.5	Pass
ac80	5290	Ant1	83.122	0.5	Pass
ac80	5530	Ant1	83.399	0.5	Pass
ac80	5610	Ant1	82.247	0.5	Pass

-6dB Bandwidth

Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
а	5745	Ant1	12.152	0.5	Pass
а	5825	Ant1	12.535	0.5	Pass
n20	5745	Ant1	15.647	0.5	Pass
n20	5825	Ant1	14.947	0.5	Pass
n40	5755	Ant1	33.521	0.5	Pass
n40	5795	Ant1	29.029	0.5	Pass
ac20	5745	Ant1	13.831	0.5	Pass
ac20	5825	Ant1	15.025	0.5	Pass
ac40	5755	Ant1	32.593	0.5	Pass
ac40	5795	Ant1	33.834	0.5	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 46 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 46 of 193

ac80	5775	Ant1	75.098	0.5	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 47 of 19BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 47 of 193

1.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 49 of 193

Page 51 of 193

Page 52 of 193

Page 57 of 193

Page 58 of 193

Page 59 of 193

Page 60 of 193

Page 63 of 193

Test Graphs	
-6dB Bandwidth NVNT a 5745MHz Ant1	
	Test Graphs -6dB Bandwidth NVNT a 5745MHz Ant1

Page 64 of 193

Page 67 of 193

Page 68 of 193

Page 69 of 193

2. Maximum Conducted Output Power

2.1 Power

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 70 of 193