

Report No.	SA180615W007
Applicant	TECNO MOBILE LIMITED
Address	ROOMS 05-15, 13A/F., SOUTH TOWER, WORLD FINANCE CENTRE, HARBOUR CITY, 17 CANTON ROAD, TSIM SHA TSUI, KOWLOON, HONG KONG
Product	Mobile Phone
FCC ID	2ADYY-F4
Brand	TECNO
Model No.	: F4
Standards	FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1992 / IEEE 1528:2013
	KDB 865664 D01 v01r04 / KDB 865664 D02 v01r02
	/KDB 248227 D01 v02r02/ KDB 447498 D01 v06
	/KDB 648474 D04 v01r03/ KDB 941225 D01 v03r01
	/KDB 941225 D05 v02r05/ KDB 941225 D06 v02r01
Sample Received Date	: Jun.15, 2018
Date of Testing	: Jun.18, 2018 ~ Jun.24, 2018

CERTIFICATION: The above equipment have been tested by **BV 7LAYERS COMMUNICATIONS TECHNOLOGY** (SHENZHEN) CO. LTD., and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by A2LA or any government agencies.

Prepared By :

Wiky Zhang / Engineer

Wily Zhang

ACCREDITED Certificate # 3939.01

Approved By :

Luke Lu / Manager

his report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/rems-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report ests forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correcthess of the report contents.

Report Format Version 5.0.0 Report No. : SA180615W007

Table of Contents

Rel	ease C	ontrol Record	3
1.	Summ	nary of Maximum SAR Value	4
2.	Descr	iption of Equipment Under Test	5
3.	SAR N	Aeasurement System	6
	3.1	Definition of Specific Absorption Rate (SAR)	6
	3.2	COMOSAR System	6
		3.2.1 Measurement System Diagram	6
		3.2.2 Robot	7
		3.2.3 E-Field Probes	8
		3.2.4 Phantoms	9
		3.2.5 Device Holder	10
		3.2.6 System Validation Dipoles	11
		3.2.7 Tissue Simulating Liquids	11
	3.3	SAR System Verification	14
	3.4	SAR Measurement Procedure	15
		3.4.1 Area & Zoom Scan Procedure	15
		3.4.2 Volume Scan Procedure	15
		3.4.3 Power Drift Monitoring	16
		3.4.4 Spatial Peak SAR Evaluation	16
		3.4.5 SAR Averaged Methods	16
4.	SAR N	Neasurement Evaluation	17
	4.1	EUT Configuration and Setting	17
	4.2	EUT Testing Position	22
		4.2.1 Head Exposure Conditions	22
		4.2.2 Body-worn Accessory Exposure Conditions	24
		4.2.3 Hotspot Mode Exposure Conditions	25
		4.2.4 SAR Test Exclusion Evaluations	26
		4.2.5 Simultaneous Transmission Possibilities	26
	4.3	Tissue Verification	27
	4.4	System Validation	27
	4.5	System Verification	28
	4.6	Maximum Output Power	29
		4.6.1 Maximum Conducted Power	29
		4.6.2 Measured Conducted Power Result	
	4.7	SAR Testing Results	
		4.7.1 SAR Test Reduction Considerations	
		4.7.2 SAR Results for Head Exposure Condition	40
		4.7.3 SAR Results for Body-worn Exposure Condition (Separation Distance is 1.0 cm Gap)	
		4.7.4 SAR Results for Hotspot Exposure Condition (Separation Distance is 1.0 cm Gap)	43
		4.7.5 SAR Measurement Variability	45
		4.7.6 Simultaneous Multi-band Transmission Evaluation	
5.	Calibr	ation of Test Equipment	52
6.	Measu	urement Uncertainty	53
7.	Inforn	nation on the Testing Laboratories	54

Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of EUT and Setup

Release Control Record

Report No.	Reason for Change	Date Issued
SA180615W007	Initial release	Jul.4, 2018

1. Summary of Maximum SAR Value

Equipment Class	Mode	Highest Reported Head SAR _{1g} (W/kg)	Highest Reported Body-worn SAR _{1g} (1.0 cm Gap) (W/kg)	Highest Reported Hotspot SAR _{1g} (1.0 cm Gap) (W/kg)
	GSM850	0.18	0.26	0.26
	GSM1900	0.11	0.36	0.36
	WCDMA II	0.14	<mark>0.51</mark>	0.51
	WCDMA IV	0.23	0.41	<mark>0.60</mark>
PCE	WCDMA V	0.08	0.12	0.12
	LTE 2	0.15	0.46	0.46
	LTE 4	0.15	0.32	0.40
	LTE 5	0.06	0.10	0.10
	LTE 7	0.13	0.42	0.42
DTS	2.4G WLAN	<mark>1.29</mark>	0.39	0.39
DSS Bluetooth		N/A	N/A	N/A
Highest Simultaneous Transmission SAR		Head (W/kg)	Body-worn (W/kg)	Hotspot (W/kg)
	PCE + DTS	1.47	0.90	0.90
PCE + DSS		NA	0.54	NA

Note:

1. The SAR limit (Head & Body: SAR_{1g} 1.6 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992

2. Description of Equipment Under Test

EUT Type	Mobile Phone
FCC ID	2ADYY-F4
Brand Name	TECNO
Model Name	F4
IMEL Code	358869090006228/ 358869090006236
HW Version	V1 0
SW Version	F4-H398MN-Go-180513\/20
	GSM850 · 824 2 ~ 848 8
	GSM1900 · 1850 2 ~ 1909.8
	WCDMA Band II : 1852.4 ~ 1907.6
	WCDMA Band IV : 1712.4 ~ 1752.6
	WCDMA Band V : $826.4 \sim 846.6$
	LTE Band 2 : 1850.7 ~ 1909.3 (1.4M), 1851.5 ~ 1908.5 (3M), 1852.5 ~ 1907.5 (5M),
	1855 ~ 1905 (10M), 1857.5 ~ 1902.5 (15M), 1860 ~ 1900 (20M)
Tx Frequency Bands	LTE Band 4 : 1710.7 ~ 1754.3 (1.4M), 1711.5 ~ 1753.5 (3M), 1712.5 ~ 1752.5 (5M),
(Unit: MHz)	1715 ~ 1750 (10M), 1717.5 ~ 1747.5 (15M), 1720 ~ 1745 (20M)
	LTE Band 5 : 824.7 ~ 848.3 (1.4M), 825.5 ~ 847.5 (3M), 826.5 ~ 846.5 (5M), 829 ~
	844 (10M)
	LTE Band 7 : 2502.5 ~ 2567.5 (5M), 2505 ~ 2565 (10M), 2507.5 ~ 2562.5 (15M),
	2510 ~ 2560 (20M)
	WLAN : 2412 ~ 2462
	Bluetooth : 2402 ~ 2480
	GSM & GPRS : GMSK
	WCDMA : QPSK
Unlink Modulations	LTE : QPSK, 16QAM
	802.11b : DSSS
	802.11g/n : OFDM
	Bluetooth : GFSK, π/4-DQPSK, 8-DPSK, LE
	GSM850 : 32.5
	GSM1900 : 30.0
	WCDMA Band II : 22.5
	WCDMA Band IV : 22.5
Maximum Tune-up Conducted Power	WCDMA Band V : 23.0
(Unit· dRm)	LTE Band 2 : 22.5
	LTE Band 4 : 22.5
	LTE Band 5 : 21.5
	LTE Band 7 : 22.5
	WLAN 2.4G : 12.5
	Bluetooth : 1.0
Antenna Type	WLAN: PIFA Antenna
	WWAN: PIFA Antenna
EUT Stage	Identical Prototype

Note:

1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

List of Accessory:

	Brand Name	TECNO
	Model Name	BL-30VT
Battery	Power Rating	3.85Vdc, 3000mAh/3050mAh(min/typ) 11.55Wh/11.74Wh(min/typ)
	Туре	Li-Polymer
	Brand Name	TECNO
Earphone	Model Name	EW-31BT
-	Signal Line Type	1.2 meter non-shielded cable without ferrite core

3. SAR Measurement System

3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 COMOSAR System

3.2.1 Measurement System Diagram

These measurements were performed with the automated near-field scanning system COMOSAR from SATIMO. The system is based on a high precision robot (working range: 850 mm), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

Report Format Version 5.0.0 Report No. : SA180615W007 Page No. : 6 of 54 Issued Date : Jul.4, 2018

The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in SAR standard with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in SAR standard and found to be better than ± 0.25 dB. The phantom used was the SAM Phantom as described in FCC supplement C, IEEE P1528.

3.2.2 Robot

The COMOSAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA-KRC2sr) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- · Low ELF interference (the closed metallic construction shields against motor control fields)

3.2.3 E-Field Probes

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Model	SSE2
Frequency	100 MHz to 6 GHz
Directivity	±0.25 dB in brain tissue (rotation around probe axis) ±0.5 dB in brain tissue (rotation normal probe axis)
Dynamic Range	0.001W/kg to > 100W/kg
Probe Linearity	± 0.25 dB
Dimensions	Overall length: 330 mm Tip diameter: 2.5 mm Distance from probe tip to dipole centers: <1.5 mm

E-Field Probe Calibration Process

Probe calibration is realized, in compliance with EN/IEC 62209-1/-2 and IEEE 1528 std, with CALISAR, SATIMO proprietary calibration system. The calibration is performed with the technique using reference waveguide.

$$\begin{split} & \text{SAR} = \frac{4(P_{fw} - P_{bw})}{ab\sigma} \cos^2\left(\pi \frac{y}{a}\right) c^{(2\pi/\sigma)} \\ & \text{Where :} \\ & \text{Pfw} = \text{Forward Power} \\ & \text{Pbw} = \text{Backward Power} \\ & \text{a and } b = \text{Waveguide Dimensions} \\ & \text{I} = \text{Skin Depth} \end{split}$$

Keithley configuration

Rate=Medium; Filter=ON; RDGS=10; FILTER TYPE=MOVING AVERAGE; RANGE AUTO

After each calibration, a SAR measurement performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The Calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

CF(N)=SAR(N)/Vlin(N) (N=1,2,3)

The linearized output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

 $Vlin(N)=V(N)^{*}(1+V(N)/DCP(N)) \qquad N=1,2,3$

Where the DCP is the dipole compression point in $\ensuremath{\mathsf{mV}}$

3.2.4 Phantoms

The phantom developed by SATIMO is produced in accordance with the specified in the standards. It has been designed to fit the COMOSAR phantom tables and is delivered with a plastic cover to prevent liquid evaporation.

Model	SAM Phantom	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching reference points with the robot.	
Material	The material is resistant to Glycol and offers high rigidity composite material based on fiberglass).	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: 200 mm	
Filling Volume	approx. 27 liters	

Model	Elliptic Phantom	
Construction	Elliptic Phantom for compliance testing of handheld and body-mounted wireless devices. Elliptic Phantom is fully compatible with the IEC/EN 62209-2 standard and all known tissue simulating liquids. Elliptic Phantom has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching reference points.	
Material	The material is resistant to Glycol and offers high rigidity composite material based on fiberglass).	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Length: 600 mm Width: 400 mm Height: 200 mm	
Filling Volume	approx. 25 liters	

3.2.5 Device Holder

The positioning system is made of an extremely stable material, which ensures easy handling and reproducible positioning. It also allows correct positioning of the dipoles referenced by the IEEE, ANSI and IEC.

Model	Handset Positioning System	
Material properties	The positioning system is made of PETP. This material offers a low permittivity of 3.2 and low loss, with a loss tangent of 0.005 to minimize the influence of the DUT on measurement results.	16
Mechanical properties	The positioning system developed by SATIMO allows a positioning resolution better than 1 mm. The system is fixed on a bottom rail "x axis" so that the positioning system can be quickly moved from the right to the left part of the phantom. In addition, it can be moved on a perpendicular "y axis" and the height can be adapted. The system is also composed of three rotation points for accurate positioning of the device's acoustical output.	
Accuracy and precision	A curved rail on the top part allows the fast switch from the cheek to the tilt position. The required 15° angle for the tilt position can be easily checked thanks to a printed scale on the curved rail with a tolerance of \pm 1°	

Model	Device Positioning System	
Material properties	The positioning system is made of PETP. This material offers a low permittivity of 3.2 and low loss, with a loss tangent of 0.005 to minimize the influence of the DUT on measurement results.	1
Mechanical properties	2 rows of rail to cover easily the surface of the phantom. The fixing plate is perfectly adapted to larger devices, such as a PC which can be positioned in all configurations.	
Accuracy and precision	Graduated scale available on each axis. The DUT is fixed with a specific adaptable grip.	

3.2.6 System Validation Dipoles

Model	D-Serial	× .
Construction	Symmetrical dipole with $\lambda 0/4$ ablaun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	300 MHz to 6000 MHz	
Return Loss	> 20 dB	
Adaptation	S11 < -20 dB in specified validation Position	

3.2.7 Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.

Frequency (MHz)	Target Permittivity	Range of +5%	Target Conductivity	Range of +5%
()	. •	For Head		
750	41.9	39.8 ~ 44.0	0.89	0.85 ~ 0.93
835	41.5	39.4 ~ 43.6	0.90	0.86 ~ 0.95
900	41.5	39.4 ~ 43.6	0.97	0.92 ~ 1.02
1450	40.5	38.5 ~ 42.5	1.20	1.14 ~ 1.26
1640	40.3	38.3 ~ 42.3	1.29	1.23 ~ 1.35
1750	40.1	38.1 ~ 42.1	1.37	1.30 ~ 1.44
1800	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
1900	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2000	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2300	39.5	37.5 ~ 41.5	1.67	1.59 ~ 1.75
2450	39.2	37.2 ~ 41.2	1.80	1.71 ~ 1.89
2600	39.0	37.1 ~ 41.0	1.96	1.86 ~ 2.06
3500	37.9	36.0 ~ 39.8	2.91	2.76 ~ 3.06
5200	36.0	34.2 ~ 37.8	4.66	4.43 ~ 4.89
5300	35.9	34.1 ~ 37.7	4.76	4.52 ~ 5.00
5500	35.6	33.8 ~ 37.4	4.96	4.71 ~ 5.21
5600	35.5	33.7 ~ 37.3	5.07	4.82 ~ 5.32
5800	35.3	33.5 ~ 37.1	5.27	5.01 ~ 5.53
		For Body		
750	55.5	52.7 ~ 58.3	0.96	0.91 ~ 1.01
835	55.2	52.4 ~ 58.0	0.97	0.92 ~ 1.02
900	55.0	52.3 ~ 57.8	1.05	1.00 ~ 1.10
1450	54.0	51.3 ~ 56.7	1.30	1.24 ~ 1.37
1640	53.8	51.1 ~ 56.5	1.40	1.33 ~ 1.47
1750	53.4	50.7 ~ 56.1	1.49	1.42 ~ 1.56
1800	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
1900	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2000	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2300	52.9	50.3 ~ 55.5	1.81	1.72 ~ 1.90
2450	52.7	50.1 ~ 55.3	1.95	1.85 ~ 2.05
2600	52.5	49.9 ~ 55.1	2.16	2.05 ~ 2.27
3500	51.3	48.7 ~ 53.9	3.31	3.14 ~ 3.48
5200	49.0	46.6 ~ 51.5	5.30	5.04 ~ 5.57
5300	48.9	46.5 ~ 51.3	5.42	5.15 ~ 5.69
5500	48.6	46.2 ~ 51.0	5.65	5.37 ~ 5.93
5600	48.5	46.1 ~ 50.9	5.77	5.48 ~ 6.06
5800	48.2	45.8 ~ 50.6	6.00	5.70 ~ 6.30

Table-3.1	Targets	of Tissue	Simulating	Liquid
-----------	---------	-----------	------------	--------

The following table gives the recipes for tissue simulating liquids.

Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
H750	0.2	-	0.2	1.5	56.0	-	42.1	-
H835	0.2	-	0.2	1.5	57.0	-	41.1	-
H900	0.2	-	0.2	1.4	58.0	-	40.2	-
H1450	-	43.3	-	0.6	-	-	56.1	-
H1640	-	45.8	-	0.5	-	-	53.7	-
H1750	-	47.0	-	0.4	-	-	52.6	-
H1800	-	44.5	-	0.3	-	-	55.2	-
H1900	-	44.5	-	0.2	-	-	55.3	-
H2000	-	44.5	-	0.1	-	-	55.4	-
H2300	-	44.9	-	0.1	-	-	55.0	-
H2450	-	45.0	-	0.1	-	-	54.9	-
H2600	-	45.1	-	0.1	-	-	54.8	-
H3500	-	8.0	-	0.2	-	20.0	71.8	-
H5G	-	-	-	-	-	17.2	65.5	17.3
B750	0.2	-	0.2	0.8	48.8	-	50.0	-
B835	0.2	-	0.2	0.9	48.5	-	50.2	-
B900	0.2	-	0.2	0.9	48.2	-	50.5	-
B1450	-	34.0	-	0.3	-	-	65.7	-
B1640	-	32.5	-	0.3	-	-	67.2	-
B1750	-	31.0	-	0.2	-	-	68.8	-
B1800	-	29.5	-	0.4	-	-	70.1	-
B1900	-	29.5	-	0.3	-	-	70.2	-
B2000	-	30.0	-	0.2	-	-	69.8	-
B2300	-	31.0	-	0.1	-	-	68.9	-
B2450	-	31.4	-	0.1	-	-	68.5	-
B2600	-	31.8	-	0.1	-	-	68.1	-
B3500	-	28.8	-	0.1	-	-	71.1	-
B5G	-	-	-	-	-	10.7	78.6	10.7

Table-3.2	Recines	of	Tissue	Simulating	n Lio	him
rapie-3.2	Recipes	UI.	112206	Simulating	յ եւզ	laia

3.3 SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

3.4 SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the COMOSAR system
- (e) Record the SAR value

3.4.1 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below.

Items	<= 2 GHz	2-3 GHz	3-4 GHz	4-5 GHz	5-6 GHz
Area Scan (Δx, Δy)	<= 15 mm	<= 12 mm	<= 12 mm	<= 10 mm	<= 10 mm
Zoom Scan (Δx, Δy)	<= 8 mm	<= 5 mm	<= 5 mm	<= 4 mm	<= 4 mm
Zoom Scan (Δz)	<= 5 mm	<= 5 mm	<= 4 mm	<= 3 mm	<= 2 mm
Zoom Scan Volume	>= 30 mm	>= 30 mm	>= 28 mm	>= 25 mm	>= 22 mm

Note:

When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied.

3.4.2 Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

3.4.3 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In COMOSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. If the power drift more than 5%, the SAR will be retested.

3.4.4 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The OPENSAR software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

3.4.5 SAR Averaged Methods

In COMOSAR System, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

4. SAR Measurement Evaluation

4.1 EUT Configuration and Setting

<Connections between EUT and System Simulator>

For WWAN SAR testing, the EUT was linked and controlled by base station emulator (Agilent E5515C is used for GSM/WCDMA, and Anritsu MT8820C is used for LTE). Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing.

<Considerations Related to GSM / GPRS for Setup and Testing>

The maximum multi-slot capability supported by this device is as below.

- 1. This EUT is class B device
- 2. This EUT supports GPRS multi-slot class 12 (max. uplink: 4, max. downlink: 4, total timeslots: 5)

For GSM850 frequency band, the power control level is set to 5 for GSM mode and GPRS (GMSK: CS1). For GSM1900 frequency band, the power control level is set to 0 for GSM mode and GPRS (GMSK: CS1).

SAR test reduction for GPRS modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

<Considerations Related to WCDMA for Setup and Testing>

WCDMA Handsets Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode.

WCDMA Handsets Body-worn SAR

SAR for body-worn configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode.

Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices", for the highest reported SAR body-worn exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

Handsets with Release 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn configurations with

12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices", for the highest reported body-worn exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn measurements is tested for next to the ear head exposure.

Release 5 HSDPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH / HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors (β_c , β_d), and HS-DPCCH power offset parameters (Δ_{ACK} , Δ_{NACK} , Δ_{CQI}) are set according to values indicated in below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub-test	βc	βd	β₀ (SF)	β_{c} / β_{d}	β_{hs} ⁽¹⁾	CM (dB) ⁽²⁾	MPR
1	2 / 15	15 / 15	64	2 / 15	4 / 15	0.0	0
2	12 / 15 ⁽³⁾	15 / 15 ⁽³⁾	64	12 / 15 ⁽³⁾	24 / 15	1.0	0
3	15 / 15	8 / 15	64	15 / 8	30 / 15	1.5	0.5
4	15 / 15	4 / 15	64	15 / 4	30 / 15	1.5	0.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = 30 / 15 * \beta_c$.

Note 2: CM = 1 for $\beta_c / \beta_d = 12 / 15$, $\beta_{hs} / \beta_c = 24 / 15$. Note 3: For subtest 2 the β_c / β_d ratio of 12 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11 / 15$ and $\beta_d = 15 / 15$.

Release 6 HSUPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode. Otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing. Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in below.

Sub-test	βα	βd	β₀ (SF)	β _c / β _d	β _{hs} ⁽¹⁾	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11 / 15 ⁽³⁾	15 / 15 ⁽³⁾	64	11 / 15 ⁽³⁾	22 / 15	209 / 225	1039 / 225	4	1	1.0	0.0	20	75
2	6 / 15	15 / 15	64	6 / 15	12 / 15	12 / 15	94 / 75	4	1	3.0	2.0	12	67
3	15 / 15	9 / 15	64	15/9	30 / 15	30 / 15	β _{ed1} : 47/15 β _{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2 / 15	15 / 15	64	2 / 15	4 / 15	2 / 15	56 / 75	4	1	3.0	2.0	17	71
5	15 / 15 (4)	15 / 15 ⁽⁴⁾	64	15 / 15 (4)	30 / 15	24 / 15	134 / 15	4	1	1.0	0.0	21	81

Note 1. Each, Encoder and Experience. Note 2: CM = 1 for $\beta_c = 12 / 15$, $\beta_{hs} / \beta_c = 24 / 15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c / β_d ratio of 11 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 10 / 15 and β_d = 15 / 15.

Note 4: For subtest 5 the β_c / β_d ratio of 15 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 14 / 15 and β_d = 15 / 15.

Note 5: Testing UÉ using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{ed} cannot be set directly; it is set by Absolute Grant Value.

<Considerations Related to LTE for Setup and Testing>

This device contains LTE transmitter which follows 3GPP standards, is category 3, supports both QPSK and 16QAM modulations, and supported LTE band and channel bandwidth is listed in below. The output power was tested per 3GPP TS 36.521-1 maximum transmit procedures for both QPSK and 16QAM modulation. The results please refer to section 4.6 of this report.

	EUT Supported LTE Band and Channel Bandwidth										
LTE Band BW 1.4 MHz BW 3 MHz BW 5 MHz BW 10 MHz BW 15 MHz BW 20 MHz											
2	V	V	V	V	V	V					
4	V	V	V	V	V	V					
5	V	V	V	V							
7			V	V	V	V					

The LTE	maximum	power	reduction	(MPR) i	n acc	ordance	e with	3GPP	ΤS	36.101	is	active	all	times	during	LTE
operation	. The allow	ed MPI	R for the m	aximum	outpu	t power	is spe	ecified i	in be	elow.						

Channel Bandwidth / RB Configurations										
Modulation	BW 1.4 MHz	BW 3 MHz	BW 5 MHz	BW 10 MHz	BW 15 MHz	BW 20 MHz	Setting (dB)			
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	1			
16QAM	<= 5	<= 4	<= 8	<= 12	<= 16	<= 18	1			
16QAM	> 5	> 4	> 8	> 12	> 16	> 18	2			

Note: MPR is according to the standard and implemented in the circuit (mandatory).

In addition, the device is compliant with additional maximum power reduction (A-MPR) requirements defined in 3GPP TS 36.101 section 6.2.4 that was disabled for all FCC compliance testing.

During LTE SAR testing, the related parameters of operating band, channel bandwidth, uplink channel number, modulation type, and RB was set in base station simulator. When the EUT has registered and communicated to base station simulator, the simulator set to make EUT transmitting the maximum radiated power.

<Considerations Related to WLAN for Setup and Testing>

In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Initial Test Configuration

An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

Subsequent Test Configuration

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR is not required for that subsequent test configuration.

SAR Test Configuration and Channel Selection

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following.

1) The channel closest to mid-band frequency is selected for SAR measurement.

2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

4.2 EUT Testing Position

According to KDB 648474 D04, handsets are tested for SAR compliance in head, body-worn accessory and other use configurations described in the following subsections.

4.2.1 Head Exposure Conditions

Head exposure is limited to next to the ear voice mode operations. Head SAR compliance is tested according to the test positions defined in IEEE Std 1528-2013 using the SAM phantom illustrated as below.

- 1. Define two imaginary lines on the handset
- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Fig-4.1 Illustration for Handset Vertical and Horizontal Reference Lines

- 2. Cheek Position
- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig-4.2).

Fig-4.2 Illustration for Cheek Position

- 3. Tilted Position
- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig-4.3).

Fig-4.3 Illustration for Tilted Position

4.2.2 Body-worn Accessory Exposure Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB 447498 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.

Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required.

A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance.

Fig-4.4 Illustration for Body Worn Position

4.2.3 Hotspot Mode Exposure Conditions

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225 D06. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

Based on the antenna location shown on appendix D of this report, the SAR testing required for hotspot mode is listed as below.

Antenna	Front Face	Rear Face	Left Side	Right Side	Top Side	Bottom Side
WWAN	V	V	V	V		V
WLAN / BT	V	V	V	V	V	

4.2.4 SAR Test Exclusion Evaluations

According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following.

	Max.	Max.		Body-Worn		
Mode	Tune-up	Tune-up	Ant to Surface	Power	Require	
mode	Power (dBm)	Power (mW)	(mm)	Threshold (mW)	SAR Testing?	
DT	(==)	()		()	100011191	
вт (2.48 GHz)	1.0	1.26	10	0.2	No	

4.2.5 Simultaneous Transmission Possibilities

The simultaneous transmission possibilities for this device are listed as below.

Simultaneous TX Combination	Capable Transmit Configurations	Head (Voice / VoIP)	Body-worn (Voice / VoIP)	Hotspot (Data)
1	GSM850 (Voice / Data) + WLAN (Data)	Yes	Yes	Yes
2	GSM1900 (Voice / Data) + WLAN (Data)	Yes	Yes	Yes
3	WCDMA II (Voice / Data) + WLAN (Data)	Yes	Yes	Yes
4	WCDMA IV (Voice / Data) + WLAN (Data)	Yes	Yes	Yes
5	WCDMA V (Voice / Data) + WLAN (Data)	Yes	Yes	Yes
6	LTE 2 (Data) + WLAN (Data)	Yes	Yes	Yes
7	LTE 4 (Data) + WLAN (Data)	Yes	Yes	Yes
8	LTE 5 (Data) + WLAN (Data)	Yes	Yes	Yes
9	LTE 7 (Data) + WLAN (Data)	Yes	Yes	Yes
10	GSM850 (Voice / Data) + BT (Data)	No	Yes	No
11	GSM1900 (Voice / Data) + BT (Data)	No	Yes	No
12	WCDMA II (Voice / Data) + BT (Data)	No	Yes	No
13	WCDMA IV (Voice / Data) + BT (Data)	No	Yes	No
14	WCDMA V (Voice / Data) + BT (Data)	No	Yes	No
15	LTE 2 (Data) + BT (Data)	No	Yes	No
16	LTE 4 (Data) + BT (Data)	No	Yes	No
17	LTE 5 (Data) + BT (Data)	No	Yes	No
18	LTE 7 (Data) + BT (Data)	No	Yes	No

Note :

1. The WLAN and Bluetooth cannot transmit simultaneously, so there is no co-location test requirement for WLAN and Bluetooth.

4.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (℃)	Measured Conductivity (σ)	Measured Permittivity (ε _r)	Target Conductivity (σ)	Target Permittivity (ε _r)	Conductivity Deviation (%)	Permittivity Deviation (%)
Jun. 18, 2018	HL850	835	21.5	0.93	41.13	0.90	41.50	3.33	-0.89
Jun. 20, 2018	HL1800	1800	21.3	1.42	40.24	1.40	40.00	1.43	0.60
Jun. 22, 2018	HL1900	1900	21.3	1.37	39.88	1.40	40.00	-2.14	-0.30
Jun. 23, 2018	HL2450	2450	21.0	1.84	38.85	1.80	39.20	2.22	-0.89
Jun. 24, 2018	HL2600	2600	21.4	1.94	38.91	1.96	39.00	-1.02	-0.23
Jun. 18, 2018	BL850	835	21.5	0.95	55.43	0.97	55.20	-2.06	0.42
Jun. 20, 2018	BL1800	1800	21.3	1.56	53.62	1.52	53.30	2.63	0.60
Jun. 22, 2018	BL1900	1900	21.3	1.55	53.11	1.52	53.30	1.97	-0.36
Jun. 23, 2018	BL2450	2450	21.0	1.96	52.22	1.95	52.70	0.51	-0.91
Jun. 24, 2018	BL2600	2600	21.4	2.14	52.00	2.16	52.50	-0.93	-0.95

Note:

1. The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within ±5% of the target values. Liquid temperature during the SAR testing must be within ±2 ℃.

2. Since the maximum deviation of dielectric properties of the tissue simulating liquid is within 5%, SAR correction is evaluated in the measurement uncertainty shown on section 6 of this report.

4.4 System Validation

The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below.

Teat	Droke	Calib		Measured	Measured	Valio	dation for C	W	Validation	n for Modul	lation
Date	Probe S/N	Calib	int	Conductivity	Permittivity	Sensitivity	Probe	Probe	Modulation	Duty	DAD
Date	5/N		int	(σ)	(ε _r)	Range	Linearity	Isotropy	Туре	Factor	FAR
Jun. 18, 2018	SN 27/15 EPGO262	Head	835	0.93	41.13	Pass	Pass	Pass	GMSK	Pass	N/A
Jun. 20, 2018	SN 27/15 EPGO262	Head	1800	1.42	40.24	Pass	Pass	Pass	N/A	N/A	N/A
Jun. 22, 2018	SN 27/15 EPGO262	Head	1900	1.37	39.88	Pass	Pass	Pass	GMSK	Pass	N/A
Jun. 23, 2018	SN 27/15 EPGO262	Head	2450	1.84	38.85	Pass	Pass	Pass	OFDM	N/A	Pass
Jun. 24, 2018	SN 27/15 EPGO262	Head	2600	1.94	38.91	Pass	Pass	Pass	N/A	N/A	N/A
Jun. 18, 2018	SN 27/15 EPGO262	Body	835	0.95	55.43	Pass	Pass	Pass	GMSK	Pass	N/A
Jun. 20, 2018	SN 27/15 EPGO262	Body	1800	1.56	53.62	Pass	Pass	Pass	N/A	N/A	N/A
Jun. 22, 2018	SN 27/15 EPGO262	Body	1900	1.55	53.11	Pass	Pass	Pass	GMSK	Pass	N/A
Jun. 23, 2018	SN 27/15 EPGO262	Body	2450	1.96	52.22	Pass	Pass	Pass	OFDM	N/A	Pass
Jun. 24, 2018	SN 27/15 EPGO262	Body	2600	2.14	52.00	Pass	Pass	Pass	N/A	N/A	N/A

4.5 System Verification

The measuring result for system verification is tabulated as below.

Test Date	Mode	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N
Jun. 18, 2018	Head	835	9.64	0.98	9.78	1.45	SN 18/11 DIPC150	SN 27/15 EPGO262
Jun. 20, 2018	Head	1800	37.99	3.65	36.52	-3.87	SN 18/11 DIPF152	SN 27/15 EPGO262
Jun. 22, 2018	Head	1900	39.88	3.78	37.83	-5.14	SN 18/11 DIPG153	SN 27/15 EPGO262
Jun. 23, 2018	Head	2450	53.18	5.23	52.33	-1.60	SN 18/11 DIPJ155	SN 27/15 EPGO262
Jun. 24, 2018	Head	2600	54.89	5.31	53.07	-3.32	SN 26/14 DIP2G600-326	SN 27/15 EPGO262
Jun. 18, 2018	Body	835	9.96	0.96	9.64	-3.21	SN 18/11 DIPC150	SN 27/15 EPGO262
Jun. 20, 2018	Body	1800	39.62	4.05	40.52	2.27	SN 18/11 DIPF152	SN 27/15 EPGO262
Jun. 22, 2018	Body	1900	40.38	4.16	41.61	3.05	SN 18/11 DIPG153	SN 27/15 EPGO262
Jun. 23, 2018	Body	2450	52.73	5.12	51.24	-2.83	SN 18/11 DIPJ155	SN 27/15 EPGO262
Jun. 24, 2018	Body	2600	54.23	5.64	56.44	4.08	SN 26/14 DIP2G600-326	SN 27/15 EPGO262

Note:

Comparing to the reference SAR value provided by MVG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

4.6 Maximum Output Power

4.6.1 Maximum Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

Mada	Burst Power				
Mode	GSM850	GSM1900			
GSM (GMSK, 1Tx-slot)	32.5	30.0			
GPRS (GMSK, 1Tx-slot)	32.5	30.0			
GPRS (GMSK, 2Tx-slot)	31.5	29.0			
GPRS (GMSK, 3Tx-slot)	30.0	27.0			
GPRS (GMSK, 4Tx-slot)	29.0	26.0			

Mada	Frame Power				
wode	GSM850	GSM1900			
GSM (GMSK, 1Tx-slot)	23.50	21.00			
GPRS (GMSK, 1Tx-slot)	23.50	21.00			
GPRS (GMSK, 2Tx-slot)	25.50	23.00			
GPRS (GMSK, 3Tx-slot)	25.74	22.74			
GPRS (GMSK, 4Tx-slot)	26.00	23.00			

Mode	WCDMA Band II	WCDMA Band IV	WCDMA Band V
RMC 12.2K	22.5	22.5	23.0
HSDPA	22.0	21.5	22.5
HSUPA	21.5	21.5	22.0

Mode	LTE 2	LTE 4	LTE 5	LTE 7
QPSK / 16QAM	22.5 / 21.5	22.5 / 21.5	21.5 / 20.5	22.5 / 21.5

Mode	2.4G WLAN
802.11b	12.5
802.11g	12.0
802.11n HT20	12.0
802.11n HT40	12.5

Mode	2.4G Bluetooth
GFSK	-1.0
π/4-DQPSK	-1.0
8-DPSK	-1.0
LE	1.0

4.6.2 Measured Conducted Power Result

The measuring conducted average power (Unit: dBm) is shown as below.

Band	GSM850				GSM1900							
Channel	128	189	251	512	661	810						
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8						
	Maximum Burst-Averaged Output Power											
GSM (GMSK, 1Tx-slot)	32.28	32.18	32.08	29.58	29.53	29.52						
GPRS (GMSK, 1Tx-slot)	32.29	32.19	32.09	29.59	29.54	29.53						
GPRS (GMSK, 2Tx-slot)	31.38	31.28	31.18	28.75	28.70	28.69						
GPRS (GMSK, 3Tx-slot)	29.56	29.46	29.36	26.86	26.81	26.80						
GPRS (GMSK, 4Tx-slot)	28.48	28.38	28.28	25.68	25.63	25.62						
		Maximum Frame	e-Averaged Outp	out Power								
GSM (GMSK, 1Tx-slot)	23.28	23.18	23.08	20.58	20.53	20.52						
GPRS (GMSK, 1Tx-slot)	23.29	23.19	23.09	20.59	20.54	20.53						
GPRS (GMSK, 2Tx-slot)	25.38	25.28	25.18	22.75	22.70	22.69						
GPRS (GMSK, 3Tx-slot)	25.30	25.20	25.10	22.60	22.55	22.54						
GPRS (GMSK, 4Tx-slot)	25.48	25.38	25.28	22.68	22.63	22.62						

Note:

1. SAR testing was performed on the maximum frame-averaged power mode.

 The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8)

Band	WCDMA Band II			WCDMA Band IV			WC	3GPP		
Channel	9262	9400	9538	1312	1413	1513	4132	4182	4233	MPR
Frequency (MHz)	1852.4	1880.0	1907.6	1712.4	1732.6	1752.6	826.4	836.4	846.6	(dB)
RMC 12.2K	22.34	22.21	22.31	21.97	22.01	21.78	22.46	22.53	22.67	-
HSDPA Subtest-1	21.28	21.15	21.25	20.91	20.95	20.72	21.40	21.47	21.61	0
HSDPA Subtest-2	21.23	21.10	21.20	20.86	20.90	20.67	21.35	21.42	21.56	0
HSDPA Subtest-3	21.75	21.62	21.72	21.38	21.42	21.19	21.87	21.94	22.08	0.5
HSDPA Subtest-4	21.72	21.59	21.69	21.35	21.39	21.16	21.84	21.91	22.05	0.5
HSUPA Subtest-1	21.25	21.12	21.22	20.88	20.92	20.69	21.37	21.44	21.58	0
HSUPA Subtest-2	20.39	20.26	20.36	20.02	20.06	19.83	20.51	20.58	20.72	2
HSUPA Subtest-3	21.36	21.23	21.33	20.99	21.03	20.80	21.48	21.55	21.69	1
HSUPA Subtest-4	20.74	20.61	20.71	20.37	20.41	20.18	20.86	20.93	21.07	2
HSUPA Subtest-5	21.32	21.19	21.29	20.95	20.99	20.76	21.44	21.51	21.65	0

				QPSK				16QAM		
LTE Band / BW	RB Size	RB Offset	Low CH 18607	Mid CH 18900	High CH 19193	3GPP MPR	Low CH 18607	Mid CH 18900	High CH 19193	3GPP MPR
Band / BW	OIZC	Unser	1850.7 MHz	1880.0 MHz	1909.3 MHz	(dB)	1850.7 MHz	1880.0 MHz	1909.3 MHz	(dB)
	1	0	21.77	21.92	21.89	0	21.10	21.25	21.22	1
	1	2	21.74	21.89	21.86	0	21.07	21.22	21.19	1
	1	5	21.72	21.87	21.84	0	21.05	21.20	21.17	1
2/1.4M	3	0	21.04	21.19	21.16	1	20.03	20.18	20.15	2
	3	1	21.02	21.17	21.14	1	20.01	20.16	20.13	2
	3	3	21.01	21.16	21.13	1	20.02	20.17	20.14	2
	6	0	20.93	21.08	21.05	1	20.00	20.15	20.12	2

		-		QPSK				16QAM		
LTE Bond (BW(RB Sizo	RB	Low CH 18615	Mid CH 18900	High CH 19185	3GPP MPR	Low CH 18615	Mid CH 18900	High CH 19185	3GPP MPR
Band / BW	5120	Offset	1851.5 MHz	1880.0 MHz	1908.5 MHz	(dB)	1851.5 MHz	1880.0 MHz	1908.5 MHz	(dB)
	1	0	21.80	21.95	21.92	0	21.13	21.28	21.25	1
	1	7	21.77	21.92	21.89	0	21.10	21.25	21.22	1
	1	14	21.75	21.90	21.87	0	21.08	21.23	21.20	1
2/3M	8	0	21.05	21.20	21.17	1	20.05	20.20	20.17	2
	8	3	21.03	21.18	21.15	1	20.03	20.18	20.15	2
	8	7	21.02	21.17	21.14	1	20.04	20.19	20.16	2
	15	0	20.96	21.11	21.08	1	20.03	20.18	20.15	2

				QPSK				16QAM		
LTE Band (BW)	RB Sizo	RB	Low CH 18625	Mid CH 18900	High CH 19175	3GPP MPR	Low CH 18625	Mid CH 18900	High CH 19175	3GPP MPR
Banu / Bw	3120	Unset	1852.5 MHz	1880.0 MHz	1907.5 MHz	(dB)	1852.5 MHz	1880.0 MHz	1907.5 MHz	(dB)
	1	0	21.83	21.98	21.95	0	21.16	21.31	21.28	1
	1	12	21.80	21.95	21.92	0	21.13	21.28	21.25	1
	1	24	21.78	21.93	21.90	0	21.11	21.26	21.23	1
2 / 5M	12	0	21.08	21.23	21.20	1	20.08	20.23	20.20	2
	12	6	21.06	21.21	21.18	1	20.06	20.21	20.18	2
	12	13	21.05	21.20	21.17	1	20.07	20.22	20.19	2
	25	0	20.99	21.14	21.11	1	20.06	20.21	20.18	2

				QPSK		-		16QAM		-
LTE Bond (BW)	RB Sizo	RB Offect	Low CH 18650	Mid CH 18900	High CH 19150	3GPP MPR	Low CH 18650	Mid CH 18900	High CH 19150	3GPP MPR
Dallu / DW	3120	Oliset	1855.0	1880.0	1905.0	(dB)	1855.0	1880.0	1905.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	21.85	22.00	21.97	0	21.18	21.33	21.30	1
	1	24	21.82	21.97	21.94	0	21.15	21.30	21.27	1
	1	49	21.80	21.95	21.92	0	21.13	21.28	21.25	1
2 / 10M	25	0	21.10	21.25	21.22	1	20.10	20.25	20.22	2
	25	12	21.08	21.23	21.20	1	20.08	20.23	20.20	2
	25	25	21.07	21.22	21.19	1	20.09	20.24	20.21	2
	50	0	21.01	21.16	21.13	1	20.08	20.23	20.20	2

				QPSK				16QAM		
LTE Daniel (DW)	RB	RB	Low CH 18675	Mid CH 18900	High CH 19125	3GPP MPR	Low CH 18675	Mid CH 18900	High CH 19125	3GPP MPR
Band / BW	5120	Oliset	1857.5 MHz	1880.0 MHz	1902.5 MHz	(dB)	1857.5 MHz	1880.0 MHz	1902.5 MHz	(dB)
	1	0	21.88	22.03	22.00	0	21.21	21.36	21.33	1
	1	37	21.85	22.00	21.97	0	21.18	21.33	21.30	1
	1	74	21.83	21.98	21.95	0	21.16	21.31	21.28	1
2 / 15M	36	0	21.13	21.28	21.25	1	20.13	20.28	20.25	2
	36	19	21.11	21.26	21.23	1	20.11	20.26	20.23	2
	36	39	21.10	21.25	21.22	1	20.12	20.27	20.24	2
	75	0	21.04	21.19	21.16	1	20.11	20.26	20.23	2

				QPSK				16QAM		
LTE Bond (BW)	RB Sizo	RB Offect	Low CH 18700	Mid CH 18900	High CH 19100	3GPP MPR	Low CH 18700	Mid CH 18900	High CH 19100	3GPP MPR
Banu / BW	3120	Unser	1860.0	1880.0	1900.0	(dB)	1860.0	1880.0	1900.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	21.93	22.08	22.05	0	21.26	21.41	21.38	1
	1	50	21.90	22.05	22.02	0	21.23	21.38	21.35	1
	1	99	21.88	22.03	22.00	0	21.21	21.36	21.33	1
2 / 20M	50	0	21.18	21.33	21.30	1	20.18	20.33	20.30	2
	50	25	21.16	21.31	21.28	1	20.16	20.31	20.28	2
	50	50	21.15	21.30	21.27	1	20.17	20.32	20.29	2
	100	0	21.09	21.24	21.21	1	20.16	20.31	20.28	2

				QPSK				16QAM		
LTE Dend (DW)	RB	RB	Low CH 19957	Mid CH 20175	High CH 20393	3GPP MPR	Low CH 19957	Mid CH 20175	High CH 20393	3GPP MPR
Band / Bw	5120	Unset	1710.7 MHz	1732.5 MHz	1754.3 MHz	(dB)	1710.7 MHz	1732.5 MHz	1754.3 MHz	(dB)
	1	0	21.87	21.88	21.69	0	21.14	21.15	20.96	1
4 '	1	2	21.85	21.86	21.67	0	21.12	21.13	20.94	1
/ '	1	5	21.77	21.78	21.59	0	21.10	21.11	20.92	1
4 / 1.4M	3	0	21.04	21.05	20.86	1	20.07	20.08	19.89	2
/ '	3	1	21.02	21.03	20.84	1	20.05	20.06	19.87	2
/ '	3	3	21.00	21.01	20.82	1	20.03	20.04	19.85	2
4 '	6	0	20.96	20.97	20.78	1	20.04	20.05	19.86	2

				QPSK				16QAM		•
LTE Bond (BW)	RB Sizo	RB	Low CH 19965	Mid CH 20175	High CH 20385	3GPP MPR	Low CH 19965	Mid CH 20175	High CH 20385	3GPP MPR
Danu / DVV	3126	Unset	1711.5	1732.5	1753.5	(dB)	1711.5	1732.5	1753.5	(dB)
	1	0	21.88	21.89	21.70	0	21.15	21.16	20.97	1
	1	7	21.86	21.87	21.68	0	21.13	21.14	20.95	1
	1	14	21.78	21.79	21.60	0	21.11	21.12	20.93	1
4 / 3M	8	0	21.06	21.07	20.88	1	20.08	20.09	19.90	2
	8	3	21.04	21.05	20.86	1	20.06	20.07	19.88	2
	8	7	21.02	21.03	20.84	1	20.04	20.05	19.86	2
	15	0	20.97	20.98	20.79	1	20.05	20.06	19.87	2

				QPSK				16QAM		
LTE Band (BW)	RB	RB	Low CH 19975	Mid CH 20175	High CH 20375	3GPP MPR	Low CH 19975	Mid CH 20175	High CH 20375	3GPP MPR
Band / BW	5120	Onset	1712.5	1732.5	1752.5	(dB)	1712.5	1732.5	1752.5	(dB)
	1	0	21.91	21.92	21.73	0	21.18	21.19	21.00	1
	1	12	21.89	21.90	21.71	0	21.16	21.17	20.98	1
	1	24	21.81	21.82	21.63	0	21.14	21.15	20.96	1
4 / 5M	12	0	21.09	21.10	20.91	1	20.11	20.12	19.93	2
	12	6	21.07	21.08	20.89	1	20.09	20.10	19.91	2
	12	13	21.05	21.06	20.87	1	20.07	20.08	19.89	2
	25	0	21.00	21.01	20.82	1	20.08	20.09	19.90	2

				QPSK				16QAM		
LTE Dend (DW)	RB	RB	Low CH 20000	Mid CH 20175	High CH 20350	3GPP MPR	Low CH 20000	Mid CH 20175	High CH 20350	3GPP MPR
Band / Bw	5120	Unser	1715.0	1732.5	1750.0	(dB)	1715.0	1732.5	1750.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	21.95	21.96	21.77	0	21.22	21.23	21.04	1
	1	24	21.93	21.94	21.75	0	21.20	21.21	21.02	1
	1	49	21.85	21.86	21.67	0	21.18	21.19	21.00	1
4 / 10M	25	0	21.13	21.14	20.95	1	20.15	20.16	19.97	2
	25	12	21.11	21.12	20.93	1	20.13	20.14	19.95	2
	25	25	21.09	21.10	20.91	1	20.11	20.12	19.93	2
	50	0	21.04	21.05	20.86	1	20.12	20.13	19.94	2

				QPSK		[]		16QAM		
	RB	RB	Low CH 20025	Mid CH 20175	High CH 20325	3GPP MPR	Low CH 20025	Mid CH 20175	High CH 20325	3GPP MPR
Band / Dw	3126	Ullset	1717.5 MHz	1732.5 MHz	1747.5 MHz	(dB)	1717.5 MHz	1732.5 MHz	1747.5 MHz	(dB)
	1	0	22.01	22.02	21.83	0	21.28	21.29	21.10	1
	1	37	21.99	22.00	21.81	0	21.26	21.27	21.08	1
	1	74	21.91	21.92	21.73	0	21.24	21.25	21.06	1
4 / 15M	36	0	21.19	21.20	21.01	1	20.21	20.22	20.03	2
	36	19	21.17	21.18	20.99	1	20.19	20.20	20.01	2
	36	39	21.15	21.16	20.97	1	20.17	20.18	19.99	2
	75	0	21.10	21.11	20.92	1	20.18	20.19	20.00	2

				QPSK				16QAM		•
LTE Bond (BW)	RB Sizo	RB Offect	Low CH 20050	Mid CH 20175	High CH 20300	3GPP MPR	Low CH 20050	Mid CH 20175	High CH 20300	3GPP MPR
Banu / BW	3126	Oliset	1720.0	1732.5	1745.0	(dB)	1720.0	1732.5	1745.0	(dB)
					IVITIZ					
	1	0	22.04	22.05	21.86	0	21.31	21.32	21.13	1
	1	50	22.02	22.03	21.84	0	21.29	21.30	21.11	1
	1	99	21.94	21.95	21.76	0	21.27	21.28	21.09	1
4 / 20M	50	0	21.22	21.23	21.04	1	20.24	20.25	20.06	2
	50	25	21.20	21.21	21.02	1	20.22	20.23	20.04	2
	50	50	21.18	21.19	21.00	1	20.20	20.21	20.02	2
	100	0	21.13	21.14	20.95	1	20.21	20.22	20.03	2

			QPSK							
LTE Band (BW)	RB	RB	Low CH 20407	Mid CH 20525	High CH 20643	3GPP MPR	Low CH 20407	Mid CH 20525	High CH 20643	3GPP MPR
Band / BW	5120	Oliset	824.7 MHz	836.5 MHz	848.3 MHz	(dB)	824.7 MHz	836.5 MHz	848.3 MHz	(dB)
	1	0	20.71	20.74	20.72	0	19.79	19.82	19.80	1
	1	2	20.70	20.73	20.71	0	19.77	19.80	19.78	1
	1	5	20.68	20.71	20.69	0	19.75	19.78	19.76	1
5/1.4M	3	0	19.74	19.77	19.75	1	18.76	18.79	18.77	2
	3	1	19.71	19.74	19.72	1	18.72	18.75	18.73	2
	3	3	19.70	19.73	19.71	1	18.68	18.71	18.69	2
	6	0	19.69	19.72	19.70	1	18.76	18.79	18.77	2

	RB	RB		QPSK					_	
LTE Band / BW			Low CH 20415	Mid CH 20525	High CH 20635	3GPP MPR	Low CH 20415	Mid CH 20525	High CH 20635	3GPP MPR
Band / BW	Size	Oliset	825.5	836.5	847.5	(dB)	825.5	836.5	847.5	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	20.75	20.78	20.76	0	19.83	19.86	19.84	1
	1	7	20.74	20.77	20.75	0	19.81	19.84	19.82	1
	1	14	20.72	20.75	20.73	0	19.79	19.82	19.80	1
5 / 3M	8	0	19.76	19.79	19.77	1	18.77	18.80	18.78	2
	8	3	19.73	19.76	19.74	1	18.73	18.76	18.74	2
	8	7	19.72	19.75	19.73	1	18.69	18.72	18.70	2
	15	0	19.73	19.76	19.74	1	18.80	18.83	18.81	2

				QPSK						
LTE Band (BW)	RB Sizo	RB	Low CH 20425	Mid CH 20525	High CH 20625	3GPP MPR	Low CH 20425	Mid CH 20525	High CH 20625	3GPP MPR
Band / Dw	3126	Ullset	826.5 MHz	836.5 MHz	846.5 MHz	(dB)	826.5 MHz	836.5 MHz	846.5 MHz	(dB)
	1	0	20.81	20.84	20.82	0	19.89	19.92	19.90	1
	1	12	20.80	20.83	20.81	0	19.87	19.90	19.88	1
	1	24	20.78	20.81	20.79	0	19.85	19.88	19.86	1
5 / 5M	12	0	19.82	19.85	19.83	1	18.83	18.86	18.84	2
	12	6	19.79	19.82	19.80	1	18.79	18.82	18.80	2
	12	13	19.78	19.81	19.79	1	18.75	18.78	18.76	2
	25	0	19.79	19.82	19.80	1	18.86	18.89	18.87	2

	RB	RB		QPSK		-				
LTE Band / BW			Low CH 20450	Mid CH 20525	High CH 20600	3GPP MPR	Low CH 20450	Mid CH 20525	High CH 20600	3GPP MPR
Danu / DW	3120	Oliset	829.0	836.5	844.0	(dB)	829.0	836.5	844.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	20.84	20.87	20.85	0	19.92	19.95	19.93	1
	1	24	20.83	20.86	20.84	0	19.90	19.93	19.91	1
	1	49	20.81	20.84	20.82	0	19.88	19.91	19.89	1
5 / 10M	25	0	19.85	19.88	19.86	1	18.86	18.89	18.87	2
	25	12	19.82	19.85	19.83	1	18.82	18.85	18.83	2
	25	25	19.81	19.84	19.82	1	18.78	18.81	18.79	2
	50	0	19.82	19.85	19.83	1	18.89	18.92	18.90	2

				QPSK				[]		
LTE Band (BW	RB	RB	Low CH 20775	Mid CH 21100	High CH 21425	3GPP MPR	Low CH 20775	Mid CH 21100	High CH 21425	3GPP MPR
Band / Dw	5126	Ullset	2502.5 MHz	2535.0 MHz	2567.5 MHz	(dB)	2502.5 MHz	2535.0 MHz	2567.5 MHz	(dB)
	1	0	21.71	21.75	21.69	0	21.05	21.09	21.03	1
l I	1 1	12	21.57	21.61	21.55	0	21.03	21.07	21.01	1
l I	1 1	24	21.51	21.55	21.49	0	21.00	21.04	20.98	1
7 / 5M	12	0	20.96	21.00	20.94	1 1	19.95	19.99	19.93	2
	12	6	20.94	20.98	20.92	1	19.94	19.98	19.92	2
	12	13	20.93	20.97	20.91	1 1	19.93	19.97	19.91	2
	25	0	20.95	20.99	20.93	1 1	19.97	20.01	19.95	2

	RB	RB		QPSK						
LTE Band / BW			Low CH 20800	Mid CH 21100	High CH 21400	3GPP MPR	Low CH 20800	Mid CH 21100	High CH 21400	3GPP MPR
Band / Bw	5120	Oliset	2505.0	2535.0	2565.0	(dB)	2505.0	2535.0	2565.0	(dB)
			MHz	MHz	MHz		MHz	MHz	MHz	
	1	0	21.75	21.79	21.73	0	21.09	21.13	21.07	1
	1	24	21.61	21.65	21.59	0	21.07	21.11	21.05	1
	1	49	21.55	21.59	21.53	0	21.04	21.08	21.02	1
7 / 10M	25	0	21.00	21.04	20.98	1	19.99	20.03	19.97	2
	25	12	20.98	21.02	20.96	1	19.98	20.02	19.96	2
	25	25	20.97	21.01	20.95	1	19.97	20.01	19.95	2
	50	0	20.99	21.03	20.97	1	20.01	20.05	19.99	2

LTE Band / BW	RB Size	RB Offset	Low CH 20825 2507.5 MHz	QPSK Mid CH 21100 2535.0 MHz	High CH 21375 2562.5 MHz	3GPP MPR (dB)	Low CH 20825 2507.5 MHz	16QAM Mid CH 21100 2535.0 MHz	High CH 21375 2562.5 MHz	3GPP MPR (dB)
	1	0	21.81	21.85	21.79	0	21.15	21.19	21.13	1
	1	37	21.67	21.71	21.65	0	21.13	21.17	21.11	1
	1	74	21.61	21.65	21.59	0	21.10	21.14	21.08	1
7 / 15M	36	0	21.06	21.10	21.04	1	20.05	20.09	20.03	2
	36	19	21.04	21.08	21.02	1	20.04	20.08	20.02	2
	36	39	21.03	21.07	21.01	1	20.03	20.07	20.01	2
	75	0	21.05	21.09	21.03	1	20.07	20.11	20.05	2

	RB	RB		QPSK		-				
LTE Band / BW			Low CH 20850	Mid CH 21100	High CH 21350	3GPP MPR	Low CH 20850	Mid CH 21100	High CH 21350	3GPP MPR
Band / BW	3126	Onset	2510.0	2535.0	2560.0	(dB)	2510.0	2535.0	2560.0	(dB)
	1	0	21.84	21.88	21.82	0	21.18	21.22	21.16	1
	1	50	21.70	21.74	21.68	0	21.16	21.20	21.14	1
	1	99	21.64	21.68	21.62	0	21.13	21.17	21.11	1
7 / 20M	50	0	21.09	21.13	21.07	1	20.08	20.12	20.06	2
	50	25	21.07	21.11	21.05	1	20.07	20.11	20.05	2
	50	50	21.06	21.10	21.04	1	20.06	20.10	20.04	2
	100	0	21.08	21.12	21.06	1	20.10	20.14	20.08	2

<WLAN 2.4G>

Mode		802.11b	
Channel / Frequency (MHz)	1 (2412)	6 (2437)	11 (2462)
Average Power	12.17	12.49	12.19
Mode		802.11g	
Channel / Frequency (MHz)	1 (2412)	6 (2437)	11 (2462)
Average Power	11.55	11.45	11.58
Mode		802.11n (HT20)	
Channel / Frequency (MHz)	1 (2412)	6 (2437)	11 (2462)
Average Power	11.41	11.51	11.50
Mode		802.11n (HT40)	
Channel / Frequency (MHz)	3 (2422)	6 (2437)	9 (2452)
Average Power	11.38	12.24	12.12

<Bluetooth>

Mode		Bluetooth GFSK	
Channel / Frequency (MHz)	0 (2402)	39 (2441)	78 (2480)
Average Power	-1.40	-1.07	-2.18
Mode		Bluetooth π/4-DQPSK	
Channel / Frequency (MHz)	0 (2402)	39 (2441)	78 (2480)
Average Power	-2.17	-1.63	-2.84
Mode		Bluetooth 8-DPSK	-
Mode Channel / Frequency (MHz)	0 (2402)	Bluetooth 8-DPSK 39 (2441)	78 (2480)
Mode Channel / Frequency (MHz) Average Power	0 (2402) -2.10	Bluetooth 8-DPSK 39 (2441) -1.46	78 (2480) -2.55
Mode Channel / Frequency (MHz) Average Power Mode	0 (2402) -2.10	Bluetooth 8-DPSK 39 (2441) -1.46 Bluetooth LE	78 (2480) -2.55
Mode Channel / Frequency (MHz) Average Power Mode Channel / Frequency (MHz)	0 (2402) -2.10 0 (2402)	Bluetooth 8-DPSK 39 (2441) -1.46 Bluetooth LE 19 (2440)	78 (2480) -2.55 39 (2480)

4.7 SAR Testing Results

4.7.1 SAR Test Reduction Considerations

<KDB 447498 D01, General RF Exposure Guidance>

Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

- (1) \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

<KDB 941225 D01, 3G SAR Measurement Procedures>

The mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is \leq 1/4 dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

<KDB 941225 D05, SAR Evaluation Considerations for LTE Devices>

(1) QPSK with 1 RB and 50% RB allocation

Start with the largest channel bandwidth and measure SAR, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

(2) QPSK with 100% RB allocation

SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

(3) Higher order modulations

SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > 1/2 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

(4) Other channel bandwidth

SAR is required when the highest maximum output power of the smaller channel bandwidth is > 1/2 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

- (1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.</p>
- (2) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.</p>

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (%)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	GSM850	GPRS12	Right Cheek	128	29.0	28.48	-1.43	0.15	1.13	0.17
	GSM850	GPRS12	Right Tilted	128	29.0	28.48	0.38	0.128	1.13	0.14
1#	GSM850	GPRS12	Left Cheek	128	29.0	28.48	-1.7	0.158	1.13	<mark>0.18</mark>
	GSM850	GPRS12	Left Tilted	128	29.0	28.48	0.14	0.134	1.13	0.15
2#	GSM1900	GPRS12	Right Cheek	512	26.0	25.68	-4.55	0.1	1.08	<mark>0.11</mark>
	GSM1900	GPRS12	Right Tilted	512	26.0	25.68	-1.03	0.044	1.08	0.05
	GSM1900	GPRS12	Left Cheek	512	26.0	25.68	-1.69	0.067	1.08	0.07
	GSM1900	GPRS12	Left Tilted	512	26.0	25.68	-4.08	0.061	1.08	0.07
3#	WCDMA II	RMC12.2K	Right Cheek	9262	22.5	22.34	-0.72	0.133	1.04	<mark>0.14</mark>
	WCDMA II	RMC12.2K	Right Tilted	9262	22.5	22.34	-1.91	0.075	1.04	0.08
	WCDMA II	RMC12.2K	Left Cheek	9262	22.5	22.34	-0.45	0.103	1.04	0.11
	WCDMA II	RMC12.2K	Left Tilted	9262	22.5	22.34	-3.7	0.09	1.04	0.09
	WCDMA IV	RMC12.2K	Right Cheek	1413	22.5	22.01	-2.79	0.207	1.12	<mark>0.23</mark>
	WCDMA IV	RMC12.2K	Right Tilted	1413	22.5	22.01	-3.06	0.123	1.12	0.14
4#	WCDMA IV	RMC12.2K	Left Cheek	1413	22.5	22.01	-0.68	0.164	1.12	0.18
	WCDMA IV	RMC12.2K	Left Tilted	1413	22.5	22.01	-3.94	0.132	1.12	0.15
	WCDMA V	RMC12.2K	Right Cheek	4233	23.0	22.67	0.96	0.071	1.08	0.08
	WCDMA V	RMC12.2K	Right Tilted	4233	23.0	22.67	-0.64	0.053	1.08	0.06
5#	WCDMA V	RMC12.2K	Left Cheek	4233	23.0	22.67	-3.5	0.074	1.08	<mark>0.08</mark>
	WCDMA V	RMC12.2K	Left Tilted	4233	23.0	22.67	0.24	0.055	1.08	0.06

4.7.2 SAR Results for Head Exposure Condition

Plot No.	Band	Mode	Test Position	Ch.	RB#	RB Offset	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (%)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
6#	LTE 2	QPSK20M	Right Cheek	18900	1	0	22.5	22.08	-2.58	0.136	1.10	<mark>0.15</mark>
	LTE 2	QPSK20M	Right Tilted	18900	1	0	22.5	22.08	-1.05	0.058	1.10	0.06
	LTE 2	QPSK20M	Left Cheek	18900	1	0	22.5	22.08	0.69	0.099	1.10	0.11
	LTE 2	QPSK20M	Left Tilted	18900	1	0	22.5	22.08	0.74	0.086	1.10	0.09
	LTE 2	QPSK20M	Right Cheek	18900	50	0	21.5	21.33	-2.58	0.115	1.04	0.12
	LTE 2	QPSK20M	Right Tilted	18900	50	0	21.5	21.33	0.67	0.052	1.04	0.05
	LTE 2	QPSK20M	Left Cheek	18900	50	0	21.5	21.33	-0.35	0.083	1.04	0.09
	LTE 2	QPSK20M	Left Tilted	18900	50	0	21.5	21.33	0.27	0.075	1.04	0.08
7#	LTE 4	QPSK20M	Right Cheek	20175	1	0	22.5	22.05	-2.62	0.133	1.11	<mark>0.15</mark>
	LTE 4	QPSK20M	Right Tilted	20175	1	0	22.5	22.05	-1.27	0.061	1.11	0.07
	LTE 4	QPSK20M	Left Cheek	20175	1	0	22.5	22.05	-1.11	0.103	1.11	0.11
	LTE 4	QPSK20M	Left Tilted	20175	1	0	22.5	22.05	0.34	0.088	1.11	0.10
	LTE 4	QPSK20M	Right Cheek	20175	50	0	21.5	21.23	-1.94	0.121	1.06	0.13
	LTE 4	QPSK20M	Right Tilted	20175	50	0	21.5	21.23	0.37	0.057	1.06	0.06
	LTE 4	QPSK20M	Left Cheek	20175	50	0	21.5	21.23	0.13	0.092	1.06	0.10
	LTE 4	QPSK20M	Left Tilted	20175	50	0	21.5	21.23	0.38	0.073	1.06	0.08
8#	LTE 5	QPSK10M	Right Cheek	20525	1	0	21.5	20.87	-0.9	0.05	1.16	<mark>0.06</mark>
	LTE 5	QPSK10M	Right Tilted	20525	1	0	21.5	20.87	0.15	0.042	1.16	0.05
	LTE 5	QPSK10M	Left Cheek	20525	1	0	21.5	20.87	-3.33	0.049	1.16	0.06
	LTE 5	QPSK10M	Left Tilted	20525	1	0	21.5	20.87	-3.59	0.043	1.16	0.05
	LTE 5	QPSK10M	Right Cheek	20525	25	0	20.5	19.88	-1.24	0.043	1.15	0.05
	LTE 5	QPSK10M	Right Tilted	20525	25	0	20.5	19.88	-0.28	0.036	1.15	0.04
	LTE 5	QPSK10M	Left Cheek	20525	25	0	20.5	19.88	-4.8	0.041	1.15	0.05
	LTE 5	QPSK10M	Left Tilted	20525	25	0	20.5	19.88	-3.58	0.036	1.15	0.04

Plot No.	Band	Mode	Test Position	Ch.	RB#	RB Offset	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (%)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
9#	LTE 7	QPSK20M	Right Cheek	21100	1	0	22.5	21.88	-1.59	0.11	1.15	<mark>0.13</mark>
	LTE 7	QPSK20M	Right Tilted	21100	1	0	22.5	21.88	0.58	0.044	1.15	0.05
	LTE 7	QPSK20M	Left Cheek	21100	1	0	22.5	21.88	-0.44	0.064	1.15	0.07
	LTE 7	QPSK20M	Left Tilted	21100	1	0	22.5	21.88	-4.01	0.031	1.15	0.04
	LTE 7	QPSK20M	Right Cheek	21100	50	0	21.5	21.13	0.81	0.093	1.09	0.10
	LTE 7	QPSK20M	Right Tilted	21100	50	0	21.5	21.13	0.53	0.038	1.09	0.04
	LTE 7	QPSK20M	Left Cheek	21100	50	0	21.5	21.13	-4.69	0.055	1.09	0.06
	LTE 7	QPSK20M	Left Tilted	21100	50	0	21.5	21.13	-1.17	0.026	1.09	0.03

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (%)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	802.11b	-	Right Cheek	6	12.5	12.49	-0.02	0.845	1.00	0.85
	802.11b	-	Right Tilted	6	12.5	12.49	0.24	0.82	1.00	0.82
	802.11b	-	Left Cheek	6	12.5	12.49	-0.71	1.234	1.00	1.24
	802.11b	-	Left Tilted	6	12.5	12.49	-0.93	1.267	1.00	1.27
	802.11b	-	Right Cheek	1	12.5	12.17	-0.4	0.74	1.08	0.80
	802.11b	-	Right Cheek	11	12.5	12.19	0.17	0.785	1.07	0.84
	802.11b	-	Right Tilted	1	12.5	12.17	-0.04	0.742	1.08	0.80
	802.11b	-	Right Tilted	11	12.5	12.19	-0.27	0.77	1.07	0.83
	802.11b	-	Left Cheek	1	12.5	12.17	-0.7	1.019	1.08	1.10
10#	802.11b	-	Left Cheek	11	12.5	12.19	-0.85	1.2	1.07	<mark>1.29</mark>
	802.11b	-	Left Tilted	1	12.5	12.17	-0.32	1.078	1.08	1.16
	802.11b	-	Left Tilted	11	12.5	12.19	-0.99	1.118	1.07	1.20

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (%)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	GSM850	GPRS12	Front Face	128	29.0	28.48	1.07	0.151	1.13	0.17
11#	GSM850	GPRS12	Rear Face	128	29.0	28.48	1.77	0.229	1.13	<mark>0.26</mark>
	GSM1900	GPRS12	Front Face	512	26.0	25.68	-0.74	0.18	1.08	0.19
12#	GSM1900	GPRS12	Rear Face	512	26.0	25.68	-0.06	0.333	1.08	<mark>0.36</mark>
	WCDMA II	RMC12.2K	Front Face	9262	22.5	22.34	-0.78	0.282	1.04	0.29
13#	WCDMA II	RMC12.2K	Rear Face	9262	22.5	22.34	-0.92	0.492	1.04	<mark>0.51</mark>
	WCDMA IV	RMC12.2K	Front Face	1413	22.5	22.01	0.26	0.185	1.12	0.21
14#	WCDMA IV	RMC12.2K	Rear Face	1413	22.5	22.01	-1.08	0.362	1.12	<mark>0.41</mark>
	WCDMA V	RMC12.2K	Front Face	4233	23.0	22.67	-0.96	0.071	1.08	0.08
15#	WCDMA V	RMC12.2K	Rear Face	4233	23.0	22.67	-2.94	0.113	1.08	<mark>0.12</mark>

4.7.3 SAR Results for Body-worn Exposure Condition (Separation Distance is 1.0 cm Gap)

Plot No.	Band	Mode	Test Position	Ch.	RB#	RB Offset	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (%)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	LTE 2	QPSK20M	Front Face	18900	1	0	22.5	22.08	-0.43	0.241	1.10	0.27
16#	LTE 2	QPSK20M	Rear Face	18900	1	0	22.5	22.08	0.01	0.417	1.10	<mark>0.46</mark>
	LTE 2	QPSK20M	Front Face	18900	50	0	21.5	21.33	-0.32	0.204	1.04	0.21
	LTE 2	QPSK20M	Rear Face	18900	50	0	21.5	21.33	-0.63	0.363	1.04	0.38
	LTE 4	QPSK20M	Front Face	20175	1	0	22.5	22.05	-0.77	0.212	1.11	0.24
17#	LTE 4	QPSK20M	Rear Face	20175	1	0	22.5	22.05	-1.62	0.288	1.11	<mark>0.32</mark>
	LTE 4	QPSK20M	Front Face	20175	50	0	21.5	21.23	-0.46	0.192	1.06	0.20
	LTE 4	QPSK20M	Rear Face	20175	50	0	21.5	21.23	-0.93	0.266	1.06	0.28
	LTE 5	QPSK10M	Front Face	20525	1	0	21.5	20.87	-0.93	0.055	1.16	0.06
18#	LTE 5	QPSK10M	Rear Face	20525	1	0	21.5	20.87	-0.74	0.085	1.16	<mark>0.10</mark>
	LTE 5	QPSK10M	Front Face	20525	25	0	20.5	19.88	-1.15	0.047	1.15	0.05
	LTE 5	QPSK10M	Rear Face	20525	25	0	20.5	19.88	-1.17	0.073	1.15	0.08
	LTE 7	QPSK20M	Front Face	21100	1	0	22.5	21.88	-0.62	0.159	1.15	0.18
19#	LTE 7	QPSK20M	Rear Face	21100	1	0	22.5	21.88	-0.51	0.362	1.15	<mark>0.42</mark>
	LTE 7	QPSK20M	Front Face	21100	50	0	21.5	21.13	-0.28	0.133	1.09	0.14
1	LTE 7	QPSK20M	Rear Face	21100	50	0	21.5	21.13	-3.19	0.295	1.09	0.32

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (%)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	802.11b	-	Front Face	6	12.5	12.49	-1.13	0.249	1.00	0.25
20#	802.11b	-	Rear Face	6	12.5	12.49	-0.55	0.388	1.00	<mark>0.39</mark>

					-					
Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	GSM850	GPRS12	Front Face	128	29.0	28.48	1.07	0.151	1.13	0.17
11#	GSM850	GPRS12	Rear Face	128	29.0	28.48	1.77	0.229	1.13	<mark>0.26</mark>
	GSM850	GPRS12	Left Side	128	29.0	28.48	-1.92	0.1	1.13	0.11
	GSM850	GPRS12	Right Side	128	29.0	28.48	0.34	0.105	1.13	0.12
	GSM850	GPRS12	Bottom Side	128	29.0	28.48	-0.02	0.094	1.13	0.11
	GSM1900	GPRS12	Front Face	512	26.0	25.68	-0.74	0.18	1.08	0.19
12#	GSM1900	GPRS12	Rear Face	512	26.0	25.68	-0.06	0.333	1.08	0.36
	GSM1900	GPRS12	Left Side	512	26.0	25.68	-2.65	0.023	1.08	0.02
	GSM1900	GPRS12	Right Side	512	26.0	25.68	1.4	0.072	1.08	0.08
	GSM1900	GPRS12	Bottom Side	512	26.0	25.68	-0.96	0.311	1.08	0.33
	WCDMA II	RMC12.2K	Front Face	9262	22.5	22.34	-0.78	0.282	1.04	0.29
13#	WCDMA II	RMC12.2K	Rear Face	9262	22.5	22.34	-0.92	0.492	1.04	0.51
	WCDMA II	RMC12.2K	Left Side	9262	22.5	22.34	-0.46	0.036	1.04	0.04
	WCDMA II	RMC12.2K	Right Side	9262	22.5	22.34	-0.7	0.12	1.04	0.12
	WCDMA II	RMC12.2K	Bottom Side	9262	22.5	22.34	-0.88	0.442	1.04	0.46
	WCDMA IV	RMC12.2K	Front Face	1413	22.5	22.01	0.26	0.185	1.12	0.21
	WCDMA IV	RMC12.2K	Rear Face	1413	22.5	22.01	-1.08	0.362	1.12	0.41
	WCDMA IV	RMC12.2K	Left Side	1413	22.5	22.01	-0.72	0.071	1.12	0.08
	WCDMA IV	RMC12.2K	Right Side	1413	22.5	22.01	-1	0.168	1.12	0.19
21#	WCDMA IV	RMC12.2K	Bottom Side	1413	22.5	22.01	-1.15	0.536	1.12	<mark>0.60</mark>
	WCDMA V	RMC12.2K	Front Face	4233	23.0	22.67	-0.96	0.071	1.08	0.08
15#	WCDMA V	RMC12.2K	Rear Face	4233	23.0	22.67	-2.94	0.113	1.08	<mark>0.12</mark>
	WCDMA V	RMC12.2K	Left Side	4233	23.0	22.67	-1.23	0.053	1.08	0.06
	WCDMA V	RMC12.2K	Right Side	4233	23.0	22.67	1.25	0.056	1.08	0.06
	WCDMA V	RMC12.2K	Bottom Side	4233	23.0	22.67	3.68	0.047	1.08	0.05

4.7.4 SAR Results for Hotspot Exposure Condition (Separation Distance is 1.0 cm Gap)

Plot No.	Band	Mode	Test Position	Ch.	RB#	RB Offset	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	LTE 2	QPSK20M	Front Face	18900	1	0	22.5	22.08	-0.43	0.241	1.10	0.27
16#	LTE 2	QPSK20M	Rear Face	18900	1	0	22.5	22.08	0.01	0.417	1.10	<mark>0.46</mark>
	LTE 2	QPSK20M	Left Side	18900	1	0	22.5	22.08	-0.3	0.029	1.10	0.03
	LTE 2	QPSK20M	Right Side	18900	1	0	22.5	22.08	-0.88	0.102	1.10	0.11
	LTE 2	QPSK20M	Bottom Side	18900	1	0	22.5	22.08	-1.74	0.401	1.10	0.44
	LTE 2	QPSK20M	Front Face	18900	50	0	21.5	21.33	-0.32	0.204	1.04	0.21
	LTE 2	QPSK20M	Rear Face	18900	50	0	21.5	21.33	-0.63	0.363	1.04	0.38
	LTE 2	QPSK20M	Left Side	18900	50	0	21.5	21.33	-0.68	0.025	1.04	0.03
	LTE 2	QPSK20M	Right Side	18900	50	0	21.5	21.33	-1.11	0.086	1.04	0.09
	LTE 2	QPSK20M	Bottom Side	18900	50	0	21.5	21.33	-1.1	0.344	1.04	0.36
	LTE 4	QPSK20M	Front Face	20175	1	0	22.5	22.05	-0.77	0.212	1.11	0.24
	LTE 4	QPSK20M	Rear Face	20175	1	0	22.5	22.05	-1.62	0.288	1.11	0.32
	LTE 4	QPSK20M	Left Side	20175	1	0	22.5	22.05	-0.4	0.061	1.11	0.07
	LTE 4	QPSK20M	Right Side	20175	1	0	22.5	22.05	-1.37	0.117	1.11	0.13
22#	LTE 4	QPSK20M	Bottom Side	20175	1	0	22.5	22.05	-1.09	0.358	1.11	<mark>0.40</mark>
	LTE 4	QPSK20M	Front Face	20175	50	0	21.5	21.23	-0.46	0.192	1.06	0.20
	LTE 4	QPSK20M	Rear Face	20175	50	0	21.5	21.23	-0.93	0.266	1.06	0.28
	LTE 4	QPSK20M	Left Side	20175	50	0	21.5	21.23	-1.79	0.055	1.06	0.06
	LTE 4	QPSK20M	Right Side	20175	50	0	21.5	21.23	-0.92	0.106	1.06	0.11
	LTE 4	QPSK20M	Bottom Side	20175	50	0	21.5	21.23	-1.16	0.323	1.06	0.34

Plot No.	Band	Mode	Test Position	Ch.	RB#	RB Offset	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	LTE 5	QPSK10M	Front Face	20525	1	0	21.5	20.87	-0.93	0.055	1.16	0.06
18#	LTE 5	QPSK10M	Rear Face	20525	1	0	21.5	20.87	-0.74	0.085	1.16	0.10
	LTE 5	QPSK10M	Left Side	20525	1	0	21.5	20.87	-0.97	0.044	1.16	0.05
	LTE 5	QPSK10M	Right Side	20525	1	0	21.5	20.87	-0.71	0.049	1.16	0.06
	LTE 5	QPSK10M	Bottom Side	20525	1	0	21.5	20.87	-1.16	0.027	1.16	0.03
	LTE 5	QPSK10M	Front Face	20525	25	0	20.5	19.88	-1.15	0.047	1.15	0.05
	LTE 5	QPSK10M	Rear Face	20525	25	0	20.5	19.88	-1.17	0.073	1.15	0.08
	LTE 5	QPSK10M	Left Side	20525	25	0	20.5	19.88	-1.22	0.038	1.15	0.04
	LTE 5	QPSK10M	Right Side	20525	25	0	20.5	19.88	-1.56	0.041	1.15	0.05
	LTE 5	QPSK10M	Bottom Side	20525	25	0	20.5	19.88	-1.45	0.023	1.15	0.03
	LTE 7	QPSK20M	Front Face	21100	1	0	22.5	21.88	-0.62	0.159	1.15	0.18
19#	LTE 7	QPSK20M	Rear Face	21100	1	0	22.5	21.88	-0.51	0.362	1.15	<mark>0.42</mark>
	LTE 7	QPSK20M	Left Side	21100	1	0	22.5	21.88	-1.53	0.015	1.15	0.02
	LTE 7	QPSK20M	Right Side	21100	1	0	22.5	21.88	-1.08	0.131	1.15	0.15
	LTE 7	QPSK20M	Bottom Side	21100	1	0	22.5	21.88	-0.11	0.291	1.15	0.34
	LTE 7	QPSK20M	Front Face	21100	50	0	21.5	21.13	-0.28	0.133	1.09	0.14
	LTE 7	QPSK20M	Rear Face	21100	50	0	21.5	21.13	-3.19	0.295	1.09	0.32
	LTE 7	QPSK20M	Left Side	21100	50	0	21.5	21.13	-0.78	0.012	1.09	0.01
	LTE 7	QPSK20M	Right Side	21100	50	0	21.5	21.13	-0.94	0.111	1.09	0.12
	LTE 7	QPSK20M	Bottom Side	21100	50	0	21.5	21.13	-0.62	0.245	1.09	0.27

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	802.11b	-	Front Face	6	12.5	12.49	-1.13	0.249	1.00	0.25
20#	802.11b	-	Rear Face	6	12.5	12.49	-0.55	0.388	1.00	<mark>0.39</mark>
	802.11b	-	Right Side	6	12.5	12.49	0.61	0.051	1.00	0.05
	802.11b	-	Top Side	6	12.5	12.49	-0.89	0.381	1.00	0.38

4.7.5 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR values, i.e., largest divided by smallest value, is \leq 1.10, the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

Since all the measured SAR are less than 0.8 W/kg, the repeated measurement is not required.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Band	Mode	Test Position	Ch.	Original Measured SAR-1g (W/kg)	1st Repeated SAR-1g (W/kg)	L/S Ratio	2nd Repeated SAR-1g (W/kg)	L/S Ratio	3rd Repeated SAR-1g (W/kg)	L/S Ratio
802.11b	-	Left Cheek	11	1.2	1.116	1.08	N/A	N/A	N/A	N/A

4.7.6 Simultaneous Multi-band Transmission Evaluation

<Estimated SAR Calculation>

According to KDB 447498 D01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR was estimated according to following formula to result in substantially conservative SAR values of <= 0.4 W/kg to determine simultaneous transmission SAR test exclusion.

Estimated SAR =
$$\frac{\text{Max. Tune up Power}_{(\text{mW})}}{\text{Min. Test Separation Distance}_{(\text{mm})}} \times \frac{\sqrt{f_{(\text{GHz})}}}{7.5}$$

If the minimum test separation distance is < 5 mm, a distance of 5 mm is used for estimated SAR calculation. When the test separation distance is > 50 mm, the 0.4 W/kg is used for SAR-1g.

Mode / Band	Frequency (GHz)	Max. Tune-up Power (dBm)	Test Position	Separation Distance (mm)	Estimated SAR (W/kg)
BT (DSS)	2.48	1.0	Body-worn	10	0.03

Note:

1. The separation distance is determined from the outer housing of the tablet to the user.

2. When standalone SAR testing is not required, an estimated SAR can be applied to determine simultaneous transmission SAR test exclusion.

<SAR Summation Analysis>

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.17	0.85	1.02	Σ SAR < 1.6, Not required
		Hood	Right Tilted	0.14	1.10	1.24	Σ SAR < 1.6, Not required
		пеао	Left Cheek	0.18	1.29	1.47	Σ SAR < 1.6, Not required
			Left Tilted	0.15	1.27	1.42	Σ SAR < 1.6, Not required
		Rody Worp	Front Face	0.17	0.25	0.42	Σ SAR < 1.6, Not required
4	GSM850 + WLAN (DTS)	Dody-worn	Rear Face	0.26	0.39	0.65	Σ SAR < 1.6, Not required
.1			Front Face	0.17	0.25	0.42	Σ SAR < 1.6, Not required
			Rear Face	0.26	0.39	0.65	Σ SAR < 1.6, Not required
			Left Side	0.11	0.00	0.11	Σ SAR < 1.6, Not required
		Ποιδροι	Right Side	0.12	0.05	0.17	Σ SAR < 1.6, Not required
			Top Side	0.00	0.38	0.38	Σ SAR < 1.6, Not required
			Bottom Side	0.11	0.00	0.11	Σ SAR < 1.6, Not required
	GSM850 + BT (DSS)	Dedu Mare	Front Face	0.17	0.03	0.20	Σ SAR < 1.6, Not required
		Bouy-worn	Rear Face	0.26	0.03	0.29	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.11	0.85	0.96	Σ SAR < 1.6, Not required
		Llood	Right Tilted	0.05	1.10	1.15	Σ SAR < 1.6, Not required
		GSM1900	Left Cheek	0.07	1.29	1.36	Σ SAR < 1.6, Not required
			Left Tilted	0.07	1.27	1.34	Σ SAR < 1.6, Not required
			Front Face	0.19	0.25	0.44	Σ SAR < 1.6, Not required
	GSM1900		Rear Face	0.36	0.39	0.75	Σ SAR < 1.6, Not required
	+ WLAN (DTS)	AN (DTS)	Front Face	0.19	0.25	0.44	Σ SAR < 1.6, Not required
			Rear Face	0.36	0.39	0.75	Σ SAR < 1.6, Not required
			Left Side	0.02	0.00	0.02	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.08	0.05	0.13	Σ SAR < 1.6, Not required
	GSM1900 + BT (DSS)		Top Side	0.00	0.38	0.38	Σ SAR < 1.6, Not required
			Bottom Side	0.33	0.00	0.33	Σ SAR < 1.6, Not required
		Dedu Mer-	Front Face	0.19	0.03	0.22	Σ SAR < 1.6, Not required
		Boay-worn	Rear Face	0.36	0.03	0.39	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.14	0.85	0.99	Σ SAR < 1.6, Not required
		Head	Right Tilted	0.08	1.10	1.18	Σ SAR < 1.6, Not required
	WCDMA B2	пеаа	Left Cheek	0.11	1.29	1.40	Σ SAR < 1.6, Not required
			Left Tilted	0.09	1.27	1.36	Σ SAR < 1.6, Not required
		Rody Worp	Front Face	0.29	0.25	0.54	Σ SAR < 1.6, Not required
		Body-wom	Rear Face	0.51	0.39	0.90	Σ SAR < 1.6, Not required
	+ WLAN (DTS)	+ AN (DTS)	Front Face	0.29	0.25	0.54	Σ SAR < 1.6, Not required
			Rear Face	0.51	0.39	0.90	Σ SAR < 1.6, Not required
			Left Side	0.04	0.00	0.04	Σ SAR < 1.6, Not required
		Ποιδροι	Right Side	0.12	0.05	0.17	Σ SAR < 1.6, Not required
	WCDMA B2		Top Side	0.00	0.38	0.38	Σ SAR < 1.6, Not required
			Bottom Side	0.46	0.00	0.46	Σ SAR < 1.6, Not required
		Rody Worp	Front Face	0.29	0.03	0.32	Σ SAR < 1.6, Not required
	+ BT (DSS)	Bouy-Wom	Rear Face	0.51	0.03	0.54	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.23	0.85	1.08	Σ SAR < 1.6, Not required
		Hood	Right Tilted	0.14	1.10	1.24	Σ SAR < 1.6, Not required
		Body-Worn	Left Cheek	0.18	1.29	1.47	Σ SAR < 1.6, Not required
			Left Tilted	0.15	1.27	1.42	Σ SAR < 1.6, Not required
			Front Face	0.21	0.25	0.46	Σ SAR < 1.6, Not required
	WCDMA B4		Rear Face	0.41	0.39	0.80	Σ SAR < 1.6, Not required
	+ WLAN (DTS)		Front Face	0.21	0.25	0.46	Σ SAR < 1.6, Not required
			Rear Face	0.41	0.39	0.80	Σ SAR < 1.6, Not required
			Left Side	0.08	0.00	0.08	Σ SAR < 1.6, Not required
		Ποιδροι	Right Side	0.19	0.05	0.24	Σ SAR < 1.6, Not required
	WCDMA B4 + BT (DSS)		Top Side	0.00	0.38	0.38	Σ SAR < 1.6, Not required
			Bottom Side	0.60	0.00	0.60	Σ SAR < 1.6, Not required
		Body Morp	Front Face	0.21	0.03	0.24	Σ SAR < 1.6, Not required
		Body-Worn	Rear Face	0.41	0.03	0.44	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.08	0.85	0.93	Σ SAR < 1.6, Not required
		Hood	Right Tilted	0.06	1.10	1.16	Σ SAR < 1.6, Not required
	WCDMA B5	Heau	Left Cheek	0.08	1.29	1.37	Σ SAR < 1.6, Not required
			Left Tilted	0.06	1.27	1.33	Σ SAR < 1.6, Not required
		Body-Worp	Front Face	0.08	0.25	0.33	Σ SAR < 1.6, Not required
		Body-wom	Rear Face	0.12	0.39	0.51	Σ SAR < 1.6, Not required
	+ WLAN (DTS)	+ N (DTS)	Front Face	0.08	0.25	0.33	Σ SAR < 1.6, Not required
			Rear Face	0.12	0.39	0.51	Σ SAR < 1.6, Not required
			Left Side	0.06	0.00	0.06	Σ SAR < 1.6, Not required
		Ποιδροι	Right Side	0.06	0.05	0.11	Σ SAR < 1.6, Not required
	WCDMA B5		Top Side	0.00	0.38	0.38	Σ SAR < 1.6, Not required
			Bottom Side	0.05	0.00	0.05	Σ SAR < 1.6, Not required
		Body Worp	Front Face	0.08	0.03	0.11	Σ SAR < 1.6, Not required
	+ BT (DSS)	Bouy-worn	Rear Face	0.12	0.03	0.15	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.15	0.85	1.00	Σ SAR < 1.6, Not required
		Head Body-Worn	Right Tilted	0.06	1.10	1.16	Σ SAR < 1.6, Not required
			Left Cheek	0.11	1.29	1.40	Σ SAR < 1.6, Not required
			Left Tilted	0.09	1.27	1.36	Σ SAR < 1.6, Not required
			Front Face	0.27	0.25	0.52	Σ SAR < 1.6, Not required
	LTE 2		Rear Face	0.46	0.39	0.85	Σ SAR < 1.6, Not required
	+ WLAN (DTS)		Front Face	0.27	0.25	0.52	Σ SAR < 1.6, Not required
			Rear Face	0.46	0.39	0.85	Σ SAR < 1.6, Not required
		Hotopot	Left Side	0.03	0.00	0.03	Σ SAR < 1.6, Not required
		Ποιsροι	Right Side	0.11	0.05	0.16	Σ SAR < 1.6, Not required
	LTE 2 + BT (DSS)		Top Side	0.00	0.38	0.38	Σ SAR < 1.6, Not required
			Bottom Side	0.44	0.00	0.44	Σ SAR < 1.6, Not required
		Body Mora	Front Face	0.27	0.03	0.30	Σ SAR < 1.6, Not required
		Douy-Wom	Rear Face	0.46	0.03	0.49	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.15	0.85	1.00	Σ SAR < 1.6, Not required
		Head	Right Tilted	0.07	1.10	1.17	Σ SAR < 1.6, Not required
		Body-Worn	Left Cheek	0.11	1.29	1.40	Σ SAR < 1.6, Not required
			Left Tilted	0.10	1.27	1.37	Σ SAR < 1.6, Not required
			Front Face	0.24	0.25	0.49	Σ SAR < 1.6, Not required
	LTE 4		Rear Face	0.32	0.39	0.71	Σ SAR < 1.6, Not required
	+ WLAN (DTS)		Front Face	0.24	0.25	0.49	Σ SAR < 1.6, Not required
			Rear Face	0.32	0.39	0.71	Σ SAR < 1.6, Not required
			Left Side	0.07	0.00	0.07	Σ SAR < 1.6, Not required
		Ποιδροι	Right Side	0.13	0.05	0.18	Σ SAR < 1.6, Not required
	LTE 4 + BT (DSS)		Top Side	0.00	0.38	0.38	Σ SAR < 1.6, Not required
			Bottom Side	0.40	0.00	0.40	Σ SAR < 1.6, Not required
		Body Mora	Front Face	0.24	0.03	0.27	$\Sigma SAR < 1.6,$ Not required
		Body-Worn	Rear Face	0.32	0.03	0.35	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.06	0.85	0.91	Σ SAR < 1.6, Not required
		Llood	Right Tilted	0.05	1.10	1.15	Σ SAR < 1.6, Not required
		Head Body-Worn	Left Cheek	0.06	1.29	1.35	Σ SAR < 1.6, Not required
			Left Tilted	0.05	1.27	1.32	Σ SAR < 1.6, Not required
			Front Face	0.06	0.25	0.31	Σ SAR < 1.6, Not required
	LTE 5		Rear Face	0.10	0.39	0.49	Σ SAR < 1.6, Not required
	+ WLAN (DTS)		Front Face	0.06	0.25	0.31	Σ SAR < 1.6, Not required
			Rear Face	0.10	0.39	0.49	Σ SAR < 1.6, Not required
		Hotopot	Left Side	0.05	0.00	0.05	Σ SAR < 1.6, Not required
		Ποιsροι	Right Side	0.06	0.05	0.11	Σ SAR < 1.6, Not required
	LTE 5 + BT (DSS)		Top Side	0.00	0.38	0.38	Σ SAR < 1.6, Not required
			Bottom Side	0.03	0.00	0.03	Σ SAR < 1.6, Not required
		Body Mora	Front Face	0.06	0.03	0.09	$\Sigma SAR < 1.6,$ Not required
		Douy-Wom	Rear Face	0.10	0.03	0.13	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.13	0.85	0.98	Σ SAR < 1.6, Not required
		Head	Right Tilted	0.05	1.10	1.15	Σ SAR < 1.6, Not required
		7 Body-Worn	Left Cheek	0.07	1.29	1.36	Σ SAR < 1.6, Not required
			Left Tilted	0.04	1.27	1.31	Σ SAR < 1.6, Not required
			Front Face	0.18	0.25	0.43	Σ SAR < 1.6, Not required
	LTE 7		Rear Face	0.42	0.39	0.81	Σ SAR < 1.6, Not required
	+ WLAN (DTS)		Front Face	0.18	0.25	0.43	Σ SAR < 1.6, Not required
			Rear Face	0.42	0.39	0.81	Σ SAR < 1.6, Not required
		Hotopot	Left Side	0.02	0.00	0.02	Σ SAR < 1.6, Not required
		Ποιδροι	Right Side	0.15	0.05	0.20	Σ SAR < 1.6, Not required
	LTE 7 + BT (DSS)		Top Side	0.00	0.38	0.38	Σ SAR < 1.6, Not required
			Bottom Side	0.34	0.00	0.34	Σ SAR < 1.6, Not required
		Body Morp	Front Face	0.18	0.03	0.21	Σ SAR < 1.6, Not required
		Body-Worn	Rear Face	0.42	0.03	0.45	Σ SAR < 1.6, Not required

Test Engineer : Wiky Zhang

5. Calibration of Test Equipment

Equipment	Manufacturer	Model	SN	Cal. Date	Cal. Interval
System Validation Dipole	SATIMO	SID835	SN 18/11 DIPC 150	Jun. 08, 2017	2 Years
System Validation Dipole	SATIMO	SID1800	SN 18/11 DIPF 152	Jun. 08, 2017	2 Years
System Validation Dipole	SATIMO	SID1900	SN 18/11 DIPG 153	Jun. 08, 2017	2 Years
System Validation Dipole	SATIMO	SID2450	SN 18/11 DIPJ155	Jun. 08, 2017	2 Years
System Validation Dipole	SATIMO	SID2600	SN26/14 DIP2G600-326	Jun. 08, 2017	2 Years
E-Field Probe	MVG	SSE2	SN 27/15 EPGO262	Sep. 20, 2016	2 Years
MultiMeter	Keithley	Multimate 2000	1331865	Jun. 24, 2017	1 Year
Radio Communication Analyzer	ANRITSU	MT8820C	6201300717	Jul. 24, 2017	1 Year
Wireless Communication Test Set	Agilent	E5515C	MY50260600	Jun. 28, 2017	1 Year
ENA Series Network Analyzer	Agilent	E5071C	MY46214638	Jul. 24, 2017	1 Year
Spectrum Analyzer	KEYSIGHT	N9010A	MY54510355	Jun. 27, 2017	1Year
MXG Analog Signal Generator	KEYSIGHT	N5183A	MY50143024	Mar. 01, 2018	1 Year
Power Meter	Agilent	N1914A	MY52180044	Aug. 12, 2016	2 Years
Power Sensor	Agilent	E9304A H18	MY52050011	Jan. 04, 2018	1 Year
Power Meter	Agilent	ML2495A	1506002	Mar. 01, 2018	1 Year
Power Sensor	Agilent	MA2411B	1339353	Mar. 01, 2018	1 Year
Temp. & Humi. Recorder	CLOCK	HTC-1	157248	Jul. 26, 2017	1 Year
Electronic Thermometer	YONGFA	YF-160A	120100323	Sep. 22, 2017	1 Year
Coupler	Woken	0110A056020-1 0	COM27RW1A3	Sep. 20, 2017	1 Year

6. Measurement Uncertainty

Source of Uncertainty	Tolerance (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (1g)	Standard Uncertainty (10g)	Vi Veff
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	5.9	R	1.732	0.7	0.7	2.4	2.4	∞
Hemispherical Isotropy	12.2	R	1.732	0.7	0.7	4.9	4.9	∞
Boundary Effects	1.0	R	1.732	1	1	0.6	0.6	∞
Linearity	5.9	R	1.732	1	1	3.4	3.4	∞
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6	8
Readout Electronics	1.0	Ν	1	1	1	1.0	1.0	8
Response Time	0.0	R	1.732	1	1	0.0	0.0	8
Integration Time	2.6	R	1.732	1	1	1.5	1.5	8
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7	8
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7	8
Probe Positioner	1.4	R	1.732	1	1	0.8	0.8	8
Probe Positioning	1.4	R	1.732	1	1	0.8	0.8	8
Max. SAR Eval.	2.3	R	1.732	1	1	1.3	1.3	8
Test Sample Related								
Device Positioning	2.3	N	1	1	1	2.3	2.3	35
Device Holder	2.7	N	1	1	1	2.7	2.7	12
Power Drift	5.0	R	1.732	1	1	2.9	2.9	∞
Power Scaling	0.0	R	1.732	1	1	0.0	0.0	∞
Phantom and Setup	•		1	T	r			1
Phantom Uncertainty	4.0	R	1.732	1	1	2.3	2.3	∞
SAR correction	1.2	R	1.732	1	0.84	0.7	0.6	∞
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0	∞
Liquid Conductivity (mea.)	4.1	R	1.732	0.78	0.71	1.8	1.7	∞
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity (target)	5.0	R	1.732	0.23	0.26	0.7	0.8	∞
Liquid Permittivity (mea.)	5.0	R	1.732	0.23	0.26	0.7	0.8	∞
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1	8
Combined Standard Uncertainty (K = 1)				± 11.4 %	± 11.3 %	2923		
Expanded Uncertainty (K =	2)					± 22.7 %	± 22.6 %	

7. Information on the Testing Laboratories

We, BV 7LAYERS COMMUNICATIONS TECHNOLOGY (SHENZHEN) CO. LTD., were founded in 2015 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Add: No. B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industry Park, Nanshan District, Shenzhen, Guangdong, China Tel: 86-755-8869-6566 Fax: 86-755-8869-6577

Email: customerservice.dg@cn.bureauveritas.com Web Site: www.bureauveritas.com

The road map of all our labs can be found in our web site also.

---END----

Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

System Verification Plots

Product Description: Dipole Model: SID835 Test Date: Jun 18, 2018

Medium(liquid type)	HL835	
Frequency (MHz)	835.00000	
Relative permittivity (real part)	41.13	
Conductivity (S/m)	0.93	
Input power	100mW	
E-Field Probe	SN 27/15 EPGO262	
Crest factor	1.0	
Conversion Factor	1.74	
Sensor-surface	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	0.340000	
SAR 10g (W/Kg)	0.656424	
SAR 1g (W/Kg)	0.978189	
Surface: Dacking Jones 1000000000000000000000000000000000000	Case Decided Control Decided Control Decided 000000000000000000000000000000000000	

Model: SID835

Test Date: Jun 18, 2018

Medium(liquid type)	BL835	
Frequency (MHz)	835.00000	
Relative permittivity (real part)	55.43	
Conductivity (S/m)	0.95	
Input power	100mW	
E-Field Probe	SN 27/15 EPGO262	
Crest factor	1.0	
Conversion Factor	1.81	
Sensor-surface	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	-0.520000	
SAR 10g (W/Kg)	0.642325	
SAR 1g (W/Kg)	0.964004	
Surface Budded blanning Calor Such 100 0.02502 100 0.02502 00 <td>Value Locard State M/Agit 100 0.95725 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100</td>	Value Locard State M/Agit 100 0.95725 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.95726 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100 0.957267 100	

Model: SID1800

Test Date: Jun 20, 2018

Model: SID1800

Test Date: Jun 20, 2018

Medium(liquid type)	BL1800	
Frequency (MHz)	1800.000	
Relative permittivity (real part)	55.62	
Conductivity (S/m)	1.56	
Input power	100mW	
E-Field Probe	SN 27/15 EPGO262	
Crest factor	1.0	
Conversion Factor	2.05	
Sensor-Surface	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	-1.030000	
SAR 10g (W/Kg)	2.112376	
SAR 1g (W/Kg)	4.052274	
Startack Tradeway Colors Start 199 199 199 199 199 199 199 19	Versus Disklast Manual Versus	

Model: SID1900

Test Date: Jun 22, 2018

Medium(liquid type)	HL1900	
Frequency (MHz)	1900.000	
Relative permittivity (real part)	39.88	
Conductivity (S/m)	1.37	
Input power	100mW	
E-Field Probe	SN 27/15 EPGO262	
Crest factor	1.0	
Conversion Factor	2.01	
Sensor-Surface	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	-1.210000	
SAR 10g (W/Kg)	1.984678	
SAR 1g (W/Kg)	3.783263	
Subtract Subtract Subtract Subtract Subtract 1	Color Color <th< td=""></th<>	

Model: SID1900

Test Date: Jun 22, 2018

Medium(liquid type)	BL1900	
Frequency (MHz)	1900.000	
Relative permittivity (real part)	53.11	
Conductivity (S/m)	1.55	
Input power	100mW	
E-Field Probe	SN 27/15 EPGO262	
Crest factor	1.0	
Conversion Factor	2.05	
Sensor-Surface	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	-1.560000	
SAR 10g (W/Kg)	2.144235	
SAR 1g (W/Kg)	4.161185	
Startace Disduct Internation Zoom Int/Od Class Scale (1) 0000 (1) 00000 (1) 00000 (1) 0000 (1) 0000 (1) 00000 (1) 0000 (1) 0000 (1) 000	Value Description Class Scale 100 4 47788 100 4 47788 100 3 59797 100 2 597	

Model: SID2450

Test Date: Jun 23, 2018

Medium(liquid type)	HL_2450	
Frequency (MHz)	2450.000	
Relative permittivity (real part)	38.85	
Conductivity (S/m)	1.84	
Input power	100mW	
Crest factor	1.0	
E-Field Probe	SN 27/15 EPGO262	
Conversion Factor	2.04	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	-1.260000	
SAR 10g (W/Kg)	2.534732	
SAR 1g (W/Kg)	5.233384	
Surface Tickster Tickster Zommin/D Color Control/D 000	Value Disket-totalenang Dominiout Color State 100 100 100 100 100 Color State 100	

Model: SID2450

Test Date: Jun 23, 2018

Medium(liquid type)	BL_2450	
Frequency (MHz)	2450	
Relative permittivity (real part)	52.22	
Conductivity (S/m)	1.96	
Input power	100mW	
Crest factor	1.0	
E-Field Probe	SN 27/15 EPGO262	
Conversion Factor	2.12	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	-1.160000	
SAR 10g (W/Kg)	2.403774	
SAR 1g (W/Kg)	5.124238	
Color S Color Self 187 S 4005 187 100 S 405100 100 S 405100 100 S 405100 100 S 505100 100 S 605100 100 S 605100 100 S 605100 100 S 605100 100 S 60500 100 S 70000 100 S 70000 100 S 70000 100	Colors State 000 0.55500 000 0.55000 000 0.55000 000 0.55000 000 0.55000 000 0.55000 000 0.5	

Model: SID2600

Test Date: Jun 24, 2018

Medium(liquid type)	HSL_2600
Frequency (MHz)	2600.000
Relative permittivity (real part)	38.91
Conductivity (S/m)	1.94
Input power	100mW
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.28
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.230000
SAR 10g (W/Kg)	2.426654
SAR 1g (W/Kg)	5.306629
Surface: In Socience Versionity Colors State WAR STORES Color State Color Stat	Verme Local Description Color State 1000 1000 1000 State 4000 1000 1000 State 1000 1000 1000 State 1000 1000 1000 State 1000 1000 1000 State 10000 10000 10000 State 10000 10000 10000 State 100000 100000 100000 State 100000 100000 100000 State 100000 100000 100000 State 1000000 100000 100000 State 1000000 100000 100000 State 1000000 100000 100000 State 1000000 100000 100000 100000 State 1000000 100000 100000 100000 100000 State 1000000 1000000 1000000 1000000 1000000

Model: SID2600

Test Date: Jun 24, 2018

Medium(liquid type)	MSL_2600
Frequency (MHz)	2600.000
Relative permittivity (real part)	52.00
Conductivity (S/m)	2.14
Input power	100mW
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.34
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.380000
SAR 10g (W/Kg)	2.582572
SAR 1g (W/Kg)	5.643956
Surface in Subject Vieway	View Location Colors State 100 State 100

Appendix B. SAR Plots of SAR Measurement

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

Maximum SAR measurement Plots

1# GSM850_GPRS 12_Left Cheek_Ch128 DUT:180615W007 Test Date: Jun 18, 2018 Ambient Temperature: 22.7℃; Liquid Temperature: 21.5℃

Medium(liquid type) HL835 Frequency (MHz) 824.2 Relative permittivity (real part) 41.13 Conductivity (S/m) 0.93 E-Field Probe SN 27/15 EPGO262 Crest factor 2.0 1.74 **Conversion Factor** Sensor-Surface 4mm Area Scan

dx=8mm dy=8mm

5x5x7,dx=8mm dy=8mm dz=5mm -1.700000

0.113741

0.158495

Variation (%) SAR 10g (W/Kg) SAR 1g (W/Kg)

SURFACE SAR

Zoom Scan

VOLUME SAR

2# GSM1900_ GPRS12 _Right Cheek_Ch512 DUT:180615W007

Test Date: Jun 22, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	HL1900
Frequency (MHz)	1850.2
Relative permittivity (real part)	38.88
Conductivity (S/m)	1.37
E-Field Probe	SN 27/15 EPGO262
Crest factor	2.0
Conversion Factor	2.01
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-4.550000
SAR 10g (W/Kg)	0.060143
SAR 1g (W/Kg)	0.099640

SURFACE SAR

3# WCDMA Band II _ RMC12.2K _Right Cheek_Ch9262

DUT:180615W007

Test Date: Jun 22, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	HL1900
Frequency (MHz)	1852.4
Relative permittivity (real part)	38.88
Conductivity (S/m)	1.37
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.01
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.720000
SAR 10g (W/Kg)	0.080367
SAR 1g (W/Kg)	0.133075

SURFACE SAR

VOLUME SAR

4# WCDMA Band IV_RMC12.2K_Right Cheek_Ch1413

DUT:180615W007

Test Date: Jun 20, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	HL1800
Frequency (MHz)	1732.6
Relative permittivity (real part)	40.24
Conductivity (S/m)	1.42
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.01
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-2.790000
SAR 10g (W/Kg)	0.127564
SAR 1g (W/Kg)	0.206984

SURFACE SAR

VOLUME SAR

5# WCDMA Band $V_$ RMC12.2K _Left Cheek_Ch4233

DUT:180615W007

Test Date: Jun 18, 2018

Medium(liquid type)	HL835
Frequency (MHz)	846.6
Relative permittivity (real part)	41.13
Conductivity (S/m)	0.93
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	1.74
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-3.500000
SAR 10g (W/Kg)	0.053471
SAR 1g (W/Kg)	0.073853
SURFACE SAR	VOLUME SAR
Surface Test Standed History Colors Stands 0009873 0009875 0009873 0009875 0009873 0009875 0009874 0009877 0009874 0009877	Univer Fiscalical laining Colors Scale 00000109 0.0000109 00000109 0.0000109 0000000 0.0000109 0000000 0.0000109 0000000 0.0000109 0000000 0.0000109 0000000 0.0000109 0000000 0.0000109 0000000 0.0000109 00000000 0.0000109 00000000 0.0000109 00000000 0.0000109 000000000 0.0000109 000000000 0.0000109 000000000 0.0000109 000000000 0.0000109 000000000 0.00000000000000000000000000000000000

6# LTE BAND 2_QPSK20M_ Right Cheek_Ch18900_1RB_OS0 DUT:180615W007

Test Date: Jun 22, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	HSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	39.88
Conductivity (S/m)	1.37
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.01
Sensor-Surface	4mm
Bandwidth(MHz)	20
RB Allocation	1
RB Offset	0
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-2.580000
SAR 10g (W/Kg)	0.079289
SAR 1g (W/Kg)	0.135644

SURFACE SAR

VOLUME SAR

7# LTE BAND 4_QPSK20M_ Right Cheek_Ch20175_1RB_OS0 DUT:180615W007

Test Date: Jun 20, 2018

Medium(liquid type)	HSL_1800
Frequency (MHz)	1732.5000
Relative permittivity (real part)	40.24
Conductivity (S/m)	1.42
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	1.81
Sensor-Surface	4mm
Bandwidth(MHz)	20
RB Allocation	1
RB Offset	0
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-2.620000
SAR 10g (W/Kg)	0.080893
SAR 1g (W/Kg)	0.133012
SURFACE SAR	VOLUME SAR
Surface Redidedirienally Zoomin/Rhd	Volume TedelodmentlyZonerin/Uni
Core Scale 199 199 199 199 199 199 199 19	Constant 0 1970 0 1970 0 1970 0 00005 0 000000 0 00005 0 00

8# LTE BAND 5_QPSK10M_ Right Cheek_Ch20525_1RB_OS0 DUT:180615W007

Test Date: Jun 18, 2018

Medium(liquid type)	HSL_835
Frequency (MHz)	836.5000
Relative permittivity (real part)	41.13
Conductivity (S/m)	0.93
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	1.74
Sensor-Surface	4mm
Bandwidth(MHz)	10
RB Allocation	1
RB Offset	0
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.900000
SAR 10g (W/Kg)	0.037716
SAR 1g (W/Kg)	0.050031
SURFACE SAR	VOLUME SAR
Surface Recipientity Zoomin/Dul	Volume Exceletionalia
Comp State 0000000 000000000000000000000000000000000000	Colory Scale 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 00000000 000000000 00000000 0000000000 00000000 000000000 00000000 000000000 00000000 000000000 00000000 00000000000 000000000 000000000000000000000000000000000000

9# LTE BAND 7_QPSK20M_ Right Cheek_Ch21100_1RB_OS0 DUT:180615W007

Test Date: Jun 24, 2018

Medium(liquid type)	HSL_2600
Frequency (MHz)	2535.0000
Relative permittivity (real part)	38.91
Conductivity (S/m)	1.94
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.05
Sensor-Surface	4mm
Bandwidth(MHz)	20
RB Allocation	1
RB Offset	0
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.590000
SAR 10g (W/Kg)	0.056826
SAR 1g (W/Kg)	0.109567
SURFACE SAR	VOLUME SAR

10# 802.11b_Left Cheek Ch 11

DUT:180615W007

Test Date: Jun 23, 2018

Medium(liquid type)	HL_2450
Frequency (MHz)	2462.000
Relative permittivity (real part)	38.85
Conductivity (S/m)	1.84
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=5mm dy=5mm dz=4mm
Variation (%)	-0.850000
SAR 10g (W/Kg)	0.523088
SAR 1g (W/Kg)	1.200437
Surface Fiscaland Manual Model 110000 110000 000000 00000000 000000 00000000 000000 000000000 000000 000000000 000000 0000000000 000000 00000000000 0000000 000000000000000 00000000000 000000000000000000000000000000000000	Constrained Const

11# GSM850_GPRS12_Rear Face_1.0cm_Ch128 DUT:180615W007

Test Date: Jun 18, 2018

Ambient Temperature: 22.7°C; Liquid Temperature: 21.5°C

SAR Visualisation Graphical Interface	SLR Wingdowie's Biographical Western
SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	0.228554
SAR 10g (W/Kg)	0.171316
Variation (%)	1.770000
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Area Scan	dx=8mm dy=8mm
Sensor-Surface	4mm
Conversion Factor	1.81
Crest factor	2.0
E-Field Probe	SN 27/15 EPGO262
Conductivity (S/m)	0.95
Relative permittivity (real part)	55.43
Frequency (MHz)	824.2
Medium(liquid type)	BL835

Open Scale 0 Open Scale 0

12# GSM1900_GPRS12_Rear Face_1.0cm_Ch512 DUT:180615W007

Test Date: Jun 22, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	BL1900
Frequency (MHz)	1850.2
Relative permittivity (real part)	53.11
Conductivity (S/m)	1.55
E-Field Probe	SN 27/15 EPGO262
Crest factor	2.0
Conversion Factor	2.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.060000
SAR 10g (W/Kg)	0.174964
SAR 1g (W/Kg)	0.333036

SURFACE SAR

VOLUME SAR

13# WCDMA Band II_RMC12.2K_Rear Face_1.0cm_Ch9262 DUT:180615W007

Test Date: Jun 22, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	BL1900
Frequency (MHz)	1852.4
Relative permittivity (real part)	53.11
Conductivity (S/m)	1.55
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.920000
SAR 10g (W/Kg)	0.260408
SAR 1g (W/Kg)	0.492195

SURFACE SAR

VOLUME SAR

14# WCDMA Band IV_RMC12.2K_Rear Face_1.0cm_Ch1413 DUT:180615W007

Test Date: Jun 20, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	0.362454
SAR 10g (W/Kg)	0.201126
Variation (%)	-1.080000
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Area Scan	dx=8mm dy=8mm
Sensor-Surface	4mm
Conversion Factor	2.05
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conductivity (S/m)	1.56
Relative permittivity (real part)	53.62
Frequency (MHz)	1732.6
Medium(liquid type)	BL1800

Rate 120-30 80-30 Q: Z-Eura Econod -60 -30 Z= 4.0 -120-150-150 60 90 SAVE Cancel 120 -30 in 16 × (mm) 0 ¥ (mm)

VOLUME SAR

15# WCDMA Band V_RMC12.2K_Rear Face_1.0cm_Ch4233 DUT:180615W007

Test Date: Jun 18, 2018

Medium(liquid type)	BL835
Frequency (MHz)	846.6
Relative permittivity (real part)	55.43
Conductivity (S/m)	0.95
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	1.81
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-2.940000
SAR 10g (W/Kg)	0.084309
SAR 1g (W/Kg)	0.113306
SURFACE SAR	VOLUME SAR
SAP Visualities relation Surface: Tabled linemity Zomi In/Dat (V/Ap) 0 126/2 120- 0 115/2 120- 0 115/2 120-	Safe Visualiseon South - Zomi Kr/Dat Volume Tededelininity - Zomi Kr/Dat M/Api 017275 120- 017165 120-

16# LTE BAND 2_QPSK20M_ Rear Face_1cm_Ch18900_1RB_OS0 DUT:180615W007

Test Date: Jun 22, 2018

medium(iiquid type)	MSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	53.11
Conductivity (S/m)	1.55
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.05
Sensor-Surface	4mm
Bandwidth(MHz)	20
RB Allocation	1
RB Offset	0
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.010000
SAR 10g (W/Kg)	0.222293
SAR 1g (W/Kg)	0.417308
SURFACE SAR	VOLUME SAR
Surface Taskede lowendy Item influt Outro State MARE 100 0.000000 0.000000 0.000000 0.000000 0.000000	Volume Taskene testing Constraint 0 0.5576 0.50762 0

17# LTE BAND 4_QPSK20M_ Rear Face_1cm_Ch20175_1RB_OS0 DUT:180615W007

Test Date: Jun 20, 2018

	MSL_1800
Frequency (MHz)	1732.5000
Relative permittivity (real part)	53.62
Conductivity (S/m)	1.56
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	1.87
Sensor-Surface	4mm
Bandwidth(MHz)	20
RB Allocation	1
RB Offset	0
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.620000
SAR 10g (W/Kg)	0.159007
SAR 1g (W/Kg)	0.287715
SURFACE SAR	VOLUME SAR
Startice # isdeed trimate Zomin/Dol	Odeno Scale Testide Parenation Objective 031397 Objective 031397

18# LTE BAND 5_QPSK10M_ Rear Face_1cm_Ch20525_1RB_OS0 DUT:180615W007

Test Date: Jun 18, 2018

Medium(liquid type)	MSL_835
Frequency (MHz)	836.5000
Relative permittivity (real part)	55.43
Conductivity (S/m)	0.95
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	1.81
Sensor-Surface	4mm
Bandwidth(MHz)	10
RB Allocation	1
RB Offset	0
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.740000
SAR 10g (W/Kg)	0.063861
SAR 1g (W/Kg)	0.084911
SURFACE SAR	VOLUME SAR
1	
Surface Tisadectation Demindlat 0007451 0007471 0007471 0007471 0007471 0007471 0007471 00041512 100 0007471 00041512 100 0007471 00041512 100 0007471 00041512 100 00041512 2Claticions 200 200 100 100 100 2Claticions 100 100 100 100 100 100 2WKE Emmindlat 100 100 100 100 100 100 100 2WKE Emmindlat 100	Volume Taskende terrindry Demindful 0 <t< td=""></t<>

19# LTE BAND 7_QPSK20M_ Rear Face_1cm_Ch21100_1RB_OS0 DUT:180615W007

Test Date: Jun 24, 2018

Medium(liquid type)	MSL_2600
Frequency (MHz)	2535.0000
Relative permittivity (real part)	52.00
Conductivity (S/m)	2.14
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.12
Sensor-Surface	4mm
Bandwidth(MHz)	20
RB Allocation	1
RB Offset	0
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.510000
SAR 10g (W/Kg)	0.169188
SAR 1g (W/Kg)	0.362462
SURFACE SAR	VOLUME SAR
Supreve Tradectionmally Construction Colors State 0 37/3701 O 37/3701 0 000778 O 37/3702 0 000778 O 37/3703 0 000778 O 37/3704 0 000778 O 37/3705 0 0000778 O 37/3705 0 000078 O 37/3705 0 0000078 O 37/3705 0 000078 O 37/3705 0 000078 O 37/3705 <t< td=""><td>Univer Tradical linearity Constraining Constraining Constraining Constraining</td></t<>	Univer Tradical linearity Constraining Constraining Constraining Constraining

20# 802.11b_Rear Face_1cm_Ch 6

DUT:180615W007

Test Date: Jun 23, 2018

21# WCDMA Band IV_RMC12.2K_ Bottom Side _1.0cm_Ch1413 DUT:180615W007

Test Date: Jun 20, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	BL1800		
Frequency (MHz)	1732.6		
Relative permittivity (real part)	53.62		
Conductivity (S/m)	1.56		
E-Field Probe	SN 27/15 EPGO262		
Crest factor	1.0		
Conversion Factor	2.05		
Sensor-Surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-1.150000		
SAR 10g (W/Kg)	0.283687		
SAR 1g (W/Kg)	0.535926		
SURFACE SAR	VOLUME SAR		
Suff Vesadescon (Deptical Intentice) Suprise Tissiand Intentice Suprise Tissiand Intentice Color Scale Optical Intentice 0 Spring 100 0 Spring <td>Skill Visualisative Chaptelina intentinge Volvere Tistikalina linitismitty Color Scale 1507 0.598778 1507 0.598789 1507 0.598789 1507 0.598789 1507 0.598789 1507 0.598789 1507 0.598789 1507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507</td>	Skill Visualisative Chaptelina intentinge Volvere Tistikalina linitismitty Color Scale 1507 0.598778 1507 0.598789 1507 0.598789 1507 0.598789 1507 0.598789 1507 0.598789 1507 0.598789 1507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507 0.598789 507		

 ZCLAR Lennol
 00

 ZCLAR Lennol
 00

 Listic
 00

 Listic
 00

 Listic
 00

 Listic
 00

 Listic
 00

 Listic
 100

 Listic
 100

22# LTE BAND 4_QPSK20M_ Bottom Side_1cm_Ch20175_1RB_OS0 DUT:180615W007

Test Date: Jun 20, 2018

Medium(liquid type)	MSL_1800
Frequency (MHz)	1732.5000
Relative permittivity (real part)	53.62
Conductivity (S/m)	1.56
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	1.87
Sensor-Surface	4mm
Bandwidth(MHz)	20
RB Allocation	1
RB Offset	0
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.090000
SAR 10g (W/Kg)	0.189016
SAR 1g (W/Kg)	0.357513
SURFACE SAR	VOLUME SAR
Surface Tiskder/Liskow Chemistry Class Scale 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927710 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720 0.927720	Univer Textelection Operation 0.5% (KB) Operation

Appendix C. Calibration Certificate for Probe and Dipole

The MVG calibration certificates are shown as follows.

Appendix C CALIBRATION REPORTS

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/20/2016	JS
Checked by :	Jérôme LUC	Product Manager	9/20/2016	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	9/20/2016	Ham Hitchosenthi

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Issue	Date	Modifications
А	9/20/2016	Initial release

Page: 2/10

TABLE OF CONTENTS

1 De	evice Under Test4	
2 Pr	oduct Description4	
2.1	General Information	4
3 M	easurement Method4	
3.1	Linearity	4
3.2	Sensitivity	5
3.3	Lower Detection Limit	5
3.4	Isotropy	5
3.5	Boundary Effect	5
4 M	easurement Uncertainty	
5 Ca	libration Measurement Results	
5.1	Sensitivity in air	6
5.2	Linearity	7
5.3	Sensitivity in liquid	7
5.4	Isotropy	8
6 Li	st of Equipment	

Page: 3/10

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 27/15 EPGO262	
Product Condition (new / used)	Used	
Frequency Range of Probe	0.7 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.221 MΩ	
	Dípole 2: R2=0.199 MΩ	
	Dipole 3: R3=0.199 MΩ	

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01 W/kg to 100 W/kg.

Page: 4/10

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$-\sqrt{3}$	L	1.732%
Liquid conductivity	5.00%	Rectangular	$-\sqrt{3}$ -	l	2.887%
Liquid permittivity	4.00%	Rectangular	$-\sqrt{3}$	l	2.309%
Field homogeneity	3.00%	Rectangular		l	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

Page: 5/10

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	L	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 SENSITIVITY IN AIR

Normx dipole	Normy dipole	Normz dipole
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
0.80	0.71	0.72

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
92	90	91

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 6/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.204.3.16.SATUA

5.2 LINEARITY

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL750	750	40.03	0.93	1.57
BL750	750	56.83	1.00	1.62
HL850	835	42.19	0.90	1.74
BL850	835	54.67	1.01	1.81
HL900	900	42.08	1.01	1.67
BL900	900	55.25	1.08	1.73
HL1800	1800	41.68	1.46	1.81
BL1800	1800	53.86	1.46	1.87
HL1900	1900	38.45	1.45	2.01
BL1900	1900	53.32	1.56	2.05
HL2000	2000	38.26	1.38	1.86
BL2000	2000	52.70	1.51	1.91
HL2450	2450	37.50	1.80	2.04
BL2450	2450	53.22	1.89	2.12
HL2600	2600	39.80	1.99	2.05
BL2600	2600	52.52	2,23	2.12
HL3500	3500	38.21	2.98	2.02
BL3500	3500	52.95	3.43	2.08
HL5200	5200	35.64	4.67	1.51
BL5200	5200	48.64	5.51	1.55
HL5400	5400	36.44	4.87	1.56
BL5400	5400	46.52	5.77	1.61
HL5600	5600	36.66	5.17	1.55
BL5600	5600	46.79	5.77	1.60
HL5800	5800	35.31	5.31	1.44
BL5800	5800	47.04	6.10	1.48

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/10

5.4 ISOTROPY

<u>HL900 MHz</u>

- Axial isotropy:	0.04 dB
- Hemisphericał isotropy:	0.05 dB

0.04 dB

0.06 dB

HL1800 MHz

	· ·	
A 12 1 0 1	to o beo eau	
- A E M	35(1)(1))9	
	abou op y .	

- Hemispherical isotropy:

Page: 8/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

0.06 dB 0.08 dB Ref: ACR.264.3.16.SATU.A

HL5600 MHz

- Axial isotropy:

- Hemispherical isotropy:

Page: 9/10

6 LIST OF EQUIPMENT

	Equipment ourmary oneet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Reference Probe	MVG	EP 94 SN 37/08	10/2015	10/2016		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	150798832	10/2015	10/2017		

Page: 10/10

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/14/2017	JS
Checked by :	Jérôme LUC	Product Manager	6/14/2017	Jez
Approved by :	Kim RUTKOWSKI	Quality Manager	6/14/2017	them meethouski

	Customer Name
Distribution :	SIEMIC Testing and Certification

Issue	Date	Modifications
A	6/14/2017	Initial release

Page: 2/11

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test	
3	Prod	uct Description	
3	.1	General Information	4
4	Mea	surement Method	
4	.1	Return Loss Requirements	5
4	.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
5	.1	Return Loss	5
5	.2	Dimension Measurement	_5
5	.3	Validation Measurement	5
6	Cali	oration Measurement Results	
6	.1	Return Loss and Impedance In Head Liquid	6
6	.2	Return Loss and Impedance In Body Liquid	6
6	.3	Mechanical Dimensions	6
7	Vali	dation measurement	
7	.1	Head Liquid Measurement	7
7	.2	SAR Measurement Result With Head Liquid	8
7	.3	Body Liquid Measurement	9
7	.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment11	

Page: 3/11

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID835	
Serial Number	SN 18/11 DIPC150	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB
	Frequency band 400-6000MHz

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Expanded Oncertainty on Dength
0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11

6.3 MECHANICAL DIMENSIONS

Frequency MHz	uency MHz L mm		y MHz Lmm hmm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	:
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1%.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1%.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative permittivity (ε_r')		Conductiv	ty (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %	1	1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %	1.1	1.37 ±5 %	

7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

1800	40.0 ±5 %	1.40 ±5 %	
1900	40.0 ±5 %	1.40 ±5 %	
1950	40.0 ±5 %	1.40 ±5 %	
2000	40.0 ±5 %	1.40 ±5 %	
2100	39.8 ±5 %	1.49 ±5 %	
2300	39.5 ±5 %	1.67 ±5 %	
2450	39.2 ±5 %	1.80 ±5 %	
2600	39.0 ±5 %	1.96 ±5 %	
3000	38.5 ±5 %	2.40 ±5 %	
3500	37.9 ±5 %	2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 40.0 sigma : 0.90
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)	
	required	measured	required	measured	
300	2.85		1.94		
450	4.58		3.06		
750	8.49		5.55		
835	9.56	9.64 (0.96)	6.22	6.20 (0.62)	
900	10.9		6.99		
1450	29		16		
1500	30.5		16.8		
1640	34.2		18.4		
1750	36.4		19.3		
1800	38.4		20.1		

Page: 8/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

1900	39.7	20.5	
1950	40.5	20.9	
2000	41.1	21.1	
2100	43.6	21.9	
2300	48.7	23.3	
2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	
3700	67.4	24.2	

Frequency MHz	Relative permittivity (ϵ_r')		Conductiv	vity (ơ) S/m	
	required	measured	required	measured	
150	61.9 ±5 %		0.80 ±5 %		
300	58.2 ±5 %		0.92 ±5 %		
450	56.7 ±5 %		0.94 ±5 %		
750	55.5 ±5 %		0.96 ±5 %		
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS	
900	55.0 ±5 %		1.05 ±5 %		
915	55.0 ±5 %		1.06 ±5 %		
1450	54.0 ±5 %		1.30 ±5 %		
1610	53.8 ±5 %		1.40 ±5 %		
1800	53.3 ±5 %		1.52 ±5 %		
1900	53.3 ±5 %		1.52 ±5 %		
2000	53.3 ±5 %		1.52 ±5 %		
2100	53.2 ±5 %	11	1.62 ±5 %		

7.3 BODY LIQUID MEASUREMENT

Page: 9/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

2300	52.9 ±5 %	1.81 ±5 %	
2450	52.7 ±5 %	1.95 ±5 %	
2600	52.5 ±5 %	2.16 ±5 %	
3000	52.0 ±5 %	2.73 ±5 %	
3500	51.3 ±5 %	3.31 ±5 %	
3700	51.0 ±5 %	3.55 ±5 %	
5200	49.0 ±10 %	5.30 ±10 %	
5300	48.9 ±10 %	5.42 ±10 %	
5400	48.7 ±10 %	5.53 ±10 %	
5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 57.5 sigma : 0.96
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W	
	measured	measured	
835	9.96 (1.00)	6.53 (0.65)	

Page: 10/11

Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date			
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.			
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019			
Calipers	Carrera	CALIPER-01	01/2017	01/2020			
Reference Probe	MVG	EPG122 SN 18/11	10/2016	10/2017			
Multimeter	Keithley 2000	1188656	01/2017	01/2020			
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020			
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	HP E4418A	US38261498	01/2017	01/2020			
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020			
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017			

8 LIST OF EQUIPMENT

Page: 11/11

SAR Reference Dipole Calibration Report

Ref : ACR.165.4.17.SATU.A

SIEMIC TESTING AND CERTIFICATION SERVICES

ZONE A,FLOOR 1,BUILDING 2,WAN YE LONG TECHNOLOGY PARK,SOUTH SIDE OF ZHOUSHI ROAD, SHIYAN STREET,BAO'AN DISTRICT, SHENZHEN 518108, GUANGDONG, P.R.C.

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ SERIAL NO.: SN 18/11 DIPF152

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/14/2017	JES
Checked by :	Jérôme LUC	Product Manager	6/14/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/14/2017	them thethoushi

Issue	Date	Modifications
A	6/14/2017	Initial release

Page: 2/11

TABLE OF CONTENTS

1	Intro	oduction	
2	Dev	ice Under Test	
3	Pro	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment	

Page: 3/11

INTRODUCTION 1

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 **DEVICE UNDER TEST**

Device Under Test					
Device Type COMOSAR 1800 MHz REFERENCE DIPOLE					
Manufacturer	MVG				
Model	SID1800				
Serial Number	SN 18/11 DIPF152				
Product Condition (new / used)	Used				

A yearly calibration interval is recommended.

PRODUCT DESCRIPTION 3

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Page: 4/11

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

Expanded Uncertainty on Length		
0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	quency MHz L mm		hm	ım	d r	mm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.	PASS	41.7 ±1 %.	PASS	3.6 ±1 %.	PASS
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

1800	40.0 +5 %	PASS	1 40 +5 %	PASS
1900	40.0 ±5 %		1.40 ±5 %	1855
1950	40.0 ±5 % 1.40 ±5 %			
2000	40.0 ±5 % 1.40 ±5 %		1.40 ±5 %	
2100	39.8 ±5 % 1.4		1.49 ±5 %	
2300	39.5 ±5 % 1.67 ±5 %		1.67 ±5 %	
2450	39.2 ±5 % 1.80 ±5 %			
2600	39.0 ±5 % 1.96 ±5 %			
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 % 2.91 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps': 41.7 sigma: 1.46		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm		
Frequency	1800 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4	37.99 (3.80)	20.1	20.05 (2.00

Page: 8/11

1900	39.7	20.5
1950	40.5	20.9
2000	41.1	21.1
2100	43.6	21.9
2300	48.7	23.3
2450	52.4	24
2600	55.3	24.6
3000	63.8	25.7
3500	67.1	25
3700	67.4	24.2

Frequency MHz	Relative permittivity (ϵ_r)		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	j
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %	· · · · · · · · · · · · · · · · · · ·	1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %	PASS	1.52 ±5 %	PASS
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %	£1	1.62 ±5 %	

7.3 BODY LIQUID MEASUREMENT

Page: 9/11