

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101321

FCC REPORT

Applicant: TECNO MOBILE LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-

35 SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: CH6n

Trade mark: TECNO

FCC ID: 2ADYY-CH6N

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Jul., 2021

Date of Test: 13 Jul., to 30 Jul., 2021

Date of report issued: 03 Aug., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	03 Aug., 2021	Original

Tested by:	Mike ou	Date:	03 Aug., 2021
Tested by:	Test Engineer		

Reviewed by: Winner Thang
Date: 03 Aug., 2021

Project Engineer

Page 2 of 42

Contents

		Page
1	COVER PAGE	
2	VERSION	2
3		2
4		
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	
	5.2 GENERAL DESCRIPTION OF E.U.T	5
	5.3 TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 MEASUREMENT UNCERTAINTY	6
	5.6 LABORATORY FACILITY	
	5.7 LABORATORY LOCATION	
	5.8 TEST INSTRUMENTS LIST	7
6	TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT:	8
	6.2 CONDUCTED EMISSION	9
	6.3 CONDUCTED OUTPUT POWER	12
	6.4 OCCUPY BANDWIDTH	
	6.5 POWER SPECTRAL DENSITY	14
	6.6 BAND EDGE	
	6.6.1 Conducted Emission Method	
	6.6.2 Radiated Emission Method	
	6.7 Spurious Emission	
	6.7.1 Conducted Emission Method	
	6.7.2 Radiated Emission Method	
7	TEST SETUP PHOTO	41
0	ELIT CONSTRUCTIONAL DETAILS	43

Page 3 of 42

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass
Power Spectral Density	15.247 (e) Appendix A - BLI		Pass
Conducted Band Edge	15 247 (d)	Appendix A - BLE	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	45 205 % 45 200	Appendix A - BLE	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone	
Model No.:	CH6n	
Operation Frequency:	2402-2480 MHz	
Channel numbers:	40	
Channel separation:	2 MHz	
Modulation technology:	GFSK	
Data speed :	1Mbps & 2Mbps & 500Kbps & 125Kbps	
Antenna Type:	Internal Antenna	
Antenna gain:	3.0 dBi	
Power supply:	Rechargeable Li-ion Polymer Battery DC3.85V, 4900mAh	
AC adapter:	Model: U180TSA	
	Input: AC100-240V, 50/60Hz, 0.6A	
	Output: DC 5.0V-9.0V, 2.0A, DC 9.0V-12.0V, 1.5A	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode, and test samples plans

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Test Samples Plans:	
Samples Number	Used for Test Items
2#	Conducted measurements test method
1#	Radiated measurements test method
1#	EUT constructional details

Remark: Jian Yan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty	
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)	

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Took Favriane and	Manufacturar	Madel No	Carial Na	Cal. Date	Cal. Due date
Test Equipment	Manufacturer	Model No.	Serial No.	(mm-dd-yy)	(mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Disanical Antonna	SCHWARZBECK	\/LIDA0447	359	06-18-2020	06-17-2021
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Tiom Antenna	SCHWARZBECK	DDI 1A9 120D	1005	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919b	l
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140402	07-22-2020	07-21-2021
Simulated Station	Ronde & Schwarz	CIVIVV500	140493	07-22-2021	07-21-2022
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022
LION	Dahda 9 Cahusara	F0U0.75	0.4200204/040	06-18-2020	06-17-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021
Cable	HP	10503A	N/A	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	Version: 6.110919b		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Conducted method:										
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021					
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021					
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021					
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021					
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021					
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A					
PDU	MWRF-test	XY-G10	N/A	N/A	N/A					
Test Software	MWRF-tes	MTS 8310		Version: 2.0.0.0						
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021					

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

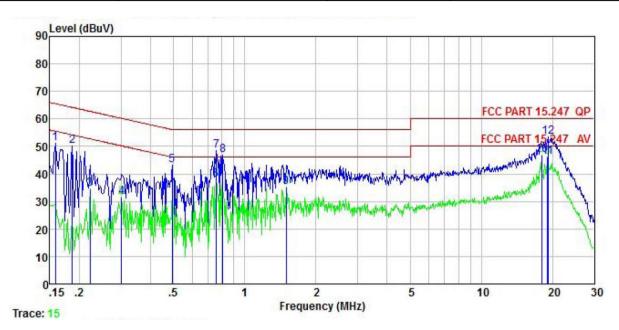
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 3.0dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

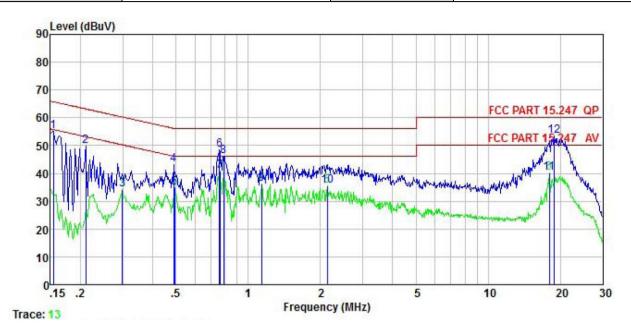
6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.207	7					
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	·	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithn	n of the frequency.					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 						
Test setup:	Reference	Plane					
	AUX Equipment	EMI Receiver	– AC power				
	LISN: Line Impedence Stabilization Ne Test table height=0.8m	WYOA					
Test Instruments:	Refer to section 5.9 for details	}					
Test mode:	Refer to section 5.3 for details	i					
Test results:	Passed						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data:

Product name:	Mobile Phone	Product model:	CH6n
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

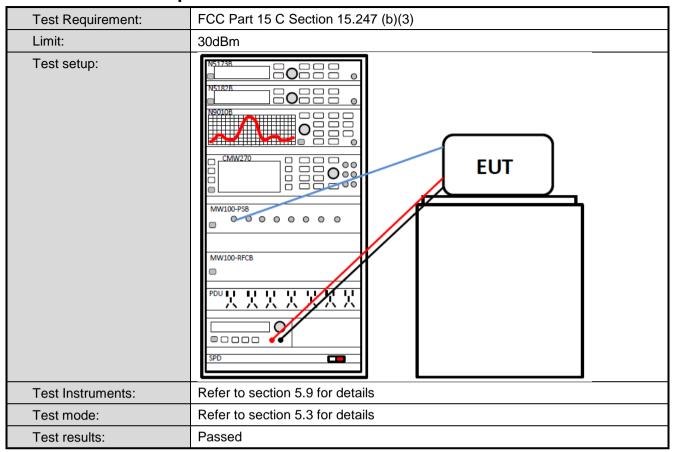

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	<u>d</u> B		dBu₹	dBu₹	<u>ab</u>	
1	0.158	41.03	10.12	-0.07	0.01	51.09	65.56	-14.47	QP
2	0.186	40.20	10.14	-0.13	0.02	50.23	64.20	-13.97	QP
3	0.222	24.58	10.16	-0.19	0.03	34.58	52.74	-18.16	Average
4	0.302	21.64	10.21	-0.24	0.03	31.64	50.19	-18.55	Average
5	0.494	33.11	10.34	-0.32	0.03	43.16	56.10	-12.94	QP
6	0.755	27.56	10.42	-0.22	0.03	37.79	46.00	-8.21	Average
7	0.759	38.15	10.43	-0.20	0.03	48.41	56.00	-7.59	QP
1 2 3 4 5 6 7 8 9	0.809	36.35	10.44	-0.05	0.03	46.77	56.00	-9.23	QP
9	1.495	24.56	10.51	0.01	0.14	35.22	46.00	-10.78	Average
10	17.944	33.58	11.13	1.90	0.15	46.76	50.00		Average
11	19.021	33.63	11.16	1.36	0.15	46.30	50.00		Average
12	19.122	40.73	11.16	1.36	0.15	53.40	60.00	-6.60	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

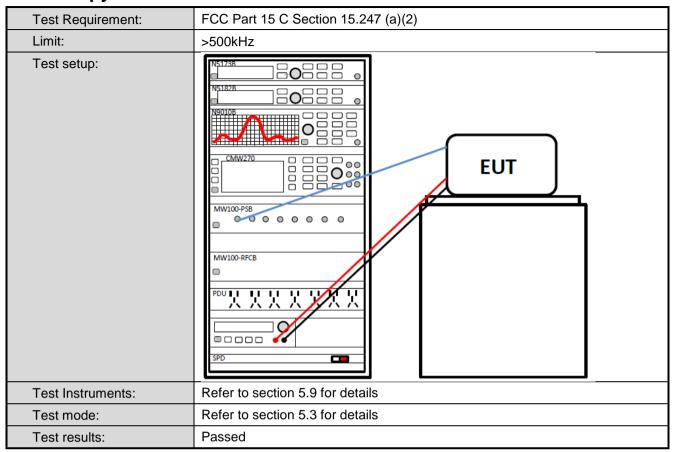
Product name:	Mobile Phone	Product model:	CH6n
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	dB	₫B	dBu₹	dBu₹	dB	
1	0.154	45.22	9.89	0.01	0.01	55.13	65.78	-10.65	QP
2	0.211	39.81	9.93	0.00	0.03	49.77	63.18	-13.41	QP
3	0.299	24.15	10.01	0.01	0.03	34.20	50.28	-16.08	Average
2 3 4 5 6 7 8 9	0.489	32.78	10.19	0.02	0.03	43.02		-13.17	
5	0.494	24.59	10.20	0.03	0.03	34.85	46.10	-11.25	Average
6	0.759	37.88	10.41	0.05	0.03	48.37	56.00	-7.63	QP
7	0.763	30.45	10.41	0.05	0.03	40.94	46.00	-5.06	Average
8	0.792	35.64	10.43	0.05	0.03	46.15	56.00	-9.85	QP
9	1.135	25.33	10.60	0.10	0.08	36.11	46.00	-9.89	Average
10	2.133	24.18	10.82	0.19	0.19	35.38	46.00	-10.62	Average
11	17.944	27.31	11.54	1.30	0.15	40.30	50.00	-9.70	Average
12	18.920	41.06	11.58	0.81	0.15	53.60	60.00	-6.40	


Notes:

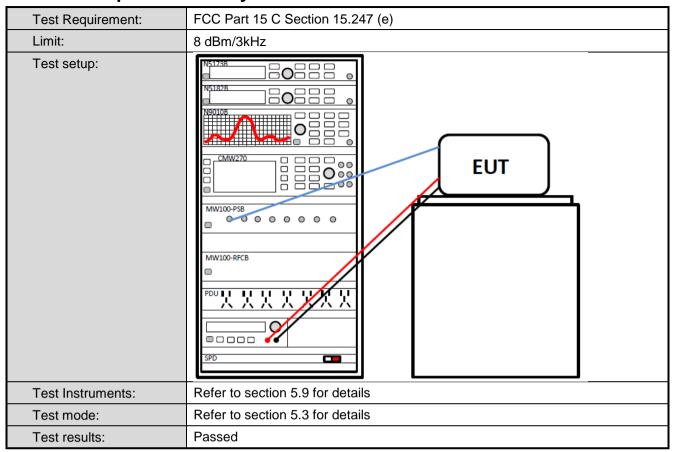
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power


Measurement Data: Refer to Appendix A - BLE

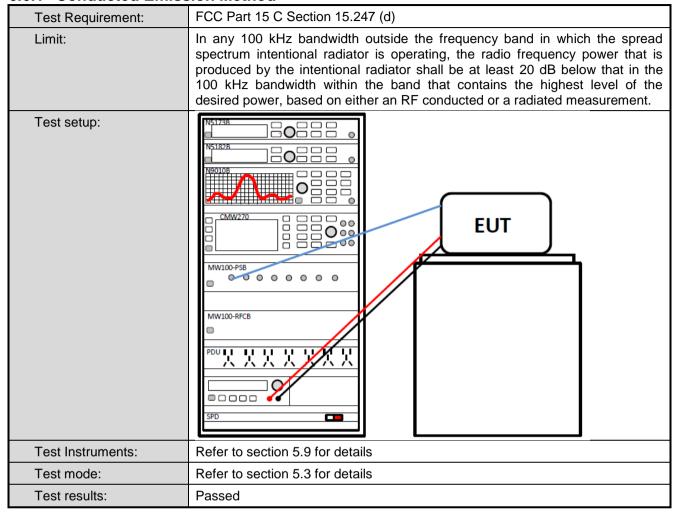
Page 12 of 42

6.4 Occupy Bandwidth


Measurement Data: Refer to Appendix A - BLE

Page 13 of 42

6.5 Power Spectral Density


Measurement Data: Refer to Appendix A - BLE

Page 14 of 42

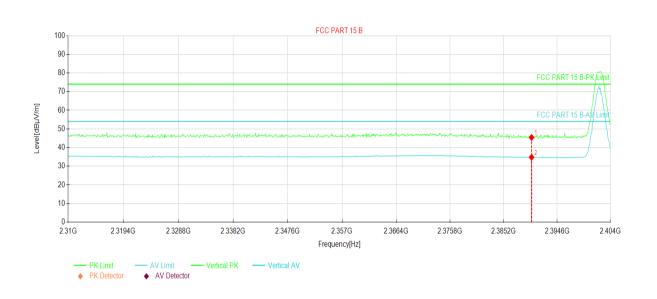
6.6 Band Edge

6.6.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

Page 15 of 42

Radiated Emission Method 6.6.2

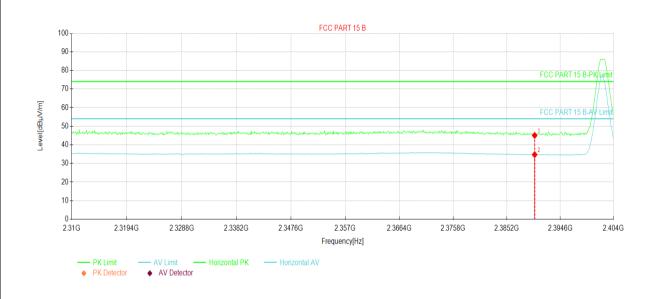

Test Requirement:		Section 15.20	05 and 15.209					
Test Frequency Range:	2310 MHz to 2	2390 MHz and	2483.5MHz to 2	2500 MHz				
Test Distance:	3m	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frequer	ncy Liı	mit (dBuV/m @3		Remark			
	Above 10	GHz —	54.00 74.00		verage Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 							
Test setup:	AE (T	Test Receiver	Horn Antenna 3m Reference Plane	Antenna Tower				
Test Instruments:	Refer to section	on 5.9 for detai	ls					
Test mode:	Refer to section	on 5.3 for detai	ls					
Test results:	Passed							

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

1M PHY

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

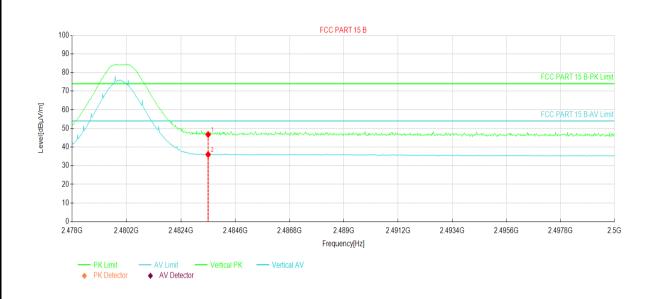
NO.₽	Freq.√ [MHz]∂	Reading⊬ [dBµV/m]⊬	Level⊬ [dBµV/m]₽	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace	Polarity∂
1₽	2390.00₽	38.35₽	45.43₽	7.08₽	74.00₽	28.57₽	PK₽	Vertical₽
2₽	2390.00	27.74₽	34.82₽	7.08	54.00₽	19.18₽	AV₽	Vertical₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

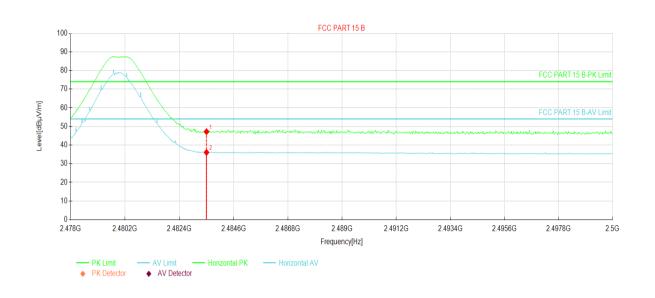
Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


NO.	Freq.√ [MHz]∂	Reading⊬ [dBµV/m]⊬	Level⊬ [dBµV/m]₽	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]₽	Margin⊬ [dB]⊬	Trace	Polarity
1₽	2390.004	37.96₽	45.04₽	7.08₽	74.00₽	28.96₽	PK₽	Horizontal₽
2₊□	2390.00₽	27.64₽	34.72₽	7.08₽	54.00₽	19.28₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 42

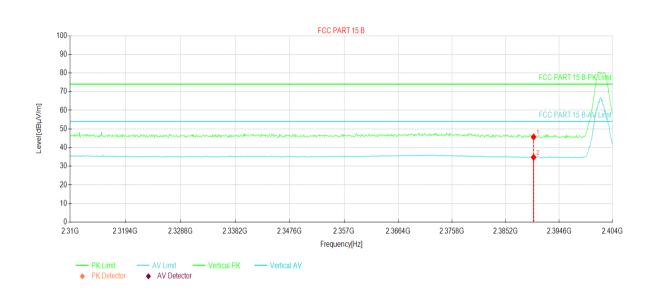
Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


NO.	Freq.	Reading⊬	Level⊬	Factor⊬	Limit⊬	Margin⊬	Tropo	Dolority -
NO.	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Trace	Polarity∉
1₽	2483.50	39.03₽	46.72₽	7.69₽	74.00₽	27.28₽	PK₽	Vertical₽
2₽	2483.50	28.31₽	36.00₽	7.69₽	54.00₽	18.00₽	AV₄	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 42

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

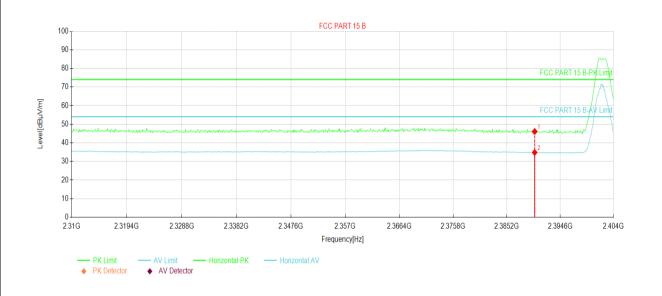

	Polarity∂	Trace∂	Margin⊬ [dB]∉	Limit⊬ [dBµV/m]∉	Factor⊬ [dB]∉	Level⊬ [dBµV/m]∉	Reading⊮ [dBµV/m]⊮	Freq.√ [MHz]∂	NO.₽
1€ 2483.50 39.51€ 47.20€ 7.69€ 74.00€ 26.80€ PK€	Horizontal₽	PK₽	26.80₽	74.00₽	7.69₽	47.20₽	39.51₽	2483.50	1₽
2ψ 2483.50 28.37ψ 36.06ψ 7.69ψ 54.00ψ 17.94ψ AVψ	Horizontal₽	AV₽	17.94₽	54.00₽	7.69₽	36.06₽	28.37₽	2483.50	2€

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2M PHY

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

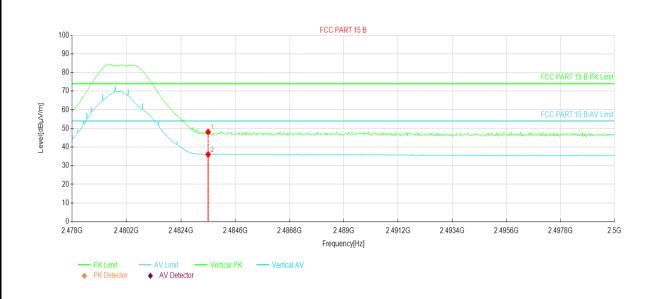
1	₽.Ο ν	Freq.√ [MHz]∂	Reading⊮ [dBuV/m]⊮	Level⊬ [dBµV/m]∉	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊮	Trace∂	Polarity
Г	1₽	2390.00₽	38.59₽	45.67₽	7.08₽	74.00₽	28.33₽	PK₽	Vertical₽
	2₽	2390.00	27.68₽	34.76₽	7.08₽	54.00₽	19.24	AV₽	Vertical₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 21 of 42

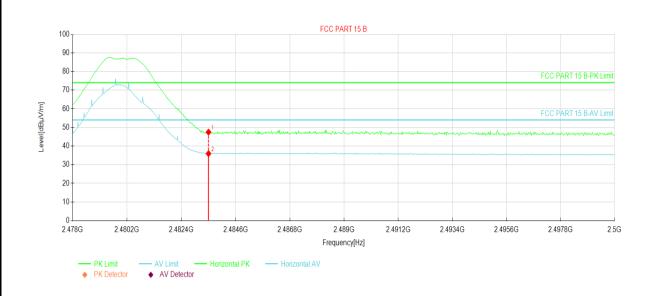
Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


NO.₽	Freq.⊬ [MHz]∉	Reading⊬ [dBµV/m]⊬	Level⊬ [dBµV/m]∉	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∂	Polarity∂
1₽	2390.00	39.01₽	46.09₽	7.08₽	74.00₽	27.91₽	PK₽	Horizontal₽
2₽	2390.00	27.71₽	34.79₽	7.08₽	54.00₽	19.21₽	AV₽	Horizontalℯ

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

366 Page 22 of 42

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

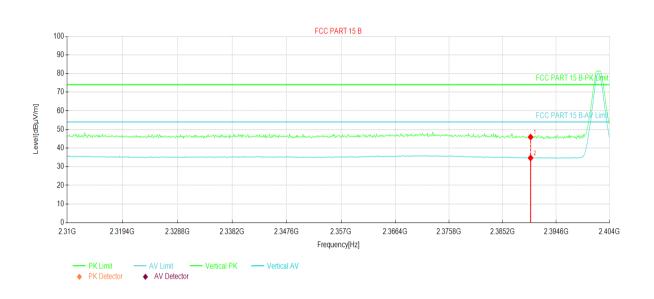

NO.₽	Freq.√ [MHz]∂	Reading⊮ [dBµV/m]⊮	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊮	Trace∂	Polarity
1₽	2483.50	40.37₽	48.06₽	7.69₽	74.00₽	25.94₽	PK₽	Vertical₽
2₄೨	2483.50	28.38₽	36.07₽	7.69₽	54.00₽	17.93₽	AV₄	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 23 of 42

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.₽	Freq.	Reading∉	Level⊬	Factor	Limit⊬	Margin⊬	Trace	Polarity <i></i>
NO.₽	[MHz]∂	[dBµV/m]∂	[dBµV/m]∂	[dB]∂	[dBµV/m]₽	[dB] <i>₀</i>	Hace	Folanty
1₽	2483.50	39.79₽	47.48₽	7.69₽	74.00₽	26.52₽	PK₽	Horizontal₽
2₽	2483.50	28.26₽	35.95₽	7.69₽	54.00₽	18.05₽	AV₽	Horizontal₽


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2107033

Coded PHY, S=2

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.₽	Freq.√ [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]₽	Factor⊬ [dB]⊮	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊮	Trace	Polarity∂
1₽	2390.00₽	38.84₽	45.92₽	7.08₽	74.00₽	28.08₽	PK₽	Vertical₽
2 43	2390.00₽	27.65₽	34.73₽	7.08₽	54.00₽	19.27₽	AV₊⋾	Vertical₽

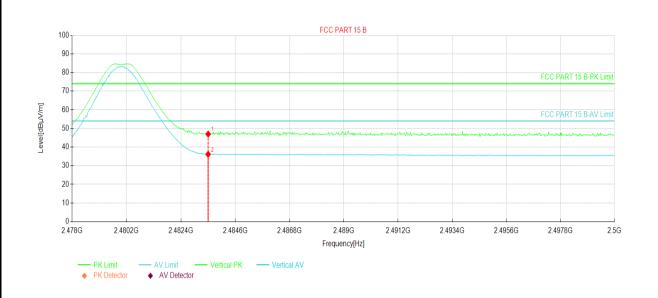
Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 25 of 42

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.₽	Freq.√ [MHz]∂	Reading√ [dBµV/m]√	Level. [dBµV/m].	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊮	Trace∂	Polarity∉
1₽	2390.00₽	38.64₽	45.72₽	7.08₽	74.00₽	28.28₽	PK₽	Horizontal₽⊸
2₊₃	2390.00₽	27.73₽	34.81₽	7.08	54.00₽	19.19₽	AV₽	Horizontal₽

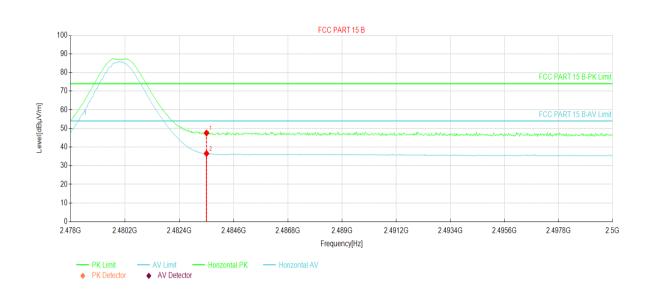

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 26 of 42

Project No.: JYTSZE2107033

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

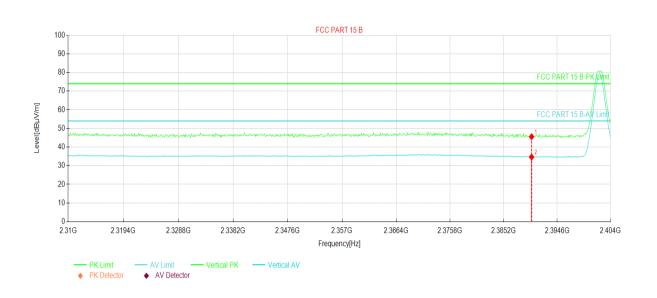
NO.₽	Freq. [MHz]∂	Reading⊮ [dBµV/m]⊮	Level. [dBµV/m].	Factor⊬ [dB]⊮	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊮	Trace∂	Polarity
1₽	2483.50	39.28₽	46.97₽	7.69₽	74.00₽	27.03₽	PK₽	Vertical₽
2₊⋾	2483.50	28.43₽	36.12₽	7.69₽	54.00₽	17.88₽	AV₽	Vertical


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 27 of 42

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

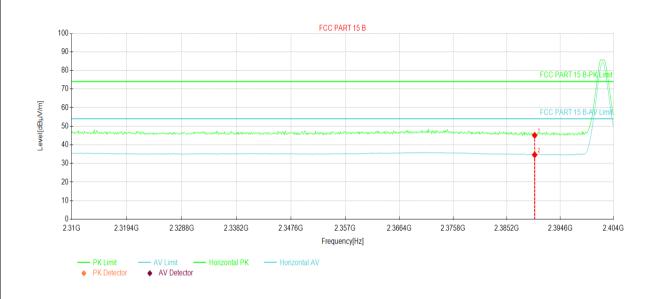

NO	Freq [MHz] [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]₽	Factor [dB]∉	Limit√ [dBµV/m]√	Margin⊬ [dB]⊮	Trace	Polarity∂
1∉	2483.50	39.84₽	47.53₽	7.69₽	74.00₽	26.47₽	PK₽	Horizontal₽
2 ∻	2483.50	28.87₽	36.56₽	7.69₽	54.00₽	17.44₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=8

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

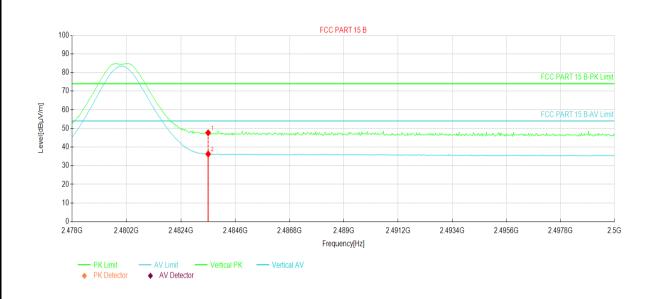
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∂	Level⊬ [dBµV/m]∂	Factor⊬ [dB]∉	Limit⊍ [dBµV/m]₽	Margin⊬ [dB]⊮	Trace	Polarity
1₽	2390.00	38.47₽	45.55₽	7.08₽	74.00₽	28.45₽	PK₽	Vertical∉
2₄⋾	2390.00₽	27.59₽	34.67₽	7.08₽	54.00₽	19.33₽	AV₽	Vertical∉


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 29 of 42

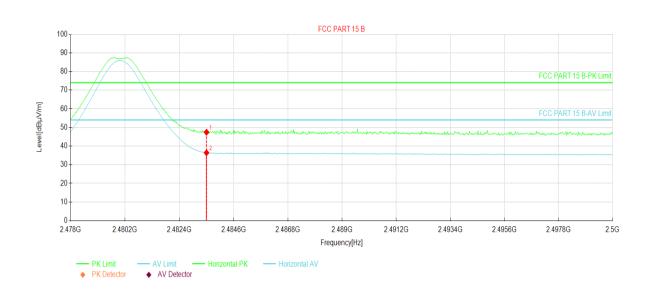
Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


NO.₽	Freq.⊲ [MHz]⊲	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]₽	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊮	Trace	Polarity∉
1₽	2390.00₽	38.02₽	45.10₽	7.08₽	74.00₽	28.90₽	PK₽	Horizontal₽
2₽	2390.00₽	27.56₽	34.64₽	7.08₽	54.00₽	19.36₽	AV₄⋾	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 30 of 42

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

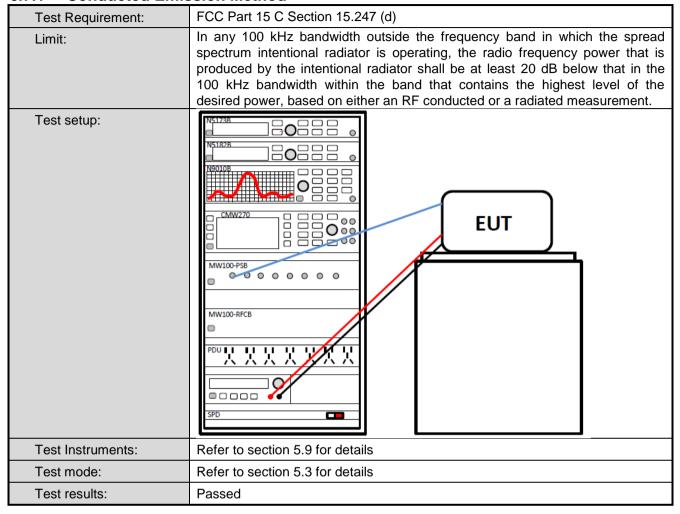

NO.₽	Freq. <i></i> [MHz]∂	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]₽	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊮	Trace	Polarity∂
1₽	2483.50	39.96₽	47.65₽	7.69₽	74.00₽	26.35₽	PK₽	Vertical₽
2₽	2483.50	28.58	36.27₽	7.69₽	54.00₽	17.73₽	AV₽	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 31 of 42

Product Name:	Mobile Phone	Product Model:	CH6n
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]√	Level. [dBµV/m].	Factor⊬ [dB]⊮	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊮	Trace₽	Polarity∉
1₽	2483.50	39.73₽	47.42₽	7.69₽	74.00₽	26.58₽	PK₽	Horizontal₽
2₄₃	2483.50	28.72₽	36.41₽	7.69₽	54.00₽	17.59₽	AV₽	Horizontal₽

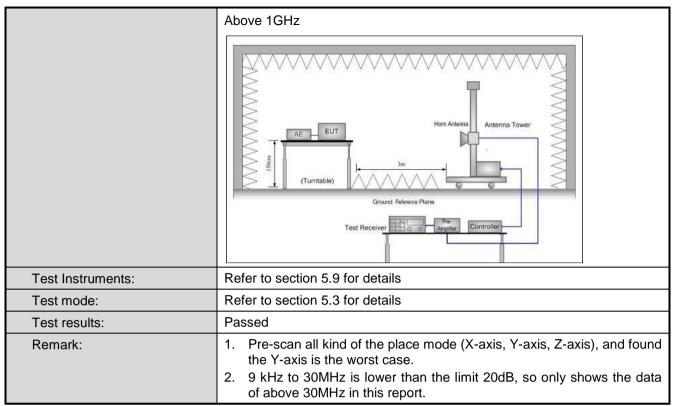

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 32 of 42

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

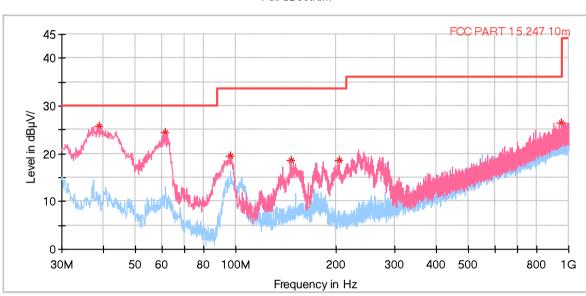


6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15	.205	5 and 15.209				
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m or 10m							
Receiver setup:	Frequency	Detector	r	RBW	VB	W	Remark	
	30MHz-1GHz Quasi-p		ak	120KHz	3001			
	Above 1GHz	Peak	k 1MHz		3M	Hz	Peak Value	
	7,0000 10112	RMS		1MHz	3M	Hz Average Value		
Limit:	Frequency		Lim	nit (dBuV/m @	10m)		Remark	
	30MHz-88M			30.0		Quasi-peak Value		
	88MHz-216N			33.5			Quasi-peak Value	
	216MHz-960I 960MHz-1G			36.0 44.0			Quasi-peak Value Quasi-peak Value	
	Frequency		Lin	nit (dBuV/m @	3m)		Remark	
	54.0						Average Value	
	Above 1GF	lz		74.0			Peak Value	
Test Procedure:	1. The EUT	was place	ed c		f a ro	tating	table 0.8m(below	
	(below 1G rotated 36 radiation. 2. The EUT waway from on the top of the ground Both horizon make the nate of the ground to find the state of the limit spoof the EUT have 10 defined the state of the s	was set 10 the interfect of a variable and v	meters to meters to meters to meters to meter tent. emmeter tent. emmeter tent to fit the meters tent to meter tent tent tent tent tent tent tent	er chamber(and determined ters(below 10 deters(below 10 det	above the part of	1GHz cositio 3 me na, wh er to h ue of the a as arra eights degre de was ped ar e eminy one	10 meter chamber (a). The table was in of the highest eters (above 1GHz) inich was mounted four meters above the field strength. Internal are set to anged to its worst from 1 meter to 4 ees to 360 degrees etect Function and is 10 dB lower than and the peak values sisions that did not using peak, quasi-reported in a data	
Test setup:	Below 1GHz Turn Table Ground Plane	4m			S A RF	earch earch intenna Test ceiver	ower	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	CH6n	
Test By:	Mike	Test mode:	BLE Tx mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

-	Frequency↓	MaxPeak↓	Limit↓	Margin↓	Height↓	Pol∂	Azimuth ↓	Corr.↓
	(MHz)∂	(dBµV/m)₽	(dBµV/m)₽	(dB)∂	(cm) <i>₽</i>		(deg)∂	(dB/m)∂
•	38.730000₽	25.73₽	30.00₽	4.27₽	100.0₽	V₽	0.0₽	-15.9₽
-	61.428000₽	24.46↩	30.00₽	5.54₽	100.0₽	V₽	56.0₽	-16.6₽
-	96.057000₽	19.51₽	33.50₽	13.99↵	100.0₽	V₽	193.0₽	-19.3₽
-	146.885000₽	18.53₽	33.50₽	14.97₽	100.0₽	V₽	270.0₽	-15.6₽
•	204.406000₽	18.63₽	33.50₽	14.87↵	100.0₽	V₽	0.0₽	-18.0₽
-	949.366000₽	26.41₽	36.00₽	9.59₽	100.0₽	V₽	94.0₽	-0.1∂

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

PHY: 1MHz

PHY: 1MHZ										
		Test ch	annel: Lowest ch	nannel						
		De	tector: Peak Valu	Je						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4804.00	56.54	-9.60	46.94	74.00	27.06	Vertical				
4804.00	55.50	-9.60	45.90	74.00	28.10	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4804.00	48.00	-9.60	38.40	54.00	15.60	Vertical				
4804.00	47.70	-9.60	38.10	54.00	15.90	Horizontal				
			nannel: Middle ch							
		Det	tector: Peak Valu							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	56.19	-9.04	47.15	74.00	26.85	Vertical				
4884.00	55.08	-9.04	46.04	74.00	27.96	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	48.03	-9.04	38.99	54.00	15.01	Vertical				
4884.00	47.82	-9.04	38.78	54.00	15.22	Horizontal				
		Test cha	annel: Highest cl	hannel						
		De	tector: Peak Valu	ne						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	56.68	-8.45	48.23	74.00	25.77	Vertical				
4960.00	55.34	-8.45	46.89	74.00	27.11	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	47.77	-8.45	39.32	54.00	14.68	Vertical				
4960.00	48.16	-8.45	39.71	54.00	14.29	Horizontal				
	·		· · · · · · · · · · · · · · · · · · ·	•						

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

[.] Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

PHY: 2MHz

		Test ch	annel: Lowest ch	nannel		
		Det	ector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	57.10	-9.60	47.50	74.00	26.50	Vertical
4804.00	54.88	-9.60	45.28	74.00	28.72	Horizonta
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	47.69	-9.60	38.09	54.00	15.91	Vertical
4804.00	47.96	-9.60	38.36	54.00	15.64	Horizonta
		Test ch	annel: Middle ch	nannel		
			annel: Middle ch			
Frequency (MHz)	Read Level (dBuV)				Margin (dB)	Polarizatio
		Det	ector: Peak Valu	ıe Limit Line		Polarization Vertical
(MHz)	(dBuV)	Det Factor(dB)	ector: Peak Valu Level (dBuV/m)	Limit Line (dBuV/m)	(dB)	Vertical
(MHz) 4884.00	(dBuV) 56.69	Det Factor(dB) -9.04 -9.04	Level (dBuV/m) 47.65	Limit Line (dBuV/m) 74.00 74.00	(dB) 26.35	
(MHz) 4884.00	(dBuV) 56.69	Det Factor(dB) -9.04 -9.04	Level (dBuV/m) 47.65 46.06	Limit Line (dBuV/m) 74.00 74.00	(dB) 26.35	Vertical
(MHz) 4884.00 4884.00 Frequency	(dBuV) 56.69 55.10 Read Level	Factor(dB) -9.04 -9.04 Dete	Level (dBuV/m) 47.65 46.06 ctor: Average Value	Limit Line (dBuV/m) 74.00 74.00 alue Limit Line	(dB) 26.35 27.94 Margin	Vertical Horizonta

Test channel: Highest channel										
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	56.73	-8.45	48.28	74.00	25.72	Vertical				
4960.00	54.89	-8.45	46.44	74.00	27.56	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	47.44	-8.45	38.99	54.00	15.01	Vertical				
4960.00	48.08	-8.45	39.63	54.00	14.37	Horizontal				

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=2

Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	56.65	-9.60	47.05	74.00	26.95	Vertical			
4804.00	55.11	-9.60	45.51	74.00	28.49	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	47.32	-9.60	37.72	54.00	16.28	Vertical			
4804.00	48.03	-9.60	38.43	54.00	15.57	Horizontal			
	•				•	•			

	Test channel: Middle channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	56.84	-9.04	47.80	74.00	26.20	Vertical				
4884.00	55.51	-9.04	46.47	74.00	27.53	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	47.31	-9.04	38.27	54.00	15.73	Vertical				
4884.00	48.18	-9.04	39.14	54.00	14.86	Horizontal				

	Test channel: Highest channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	56.44	-8.45	47.99	74.00	26.01	Vertical				
4960.00	55.62	-8.45	47.17	74.00	26.83	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	46.83	-8.45	38.38	54.00	15.62	Vertical				
4960.00	48.33	-8.45	39.88	54.00	14.12	Horizontal				
1										

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=8

Test channel: Lowest channel							
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4804.00	56.92	-9.60	47.32	74.00	26.68	Vertical	
4804.00	55.93	-9.60	46.33	74.00	27.67	Horizontal	
Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4804.00	47.16	-9.60	37.56	54.00	16.44	Vertical	
4804.00	48.38	-9.60	38.78	54.00	15.22	Horizontal	
	1	1			ı	1	

		Test ch	nannel: Middle ch	nannel		
		De	tector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	57.41	-9.04	48.37	74.00	25.63	Vertical
4884.00	55.83	-9.04	46.79	74.00	27.21	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	47.36	-9.04	38.32	54.00	15.68	Vertical
4884.00	48.38	-9.04	39.34	54.00	14.66	Horizontal

(MHz) (dBuV) (dBuV/m) (dBuV/m) (dBuV/m) (dB) 4960.00 57.02 -8.45 48.57 74.00 25.43 Vertical 4960.00 55.94 -8.45 47.49 74.00 26.51 Horizonta Detector: Average Value Frequency (MHz) Read Level (dBuV) Level (dBuV/m) Limit Line (dBuV/m) Margin (dB) Polarization								
Frequency (MHz) Read Level (dBuV) Level (dBuV/m) Limit Line (dBuV/m) Margin (dB) Polarization 4960.00 57.02 -8.45 48.57 74.00 25.43 Vertical 4960.00 55.94 -8.45 47.49 74.00 26.51 Horizonta Detector: Average Value Frequency (MHz) Read Level (dBuV) Level (dBuV/m) Limit Line (dBuV/m) Margin (dB) Polarization	Test channel: Highest channel							
(MHz) (dBuV) Factor(dB) (dBuV/m) (dBuV/m) (dB) Polarization 4960.00 57.02 -8.45 48.57 74.00 25.43 Vertical 4960.00 55.94 -8.45 47.49 74.00 26.51 Horizonta Detector: Average Value Frequency (MHz) Read Level (dBuV) Level (dBuV/m) Limit Line (dBuV/m) Margin (dB) Polarization	Detector: Peak Value							
4960.00 55.94 -8.45 47.49 74.00 26.51 Horizontal Ho			Factor(dB)			_	Polarization	
Trequency (MHz) Read Level (dBuV) Factor(dB) Level (dBuV/m) (dBuV/m) Margin (dBuV/m) Polarization	4960.00	57.02	-8.45	48.57	74.00	25.43	Vertical	
Frequency (MHz) Read Level (dBuV) Factor(dB) Level (dBuV/m) Limit Line (dBuV/m) Margin (dB) Polarization	4960.00	55.94	-8.45	47.49	74.00	26.51	Horizontal	
(MHz) (dBuV) Factor(dB) (dBuV/m) (dBuV/m) (dB) Polarization	Detector: Average Value							
			Factor(dB)				Polarization	
4960.00 47.54 -8.45 39.09 54.00 14.91 Vertical	4960.00	47.54	-8.45	39.09	54.00	14.91	Vertical	
4960.00 48.34 -8.45 39.89 54.00 14.11 Horizonta	4960.00	48.34	-8.45	39.89	54.00	14.11	Horizontal	

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.