

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2100085

FCC REPORT

Applicant: TECNO MOBILE LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-

35 SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: CG7

Trade mark: TECNO

FCC ID: 2ADYY-CG7

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Jan., 2021

Date of Test: 13 Jan., to 19 Jan., 2021

Date of report issued: 21 Jan., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	21 Jan., 2021	Original

Tested by:	Taro Wr	Date:	21 Jan., 2021
	Test Engineer		
Reviewed by:	Winner Mang	Date:	21 Jan., 2021

Project Engineer

Project No.: JYTSZE2101049

Contents

			Page
1	CO/	/ER PAGE	1
2	VER	SION	2
3	100	NTENTS	3
		T SUMMARY	
4			
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	Q
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.		
	6.6.2		16
	6.7	Spurious Emission	25
	6.7.	1 Conducted Emission Method	25
	6.7.2		
7	TES	T SETUP PHOTO	32
8	EUT	CONSTRUCTIONAL DETAILS	33
Α	PPENDIX	A – BLE – 1M	34
ŢI	EST DAT	.	34
		A – BLE – 2M	
			46
т,	ECT DATA		40

Project No.: JYTSZE2101049

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – BLE-1M Appendix A – BLE-2M	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – BLE-1M Appendix A – BLE-2M	Pass
Power Spectral Density	15.247 (e)	Appendix A – BLE-1M Appendix A – BLE-2M	Pass
Conducted Band Edge	15.247 (d)	Appendix A – BLE-1M Appendix A – BLE-2M	Pass
Radiated Band Edge		See Section 6.6.2	Pass
Conducted Spurious Emission	15.205 & 15.209	Appendix A – BLE-1M Appendix A – BLE-2M	Pass
Radiated Spurious Emission		See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 4 of 57

5 General Information

5.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO.,LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

J.Z General Descripti	OI
Product Name:	Mobile Phone
Model No.:	CG7
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.2 dBi
Power supply:	Rechargeable Li-ion polymer Battery DC3.85V-4900mAh
AC adapter:	Model: U180TSA
	Input: AC100-240V, 50/60Hz, 0.6A
	Output: DC 5.0V - 9.0V === 2A, 9.0V - 12.0V === 1.5A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	hannel Frequency Channel		Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZB-R12-2100085

5.3 Test environment and mode, and test samples plans

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Test Samples Plans:			
Samples Number Used for Test Items			
1#	Conducted measurements test method		
1#	Radiated measurements test method		
1#	EUT constructional details		

Remark: JianYan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date	
				(mm-dd-yy)	(mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021	
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b)	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919I)

Conducted method:								
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021			
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021			
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021			
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021			
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021			
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A			
PDU	MWRF-test	XY-G10	N/A	N/A	N/A			
Test Software	MWRF-tes	MTS 8310	,	/ersion: 2.0.0.0				
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

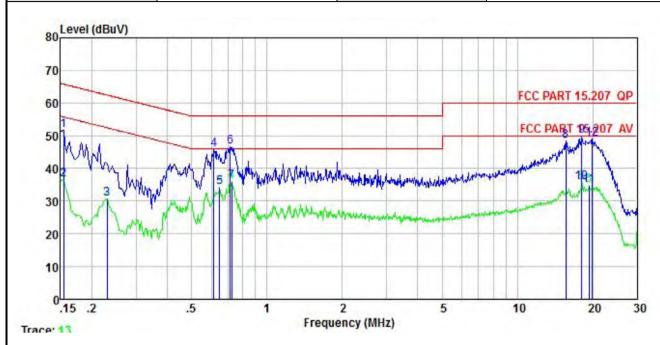
15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.2 dBi.

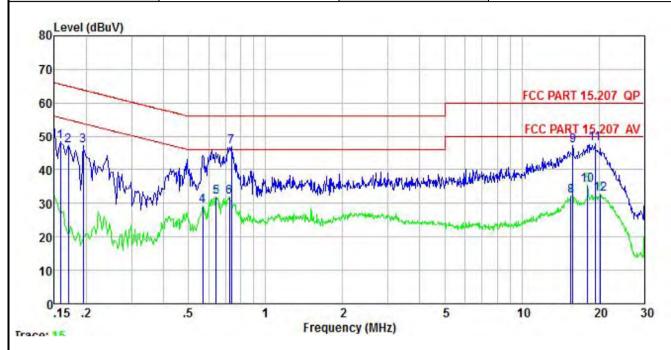
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit (dBuV)
	Frequency range (Miriz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	n of the frequency.	
Test procedure:	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling implements. The peripheral devices as LISN that provides a 500t termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fi positions of equipment ar according to ANSI C63.10 	on network (L.I.S.N.), whe pedance for the measuring also connected to the nm/50uH coupling impedent to the block diagram of the checked for maximum and the maximum emission all of the interface cab	nich provides a ng equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed
Test setup:	Reference	Plane	
	AUX Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	EMI Receiver	– AC power
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Product name:	Mobile Phone	Product model:	CG7
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u>11</u>	MHz	dBu∜	<u>d</u> B	<u>ā</u> B	₫B	dBu₹	—dBu₹	<u>d</u> B	A
1	0.154	41.65	-0.57	-0.06	10.78	51.80	65.78	-13.98	QP
2	0.154	26.58	-0.57	-0.06	10.78	36.73	55.78	-19.05	Average
3	0.230	20.87	-0.58	-0.20	10.75	30.84	52.44	-21.60	Average
2 3 4 5 6	0.614	35.95	-0.49	-0.38	10.77	45.85	56.00	-10.15	QP
5	0.647	24.47	-0.51	-0.39	10.77	34.34	46.00	-11.66	Average
6	0.712	36.75	-0.53	-0.36	10.78	46.64	56.00	-9.36	QP
7	0.724	26.04	-0.54	-0.32	10.78	35.96	46.00	-10.04	Average
7 8 9	15.635	34.97	-0.72	3.22	10.90	48.37	60.00	-11.63	QP
9	18.039	37.72	-0.80	1.90	10.92	49.74	60.00	-10.26	QP
10	18.039	23.82	-0.80	1.90	10.92	35.84	50.00	-14.16	Average
11	19.326	23.44	-0.85	1.20	10.93	34.72	50.00	-15.28	Average
12	19.950	38.13	-0.87	0.89	10.93	49.08		-10.92	

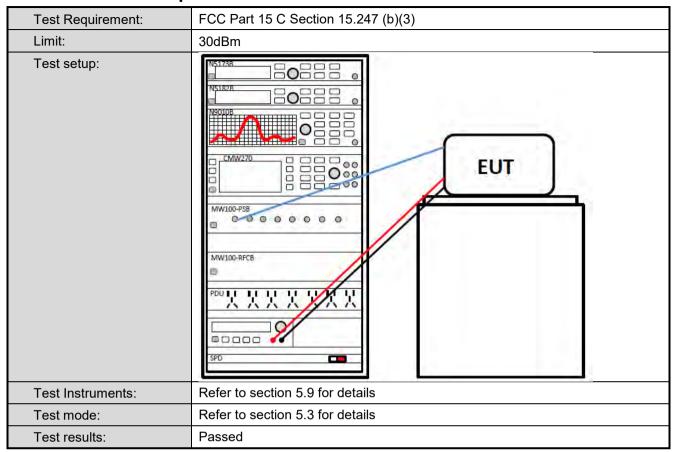
Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	CG7
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

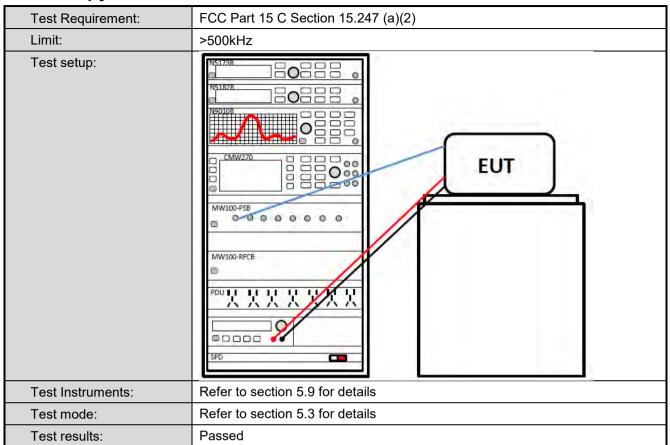
	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u>22</u>	MHz	dBu₹	<u>d</u> B	<u>ā</u> B	₫B	dBu∜	dBu₹	<u>d</u> B	
1	0.158	38.30	-0.69	0.01	10.77	48.39		-17.17	
2 3	0.170 0.194	37.12 37.03	-0.68 -0.67	0.01 0.00	10.77 10.76	47. 22 47. 12		-17.72 -16.72	1 (1.75)(1.16)
$\overline{4}$	0.570	19.21	-0.65	0.03	10.76	29.35	46.00	-16.65	Average
1 2 3 4 5 6 7 8 9	0.641 0.724	21.85 21.81	-0.64	0.04 0.04	10.77 10.78	32.02 31.99			Average Average
Ž	0.735	36.73	-0.65	0.05	10.79	46.92	56.00	-9.08	QP
8 9	15.552 15.801	19.43 34.64	-0.86		10.90 10.91	32.26 47.28		-17.74 -12.72	Average OP
10	18.039	24.37	-1.11	1.30	10.92	35.48	50.00	-14.52	Average
11 12	19.326 20.270	37.55 22.83	-1.23 -1.28	0.56 0.27	10.93 10.93	47.81 32.75		-12.19 -17.25	QP Average

Notes:


- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

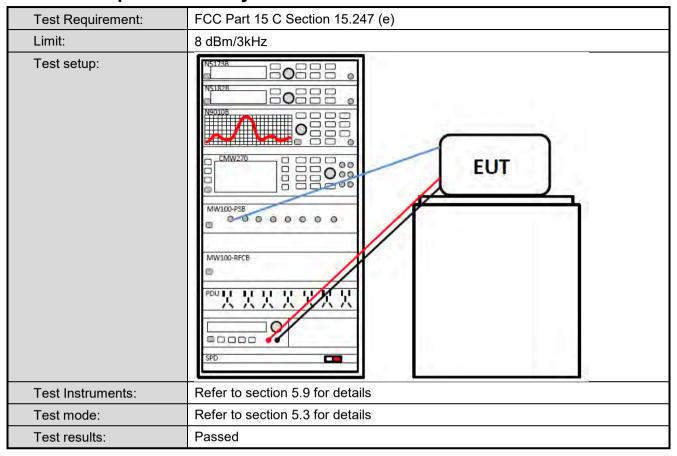
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Conducted Output Power


Measurement Data: Refer to Appendix A - BLE-1M & Appendix A - BLE-2M

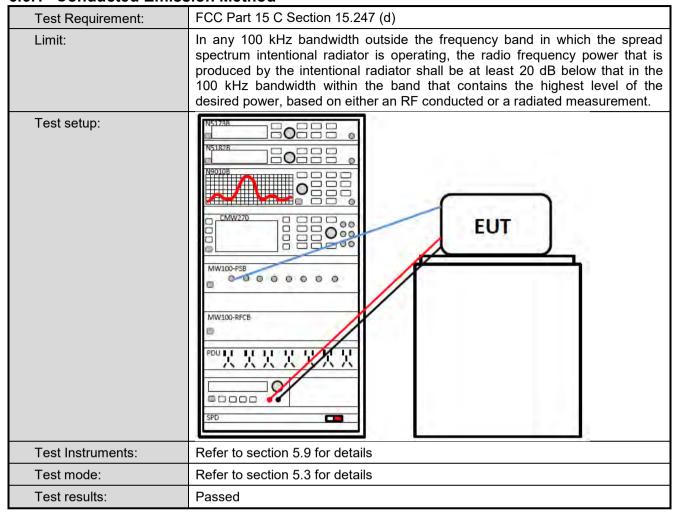
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.4 Occupy Bandwidth


Measurement Data: Refer to Appendix A - BLE-1M & Appendix A - BLE-2M

Page 13 of 57

6.5 Power Spectral Density


Measurement Data: Refer to Appendix A - BLE-1M & Appendix A - BLE-2M

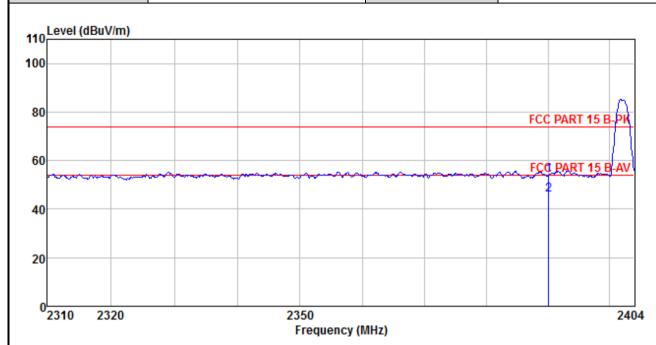
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.6 Band Edge

6.6.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE-1M & Appendix A - BLE-2M

Page 15 of 57


6.6.2 **Radiated Emission Method**

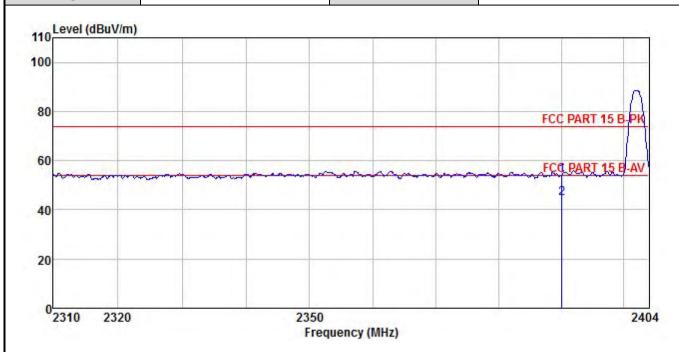
Test Requirement:	FCC Part 15 C	Section 15.2	05 and 15.209		1				
Test Frequency Range:		2310 MHz to 2390 MHz and 2483.5MHz to 2500 MHz							
Test Distance:	3m								
	Frequency	Detector	RBW	VBW	Remark				
Receiver setup:		Peak	1MHz	3MHz	Peak Value				
	Above 1GHz	Above 1GHz RMS 1MHz 3MHz Average							
Limit:	Frequer	ncy Li	mit (dBuV/m @3		Remark				
	Above 10	GHz -	54.00	А	verage Value				
Test Procedure:	Above 1GHz 74.00 Peak Value 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.								
Test setup:	AE Waysel	umtable) Grouns Test Receiver	Horn Anienna 3m 1 Reference Plane Pra- Anchiere Cont	Antenna Tower					
Test Instruments:	Refer to section	n 5.9 for detai	ls						
Test mode:	Refer to section	n 5.3 for detai	ls						
Test results:	Passed								
	•								

1M PHY

Product Name:	Mobile Phone	Product Model:	CG7
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq		Antenna Factor							
MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000									

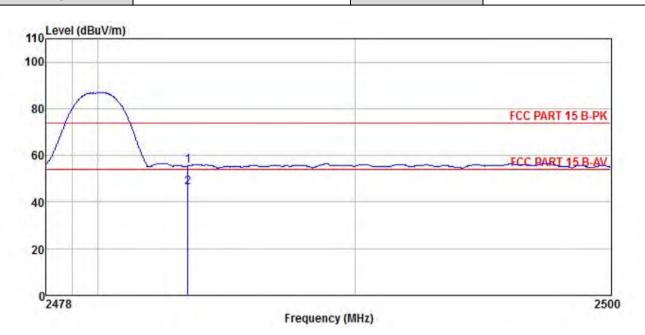
Remark:


1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 17 of 57

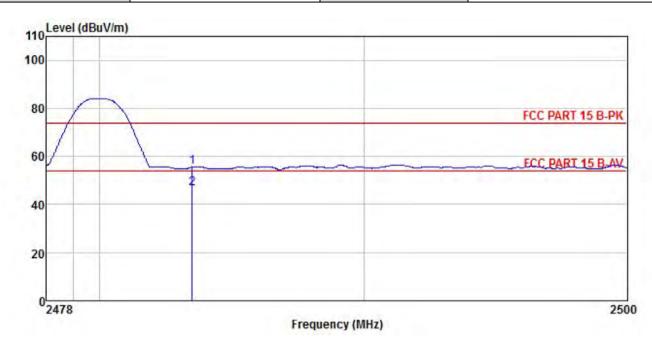
Product Name:	Mobile Phone	Product Model:	CG7
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor				Limit Line		
- -	MHz	dBu∜	<u>dB</u> /m	 <u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

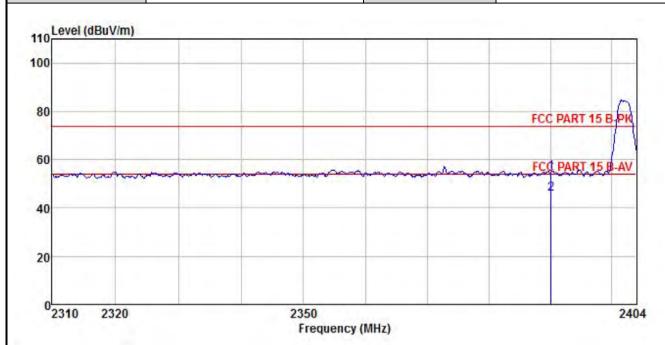
Product Name:	Mobile Phone	Product Model:	CG7
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Freq		Antenna Factor					Over Limit	
MHz	dBu∜	<u>dB</u> /π	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 57

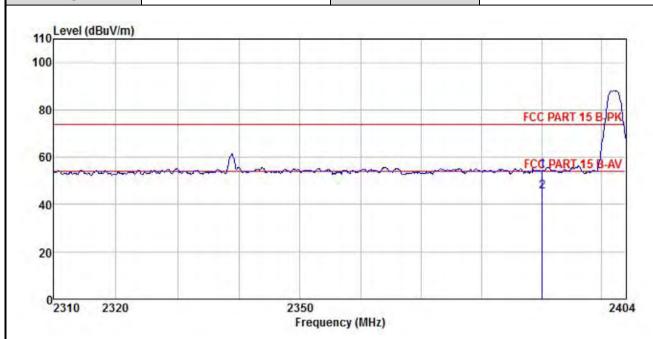
Product Name:	Mobile Phone	Product Model:	CG7
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor							
	MHz	dBu∀	dB/m	₫B	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500	22.23 13.13	27.27 27.27	4.38 4.38	1.70 1.70	0.00 0.00	55.58 46.48	74.00 54.00	-18.42 -7.52	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2M PHY

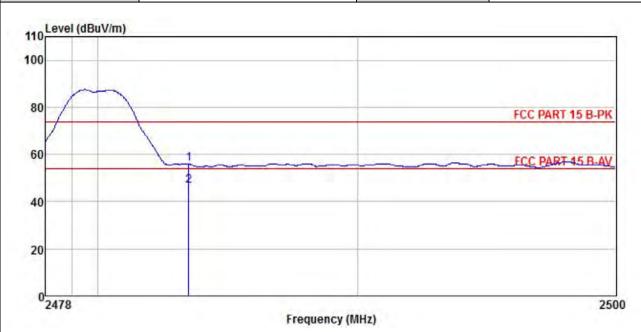
Product Name:	Mobile Phone	Product Model:	CG7
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq	Read/ Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
-	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m			
	2390.000 2390.000										

Remark:

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 4. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

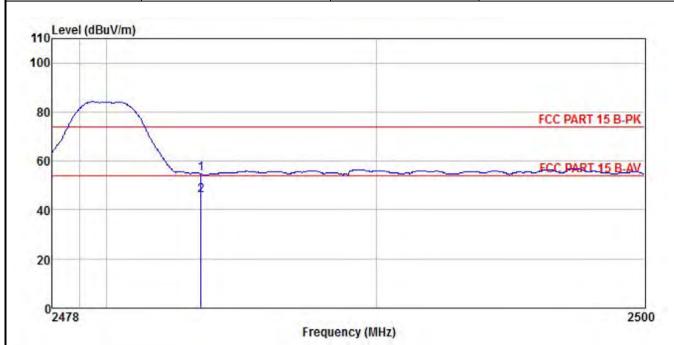
Product Name:	Mobile Phone	Product Model:	CG7
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq	Read Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∜	<u>dB</u> /m			<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000	21.25 12.43	27.03 27.03	4.28 4.28	1.68 1.68	0.00 0.00	54.24 45.42	74.00 54.00	-19.76 -8.58	Peak Average

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 4. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 22 of 57

Product Name:	Mobile Phone	Product Model:	CG7
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

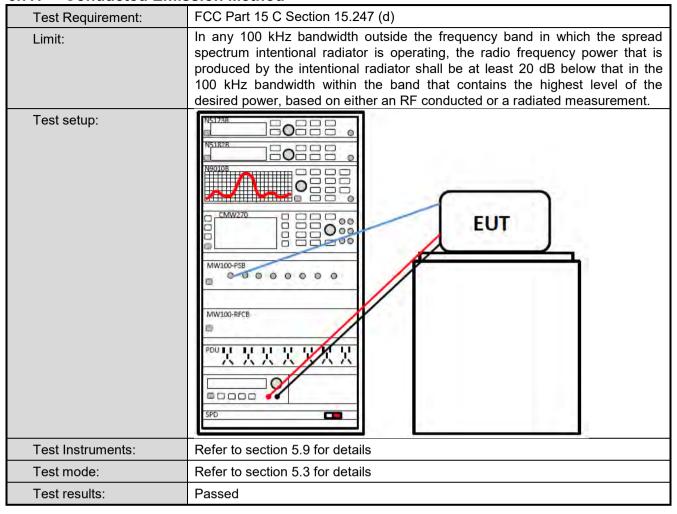

	Freq		intenna Factor				Limit Line		Remark
-	MHz	dBu₹	<u>dB</u> /π	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	2483.500 2483.500								

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 23 of 57

Product Name:	Mobile Phone	Product Model:	CG7		
Test By:	Janet	Test mode:	BLE Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

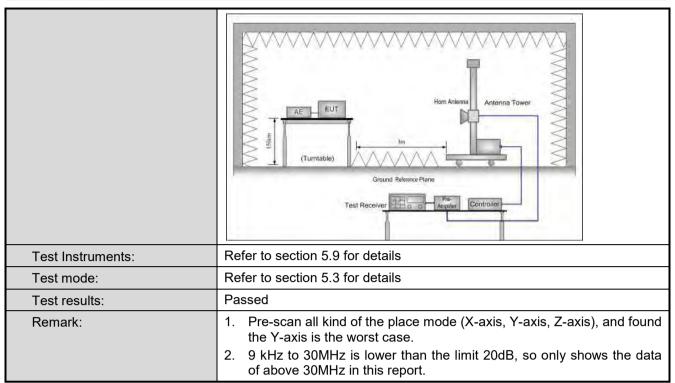
	Freq	Read. Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∜			<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
1 2	2483.500 2483.500										


- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 4. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

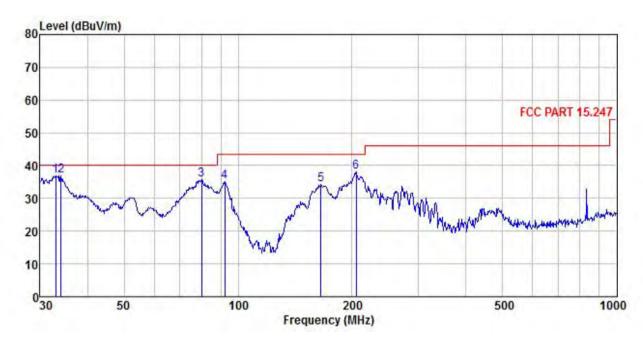
Measurement Data: Refer to Appendix A - BLE-1M & Appendix A - BLE-2M


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	05 and 15.209			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VB	sW	Remark
	30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value
	Al 4011-	Peak	1MHz	3MHz		Peak Value
	Above 1GHz	RMS	1MHz	3M	Hz	Average Value
Limit:	Frequency	/	_imit (dBuV/m @)3m)		Remark
	30MHz-88M	Hz	40.0		C	Quasi-peak Value
	88MHz-216N	1Hz	43.5		C	Quasi-peak Value
	216MHz-960I		46.0		C	Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GH	lz 🗀	54.0			Average Value
			74.0		<u> </u>	Peak Value table 0.8m(below
	highest rad The EUT antenna, w tower. The antenn the ground Both horize make the n For each s case and t meters and to find the n The test-re Specified E If the emiss the limit sp of the EUT have 10 dE	iation. was set 3 hich was me ha height is to determinental and ven heasurement suspected et hen the ant the rota tal maximum re eceiver system sandwidth we sion level of ecified, then would be re margin wo	meters away bunted on the founted from one the maximetical polarizate. mission, the Evenna was tuned ading. em was set th Maximum Hote EUT in pertesting could be re-tested.	from the top of a ne met um valutions of EUT was do not be a top wise the done be	ne intervented to the control of the	the position of the erference-receiving ble-height antenna four meters above the field strength, antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values issions that did not using peak, quasi-reported in a data
Test setup:	EUT	4m 4m 0.8m lm			Antenna Search Antenn Test ceiver —	h

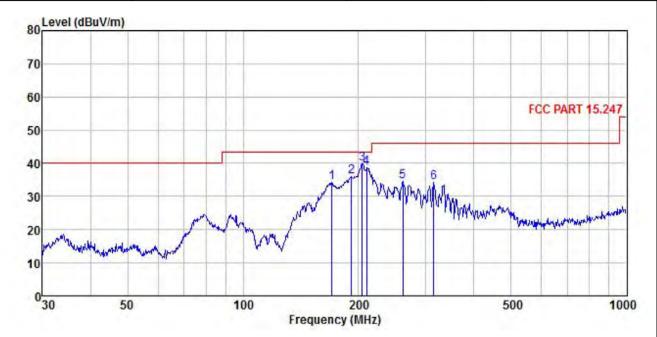
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	CG7
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Intenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∇	dB/m		<u>db</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	32,979	54.14	12.29	0.36	0.00	29.96	36.83	40.00	-3.17	QP
2	34.037	54.08	12.45	0.35	0.00	29.96	36.92	40.00	-3.08	QP
3	80.081	51.99	12.80	0.47	0.00	29.64	35.62	40.00	-4.38	QP
4	92.139	54.63	9.46	0.50	0.00	29.56	35.03	43.50	-8.47	QP
5	165.487	47.11	15.70	0.64	0.00	29.09	34.36	43.50	-9.14	QP
6	204.955	47.72	18.32	0.73	0.00	28.80	37.97	43.50	-5.53	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Mobile Phone	Product Model:	CG7
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
<u></u>	MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	<u>d</u> B	$\overline{\mathtt{dBuV/m}}$	$\overline{dBuV/m}$	<u>ab</u>	
1	170.195	46.15	16.50	0.66	0.00	29.05	34.26	43.50	-9.24	QP
2	191.745	46.79	17.55	0.70	0.00	28.89	36.15	43.50	-7.35	QP
3	204.238	49.70	18.32	0.72	0.00	28.80	39.94	43.50	-3.56	QP
4	210.048	48.34	18.34	0.73	0.00	28.77	38.64	43.50	-4.86	QP
5	261.058	43.76	18.55	0.80	0.00	28.52	34.59	46.00	-11.41	QP
6	314.377	43.18	18.73	0.88				46.00		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

1M PHY

			Te	est channe	el: Lowest cl	nannel						
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	52.71	30.78	6.80	2.44	41.81	50.92	74.00	-23.08	Vertical			
4804.00	4804.00 49.77 30.78 6.80 2.44 41.81 47.98 74.00 -26.02 Horizontal											
				Detector:	Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	46.83	30.78	6.80	2.44	41.81	45.04	54.00	-8.96	Vertical			
4804.00	4804.00 43.85 30.78 6.80 2.44 41.81 42.06 54.00 -11.94 Horizontal											

			T	est chann	el: Middle ch	nannel						
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	52.26	30.96	6.86	2.47	41.84	50.71	74.00	-23.29	Vertical			
4884.00 49.61 30.96 6.86 2.47 41.84 48.06 74.00 -25.94 Horizontal												
				Detector:	Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	46.79	30.96	6.86	2.47	41.84	45.24	54.00	-8.76	Vertical			
4884.00	43.22	30.96	6.86	2.47	41.84	41.67	54.00	-12.33	Horizontal			

			Te	est channe	el: Highest c	hannel						
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	52.63	31.11	6.91	2.49	41.87	51.27	74.00	-22.73	Vertical			
4960.00	49.54	31.11	6.91	2.49	41.87	48.18	74.00	-25.82	Horizontal			
				Detector:	Average Va	alue						
Frequency (MHz)	r i rever i facior i ross i facior i facior i - i rine i rinui i Polanzanion											
4960.00	46.16	31.11	6.91	2.49	41.87	44.80	54.00	-9.20	Vertical			
4960.00	43.17	31.11	6.91	2.49	41.87	41.81	54.00	-12.19	Horizontal			
5 /		•			•	•	•					

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor – Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2M PHY

			Te	est channe	el: Lowest cl	nannel						
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	52.67	30.78	6.80	2.44	41.81	50.88	74.00	-23.12	Vertical			
4804.00	49.20	30.78	6.80	2.44	41.81	47.41	74.00	-26.59	Horizontal			
				Detector:	Average Va	alue						
Frequency (MHz) Read Antenna Cable Aux Preamp Level Limit Over Limit Polarization (dBuV) (dB/m) (dB) (dB) (dB) (dB) (dB)									Polarization			
4804.00	46.18	30.78	6.80	2.44	41.81	44.39	54.00	-9.61	Vertical			
4804.00	43.24	30.78	6.80	2.44	41.81	41.45	54.00	-12.55	Horizontal			
				•		•						

Test channel: Middle channel															
Detector: Peak Value															
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization							
52.97	30.96	6.86	2.47	41.84	51.42	74.00	-22.58	Vertical							
4884.00 49.39 30.96 6.86 2.47 41.84 47.84 74.00 -26.16 Horizont															
			Detector:	Average Va	alue										
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization							
46.71	30.96	6.86	2.47	41.84	45.16	54.00	-8.84	Vertical							
43.17	30.96	6.86	2.47	41.84	41.62	54.00	-12.38	Horizontal							
	Level (dBuV) 52.97 49.39 Read Level (dBuV) 46.71	Level (dBuV) (dB/m) 52.97 30.96 49.39 30.96 Read Antenna Factor (dBuV) (dB/m) 46.71 30.96	Read Level Factor (dBuV) Antenna (dB/m) Cable Loss (dB/m) 52.97 30.96 6.86 49.39 30.96 6.86 Read Level Factor (dBuV) Factor (dB/m) Loss (dB) 46.71 30.96 6.86	Read Level Factor (dBuV) Cable Loss Factor (dB) Aux Factor (dB) 52.97 30.96 6.86 2.47 49.39 30.96 6.86 2.47 Detector: Read Antenna Level Factor (dBuV) Cable Loss Factor (dB) Aux Factor (dB) (dB) (dB) (dB) 46.71 30.96 6.86 2.47	Detector: Peak Value Read	Detector: Peak Value	Detector: Peak Value Cable Aux Preamp Level (dBuV) (dB/m) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV	Detector: Peak Value Cable Aux Preamp Level Limit CdBuV/m) (dB/m) (dB) (d							

			Τe	est channe	el: Highest c	hannel						
	Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	52.92	31.11	6.91	2.49	41.87	51.56	74.00	-22.44	Vertical			
4960.00	49.78	31.11	6.91	2.49	41.87	48.42	74.00	-25.58	Horizontal			
				Detector:	Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	46.89	31.11	6.91	2.49	41.87	45.53	54.00	-8.47	Vertical			
4960.00	43.22	31.11	6.91	2.49	41.87	41.86	54.00	-12.14	Horizontal			

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 31 of 57

^{3.} Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor – Preamplifier Factor.

^{4.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Appendix A – BLE – 1M Test Data

Maximum Conducted Output Power

		_	_					
Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power	Factor	Power	(dBm)	
				(dBm)	(dB)	(dBm)		
NVNT	BLE	2402	Ant1	-2.987	0	-2.987	30	Pass
NVNT	BLE	2442	Ant1	-1.883	0	-1.883	30	Pass
NVNT	BLE	2480	Ant1	-3.084	0	-3.084	30	Pass

Power NVNT BLE 2402MHz Ant1

Page 34 of 57

Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1



-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.504	0.5	Pass
NVNT	BLE	2442	Ant1	0.502	0.5	Pass
NVNT	BLE	2480	Ant1	0.502	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2442MHz Ant1

Page 36 of 57

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	
NVNT	BLE	2402	Ant1	1.03579942	
NVNT	BLE	2442	Ant1	1.036990909	
NVNT	BLE	2480	Ant1	1.035350031	

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2442MHz Ant1

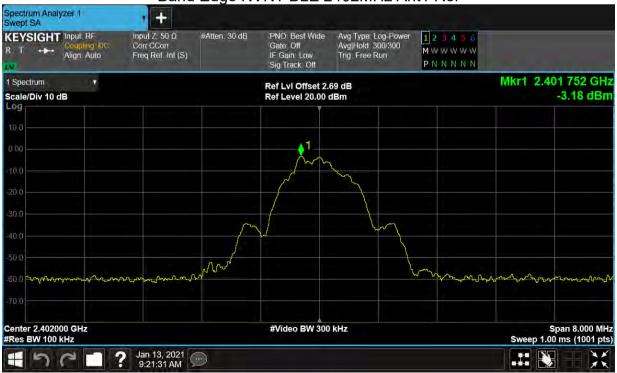
OBW NVNT BLE 2480MHz Ant1

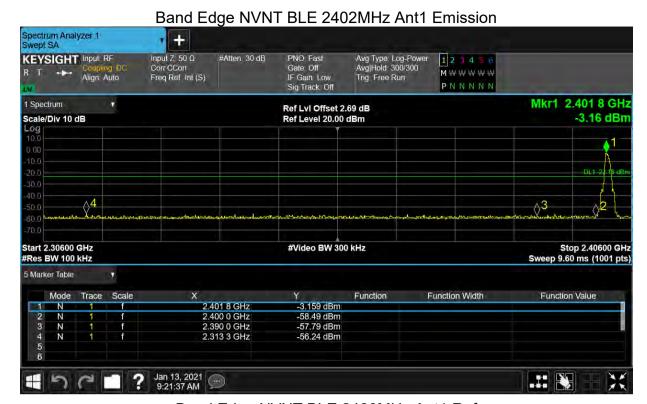
Maximum Power Spectral Density Level

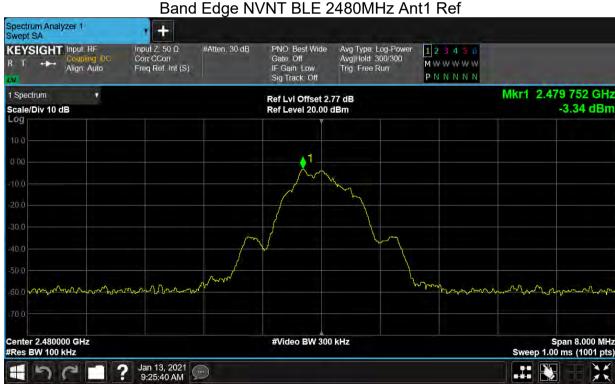
	Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
	NVNT	BLE	2402	Ant1	-21.872	8	Pass
	NVNT	BLE	2442	Ant1	-20.975	8	Pass
	NVNT	BLE	2480	Ant1	-22.05	8	Pass

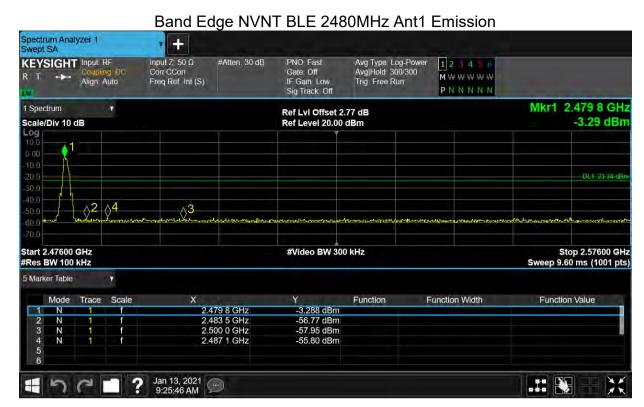
PSD NVNT BLE 2402MHz Ant1

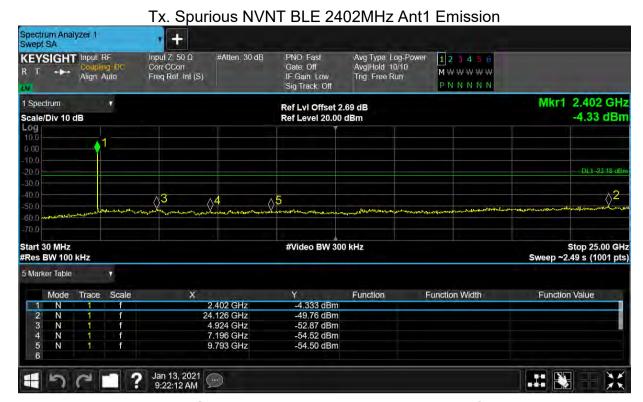
PSD NVNT BLE 2442MHz Ant1

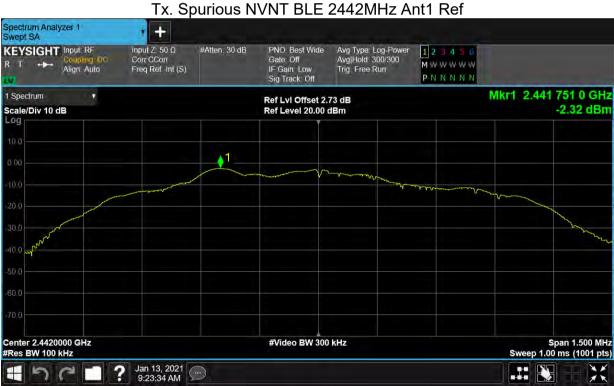

PSD NVNT BLE 2480MHz Ant1

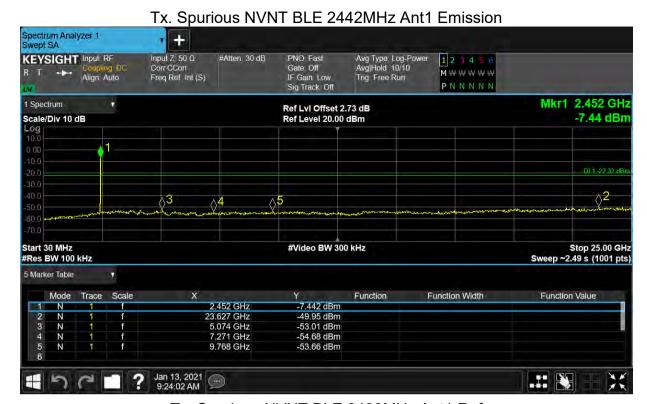

Band Edge

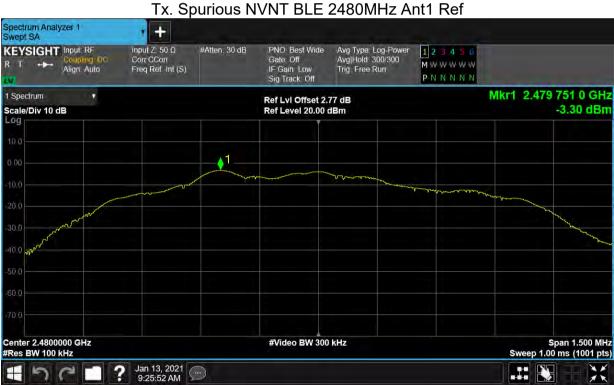

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-53.06	-20	Pass
NVNT	BLE	2480	Ant1	-52.45	-20	Pass

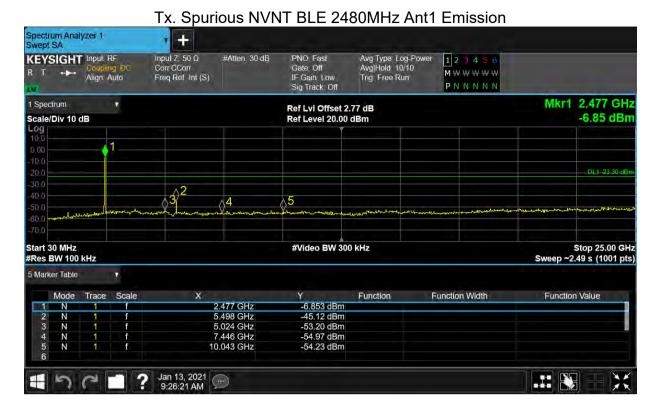



Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-46.57	-20	Pass
NVNT	BLE	2442	Ant1	-47.63	-20	Pass
NVNT	BLE	2480	Ant1	-41.81	-20	Pass







Appendix A – BLE – 2M Test Data

Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power	Factor	Power	(dBm)	
				(dBm)	(dB)	(dBm)		
NVNT	BLE	2402	Ant1	-3.039	0	-3.039	30	Pass
NVNT	BLE	2442	Ant1	-2.051	0	-2.051	30	Pass
NVNT	BLE	2480	Ant1	-3.163	0	-3.163	30	Pass

Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth

Condition	tion Mode Frequency		Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.86	0.5	Pass
NVNT	BLE	2442	Ant1	0.861	0.5	Pass
NVNT	BLE	2480	Ant1	0.86	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1



-6dB Bandwidth NVNT BLE 2442MHz Ant1

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 48 of 57

x dB

Occupied Channel Bandwidth

190

x dB Bandwidth

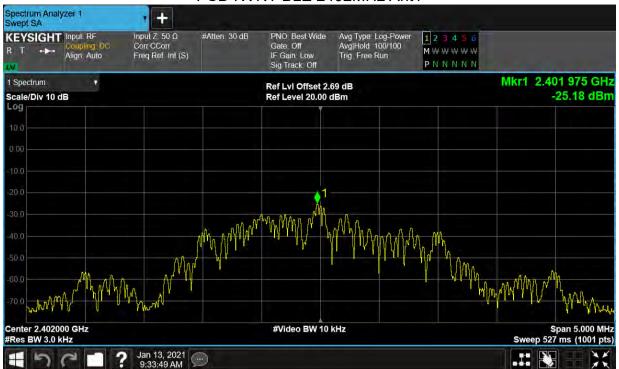
Jan 13, 2021 9:36:23 AM

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	2.056162272
NVNT	BLE	2442	Ant1	2.058626902
NVNT	BLE	2480	Ant1	2.065573002

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2442MHz Ant1

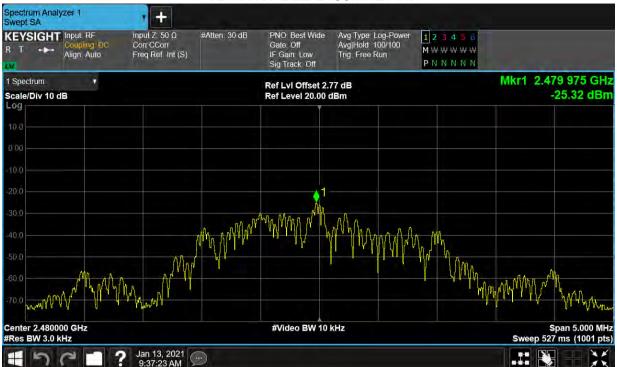
OBW NVNT BLE 2480MHz Ant1



Maximum Power Spectral Density Level


Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-25.182	8	Pass
NVNT	BLE	2442	Ant1	-24.343	8	Pass
NVNT	BLE	2480	Ant1	-25.319	8	Pass

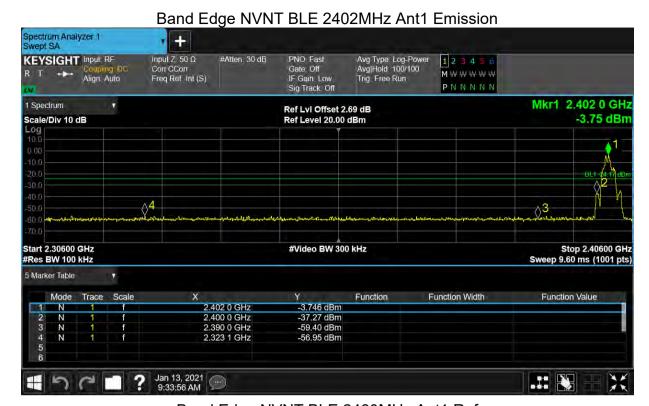
PSD NVNT BLE 2402MHz Ant1



PSD NVNT BLE 2442MHz Ant1

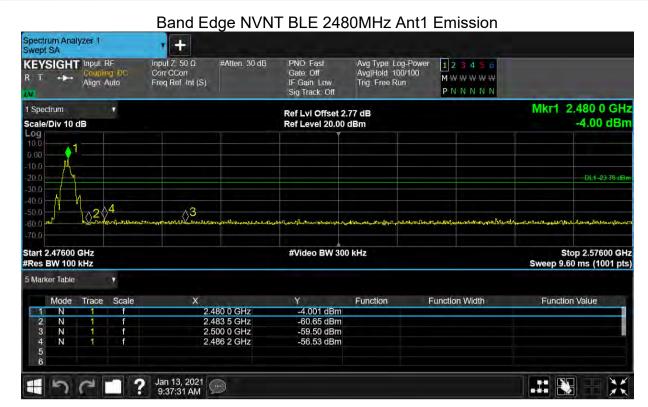
PSD NVNT BLE 2480MHz Ant1

Band Edge

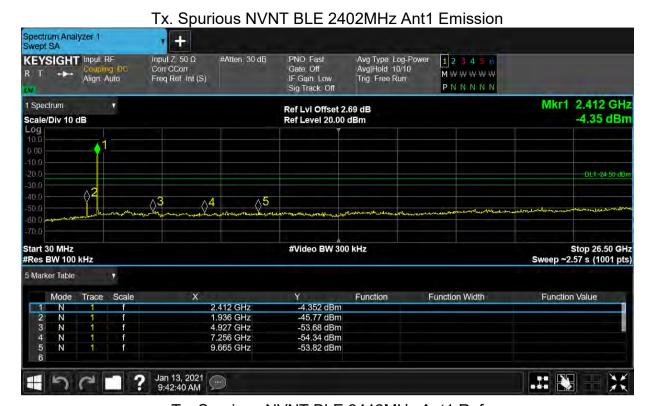

	Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
	NVNT	BLE	2402	Ant1	-52.78	-20	Pass
	NVNT	BLE	2480	Ant1	-52.75	-20	Pass



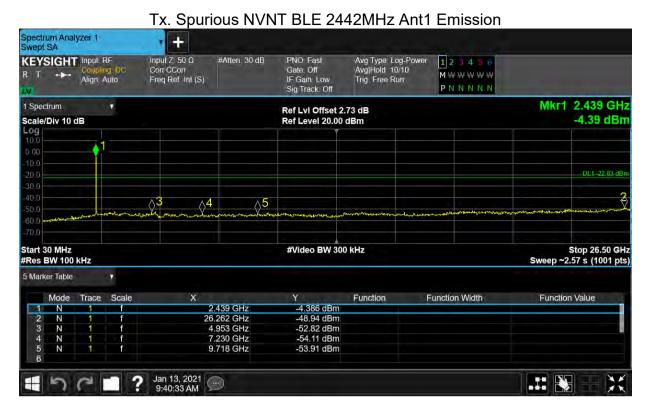
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



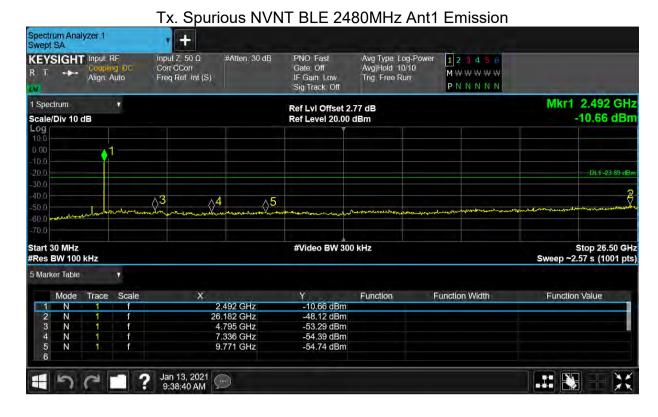
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-41.26	-20	Pass
TNVN	BLE	2442	Ant1	-46.11	-20	Pass
NVNT	BLE	2480	Ant1	-44.22	-20	Pass



Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



Page 56 of 57

----End of report-----

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366