FCC REPORT

Applicant:

Address of Applicant:

TECNO MOBILE LIMITED

FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name:
Model No.:
Trade mark:

FCC ID:

Applicable standards:

Date of sample receipt: 08 Jan., 2021

Mobile Phone
CG6j
TECNO
2ADYY-CG6J
FCC CFR Title 47 Part 15 Subpart B

Date of Test:
 09 Jan., to 18 Jan., 2021

Date of report issued: 20 Jan., 2021

Test Result:

PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang
Laboratory Manager
This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	20 Jan., 2021	Original

Mike.ou

Tested by:
Test Engineer

Date:
20 Jan., 2021

Date: \qquad 20 Jan., 2021

Reviewed by:

Project Engineer

3 Contents

Page
1 COVER PAGE 1
2 VERSION 2
3 CONTENTS 3
4 TEST SUMMARY 4
5 GENERAL INFORMATION
5.1 Client Information 5
5.2 General Description of E.U.T.5
5.3 TEST Mode and test samples plans 5
5.4 MEASUREMENT UNCERTAINTY 6
5.5 Description of Support Units6
5.6 Related Submittal(s) / Grant (s) 6
5.7 Description of Cable Used 6
5.8 AdDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD 6
5.9 LABORATORY FACILITY 6
5.10 Laboratory Location 6
5.11 Test Instruments list 7
6 TEST RESULTS AND MEASUREMENT DATA 8
6.1 Conducted Emission 8
6.2 Radiated Emission 11
7 TEST SETUP PHOTO 17
8 EUT CONSTRUCTIONAL DETAILS 18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

1. Pass: The EUT complies with the essential requirements in the standard.
2. N/A: The EUT not applicable of the test item.

Test Method: \quad ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	CG6j
Power supply:	Rechargeable Li-ion polymer Battery DC3.85V-49000mAh
AC adapter:	Model: U 180 TSA Input: $\mathrm{AC} 100-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 0.6 \mathrm{~A}$ Output: $\mathrm{DC} 5.0 \mathrm{~V}-9.0 \mathrm{~V}=-2 \mathrm{~A}, 9.0 \mathrm{~V}-12.0 \mathrm{~V}=-=1.5 \mathrm{~A}$ Test Sample Condition:
The test samples were provided in good working order with no visible defects.	

5.3 Test Mode and test samples plans

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	
GPS mode	Keep the EUT in FM receiver mode
The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y \& Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.	
Test Samples Plans :	
Samples Number	
1\#	
1\#	Conducted Emission
1\# Used for Test Items	
Remark JianYan Testing Group Shenzhen Contro., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.	

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission $(9 \mathrm{kHz} \sim 30 \mathrm{MHz})$	$\pm 1.60 \mathrm{~dB}(\mathrm{k}=2)$
Radiated Emission $(9 \mathrm{kHz} \sim 30 \mathrm{MHz})$	$\pm 3.12 \mathrm{~dB}(\mathrm{k}=2)$
Radiated Emission $(30 \mathrm{MHz} \sim 1000 \mathrm{MHz})$	$\pm 4.32 \mathrm{~dB}(\mathrm{k}=2)$
Radiated Emission $(1 \mathrm{GHz} \sim 18 \mathrm{GHz})$	$\pm 5.16 \mathrm{~dB}(\mathrm{k}=2)$
Radiated Emission $(18 \mathrm{GHz} \sim 40 \mathrm{GHz})$	$\pm 3.20 \mathrm{~dB}(\mathrm{k}=2)$

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	$2 J 8 X S Z 2$	DoC
DELL	MONITOR	SE2018HR	$3 M 7 Q P Y 2$	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	To
Detached USB Cable	Shielding	1.02 m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.24 m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

- FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by
FCC(Federal Communications Commission). The test firm Registration No. is 727551.

- ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

- A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.
Address: No.101, Building 8, Innovation Wisdom Port, No. 155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.
Tel: +86-755-23118282, Fax: +86-755-23116366
Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.11 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	$9 m^{*} 6 \mathrm{~m}^{*} 6 \mathrm{~m}$	966	$07-22-2020$	$07-21-2021$
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	$03-07-2020$	$03-06-2021$
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	$03-07-2020$	$03-06-2021$
Horn Antenna	SCHWARZBECK	BBHA9120D	916	$03-07-2020$	$03-06-2021$
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	$06-22-2020$	$06-21-2021$
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	$11-18-2019$	$11-17-2020$
	EMI Test Software	AUDIX	E3		$11-18-2020$
Pre-amplifier	HP	$8447 D$	$2944 A 09358$	$03-07-2020$	$03-06-2021$
Pre-amplifier	CD	PAP-1G18	11804	$03-07-2020$	$03-06-2021$
Spectrum analyzer	Rohde \& Schwarz	FSP30	101454	$03-05-2020$	$03-04-2021$
Spectrum analyzer	Rohde \& Schwarz	FSP40	100363	$11-18-2019$	$11-17-2020$
EMI Test Receiver	Rohde \& Schwarz	ESRP7	101070	$03-05-2020$	$11-17-2021$
Cable	ZDECL	Z108-NJ-NJ-81	1608458	$03-07-2020$	$03-04-2021$
Cable	MICRO-COAX	MFR64639	K10742-5	$03-07-2020$	$03-06-2021$
Cable	SUHNER	SUCOFLEX100	$58193 / 4 P E$	$03-07-2020$	$03-06-2021$

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde \& Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde \& Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Conducted Emission

Report No: JYTSZB-R12-2100029

Measurement data:

Product name:	Mobile Phone	Product model:	CG6J
Test by:	Mike	Test mode:	PC mode
Test frequency:	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	Phase:	Line
Test voltage:	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	Environment:	Temp: $22.5^{\circ} \mathrm{C} \quad$ Huni: 55%

Trace: 5

Freq	Read Level	$\begin{aligned} & \text { LISN } \\ & \text { Factor } \end{aligned}$	Factor	Cable Loss	Level	Limit Line	$\begin{aligned} & \text { Over } \\ & \text { Limit } \end{aligned}$	Remark
M ${ }^{\text {Hz}}$	dBūV	$\mathrm{d} \overline{\mathrm{B}}$	dB	dB	dBū	dīū	dB	
0.162	42.29	-0. 58	-0.08	10. 77	52.40	65.34	-12.94	QP
0.202	35.16	-0. 59	-0.16	10.76	45.17	63.54	-18.37	QP
0.222	35.99	-0. 58	-0.19	10.76	45.98	62.74	-16.76	QP
0.573	21.00	-0.47	-0.37	10.76	30.92	46.00	-15.08	Average
0.611	24.37	-0.49	-0.38	10.77	34.27	46.00	-11.73	Average
0.637	34.67	-0. 50	-0.39	10.77	44. 55	56.00	-11.45	QP
0.697	34.25	-0. 53	-0.40	10. 77	44.09	56.00	-11.91	QP
0.705	27.47	-0. 53	-0.38	10.77	37.33	46.00	-8.67	Average
0.759	25.11	-0. 55	-0.20	10.80	35.16	46.00	-10.84	Average
18. 135	22.12	-0.81	1.82	10.92	34. 05	50.00	-15.95	Average
18.920	19.06	-0.83	1.43	10.92	30.58	50.00	-19.42	Average
19.845	34.34	-0.86	0.97	10.93	45.38	60.00	-14.62	QP

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Report No: JYTSZB-R12-2100029

Product name:	Mobile Phone	Product model:	CG6J
Test by:	Mike	Test mode:	PC mode
Test frequency:	$150 \mathrm{kHz} \sim 30 \mathrm{MHz}$	Phase:	Neutral
Test voltage:	AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	Environment:	Temp: $22.5^{\circ} \mathrm{C} \quad$ Huni: 55%

Freq	Read Level	$\begin{aligned} & \text { LISN } \\ & \text { Factor } \end{aligned}$	$\begin{aligned} & \text { Aux } \\ & \text { actor } \end{aligned}$	$\begin{gathered} \text { Cable } \\ \text { Loss } \end{gathered}$	Level	Limit Line	$\begin{gathered} \text { Over } \\ \text { Oimit } \end{gathered}$	Remark
M ${ }^{\text {Hz}}$	dīuV̄	d ${ }^{\text {B }}$	$\mathrm{d} \overline{\mathrm{B}}$	$\mathrm{d} \overline{\mathrm{B}}$	dibuv	dīuV	$\overline{\mathrm{d}}$	
0.154	23.64	-0.69	0.01	10.78	33. 74	55.78	-22. 04	Average
0.162	40.96	-0.68	0.01	10.77	51.06	65.34	-14.28	QP
0.174	38. 71	-0.68	0.00	10.77	48.80	64.77	-15.97	QP
0.202	36. 76	-0.67	0.00	10. 76	46.85	63.54	-16.69	QP
0.630	35.95	-0.64	0.04	10.77	46.12	56.00	-9.88	QP
0.634	25.32	-0.64	0.04	10.77	35.49	46.00	-10.51	Average
0.690	35.83	-0.64	0.04	10.77	46.00	56.00	-10.00	QP
0.708	24.09	-0.64	0.04	10. 77	34.26	46.00	-11.74	Average
0. 775	21.85	-0.65	0.05	10.80	32.05	46.00	-13.95	Average
15.718	18.04	-0.88	2.71	10.90	30.77	50.00	-19.23	Average
18.135	26.45	-1.12	1.22	10.92	37.47	50.00	-12.53	Average
18.820	36.83	-1.19	0.81	10.92	47.37	60.00	-12.63	QP

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.
2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
3. Final Level $=$ Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Section 15.109			
Test Frequency Range:	30 MHz to 6000MHz			
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)			
Receiver setup:	Frequency Detector	RBW	VBW	Remark
	$30 \mathrm{MHz}-1 \mathrm{GHz}$ Quasi-peak	120 kHz	300 kHz	Quasi-peak Value
	Above 1GHz Peak	1 MHz	3 MHz	Peak Value
	Above 1GHz RMS	1 MHz	3 MHz	Average Value
Limit:	Frequency	Limit (dBuV/m @3m)		Remark
	$30 \mathrm{MHz}-88 \mathrm{MHz}$	40.0		Quasi-peak Value
	88MHz-216MHz	43.5		Quasi-peak Value
	$216 \mathrm{MHz}-960 \mathrm{MHz}$	46.0		Quasi-peak Value
	$960 \mathrm{MHz}-1 \mathrm{GHz}$	54.0		Quasi-peak Value
	Above 1GHz	54.0		Average Value
		74.0		Peak Value
Test setup:	Below 1GHz Above 1 GHz			
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.			

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { 4. For each suspected emission, the EUT was arranged to its worst case and } \\ \text { then the antenna was tuned to heights from } 1 \text { meter to } 4 \text { meters and the } \\ \text { rotatable table was turned from } 0 \text { degrees to } 360 \text { degrees to find the } \\ \text { maximum reading. }\end{array} \\ \hline \text { 5. The test-receiver system was set to Peak Detect Function and Specified } \\ \text { Bandwidth with Maximum Hold Mode. } \\ \text { 6. If the emission level of the EUT in peak mode was 10dB lower than the } \\ \text { limit specified, then testing could be stopped and the peak values of the } \\ \text { EUT would be reported. Otherwise the emissions that did not have 10dB } \\ \text { margin would be re-tested one by one using peak, quasi-peak or average } \\ \text { method as specified and then reported in a data sheet. }\end{array}\right\}$

Measurement Data:

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	CG6J
Test By:	Mike	Test mode:	PC mode
Test Frequency:	$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$	Polarization:	Vertical
Test Voltage:	AC $120 / 60 \mathrm{~Hz}$	Environment:	Temp: $24^{\circ} \mathrm{C} \quad$ Huni: 57%

Remark:

1. Final Level $=$ Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
2. The emission levels of other frequencies are very lower than the limit and not show in test report.
3. The Aux Factor is a notch filter switch box loss, this item is not used.

Report No: JYTSZB-R12-2100029

Product Name:	Mobile Phone	Product Model:	CG6J
Test By:	Mike	Test mode:	PC mode
Test Frequency:	$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$	Polarization:	Horizontal
Test Voltage:	AC $120 / 60 \mathrm{~Hz}$	Environment:	Temp: $24^{\circ} \mathrm{C} \quad$ Huni: 57%

Remark:

1. Final Level $=$ Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
2. The emission levels of other frequencies are very lower than the limit and not show in test report.
3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Report No: JYTSZB-R12-2100029

Product Name:	Mobile Phone	Product Model:	CG6J
Test By:	Mike	Test mode:	PC mode
Test Frequency:	$1 \mathrm{GHz} \sim 6 \mathrm{GHz}$	Polarization:	Horizontal
Test Voltage:	AC $120 / 60 \mathrm{~Hz}$	Environment:	Temp: $24^{\circ} \mathrm{C} \quad$ Huni: 57%

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
2. The emission levels of other frequencies are very lower than the limit and not show in test report.
