

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2300618

FCC RF Test Report

Applicant: TECNO MOBILE LIMITED

Address of Applicant: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE

19-25 SHAN MEI STREET FOTAN NT HONGKONG

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: BF7

Trade Mark: TECNO

FCC ID: 2ADYY-BF7

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 12 May, 2023

Date of Test: 13 May, to 31 May, 2023

Date of Report Issued: 02 Jun, 2023

Test Result: PASS

Tested by:

Date: 02 Jun, 2023

Reviewed by: Date: 02 Jun, 2023

Approved by: ______ Date: ____ 02 Jun, 2023

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	02 Jun., 2023	Original

2 Contents

			Page
С	over Pa	age	1
1	Ver	rsion	2
2	Cor	ntents	3
3	Gei	neral Information	4
	3.1	Client Information	4
	3.2	General Description of E.U.T.	
	3.3	Test Mode and Test Environment	5
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Measurement Uncertainty	5
	3.6	Additions to, Deviations, or Exclusions from the Method	5
	3.7	Laboratory Facility	5
	3.8	Laboratory Location	5
	3.9	Test Instruments List	6
4	Mea	asurement Setup and Procedure	7
	4.1	Test Channel	7
	4.2	Test Setup	7
	4.3	Test Procedure	9
5	Tes	st Results	10
	5.1	Summary	10
	5.1.	.1 Clause and Data Summary	10
	5.1.	.2 Test Limit	11
	5.2	Conducted Output Power	12
	5.3	Emissions in Non-restricted Frequency Bands	20

3 General Information

3.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

3.2 General Description of E.U.T.

Mobile Phone
BF7
2402 MHz - 2480 MHz
40
2MHz
GFSK
1 Mbps (LE 1M PHY), 2 Mbps (LE 2M PHY), 125 kbps (LE Coded PHY, S=8), 500 kbps (LE Coded PHY, S=2)
Internal Antenna
1.1 dBi (declare by applicant)
SISO (1TX, 1RX)
Rechargeable Li-ion Polymer Battery DC3.85V, 4900mAh
Model: U100TSA Input: AC100-240V, 50/60Hz, 0.3A
Output: DC 5.0V, 2.0A The test samples were provided in good working order with no visible defects.

Report No.: JYTSZ-R12-2300618

3.3 Test Mode and Test Environment

Test Mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Remark:

- 1. For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, found 1 Mbps (LE 1M PHY) was worse case mode. The report only reflects the test data of worst mode.
- 2. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report.

Operating Environment:		
Temperature:	15℃ ~ 35℃	
Humidity:	20 % ~ 75 % RH	
Atmospheric Pressure:	1008 mbar	

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 10MHz)	1.9 dB
Conducted Emission for LISN (10MHz ~ 30MHz)	2.6 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	3.8 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	3.6 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

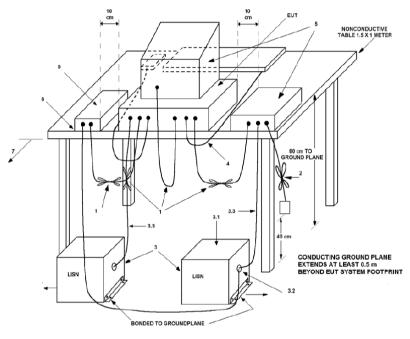
3.9 Test Instruments List

Radiated Emission(3m SAC):					
Test Equipment	Manufacturer	Model No. Manage No		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	02-09-2023	02-08-2024
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-09-2023	02-08-2024
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-09-2023	02-08-2024
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	01-09-2023	01-08-2024
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-10-2023	01-09-2024
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-10-2023	01-09-2024
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	01-11-2023	01-10-2024
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	01-11-2023	01-10-2024
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-10-2023	01-09-2024
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-17-2022	10-16-2023
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-18-2023	01-17-2024
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-18-2023	01-17-2024
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-18-2023	01-17-2024
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A	
Test Software	Tonscend	TS+		Version: 3.0.0.1	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-12-2022	07-11-2023
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	01-10-2023	01-09-2024
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	01-11-2023	01-10-2024
LISN Coaxial Cable (9kHz ~ 30MHz) JYTSZ		JYTCE-1G-NN-2M	WXG003-1	02-22-2023	02-21-2024
RF Switch TOP PRECISION RSU0301 WXG003 N		N/A			
Test Software	AUDIX	E3	V	Version: 6.110919b	

Conducted Method:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-17-2022	10-16-2023
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	01-09-2023	01-08-2025
Power Detector Box MWRFTEST MW100-P		MW100-PSB	WXJ007-4	10-17-2022	10-16-2023
DC Power Supply	Keysight	E3642A	WXJ025-2	2 N/A	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	XG006 N/A	
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0		

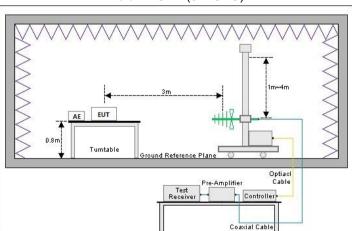
4 Measurement Setup and Procedure

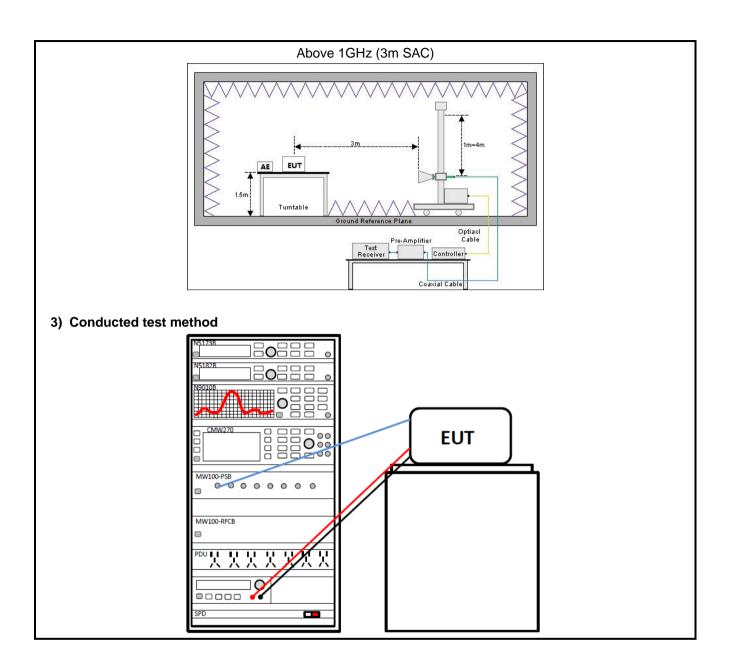

4.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	20	2442	39	2480

4.2 Test Setup


1) Conducted emission measurement:


Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

4.3 Test Procedure

Test method	Test step			
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. 			
Radiated emission	For below 1GHz:			
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.			
	2. EUT works in each mode of operation that needs to be tested, and having			
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.			
	For above 1GHz:			
	The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.			
	2. EUT works in each mode of operation that needs to be tested, and having			
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform			
	the test, save the test results, and export the test data.			
Conducted test method	 The BLE antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all 			
	modulation modes.			
	3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.			
	101.001.01			

Report No.: JYTSZ-R12-2300618

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

This report was amended on FCC ID: 2ADYY-BF7 follow FCC Class II Permissive Change. The original report: JYTSZ-R12-2201870, issued by JianYan Testing Group Shenzhen Co., Ltd. The differences between them as below: Replace the memory chip and change LTE B7 and BT and 2.4GWi-Fi duplexer supplier. So need to Spot test Conducted Output Power and Emissions in Non-restricted Frequency Bands.

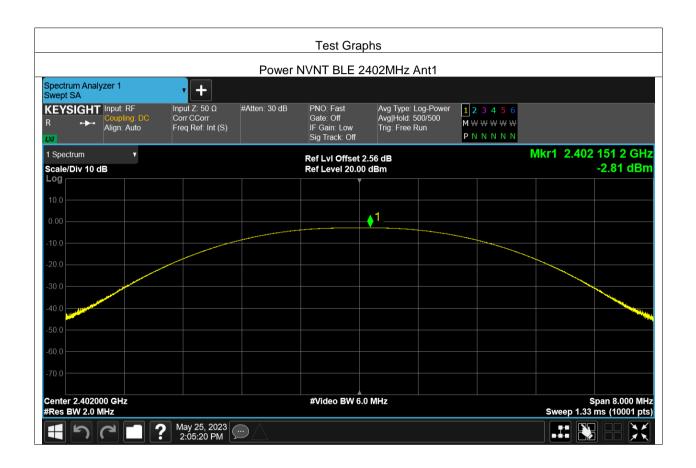
Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	Please refer to JYTSZ-R12-2201870	Pass ²
AC Power Line Conducted Emission	15.207	Please refer to JYTSZ-R12-2201870	Pass ²
Conducted Output Power	15.247 (b)(3)	See Section 5.2	Pass ¹
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Please refer to JYTSZ-R12-2201870	Pass ²
Power Spectral Density	15.247 (e)	Please refer to JYTSZ-R12-2201870	Pass ²
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Please refer to JYTSZ-R12-2201870	Pass ²
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	Please refer to JYTSZ-R12-2201870	Pass ²
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.3 Please refer to JYTSZ-R12-2201870	Pass ¹ Pass ²

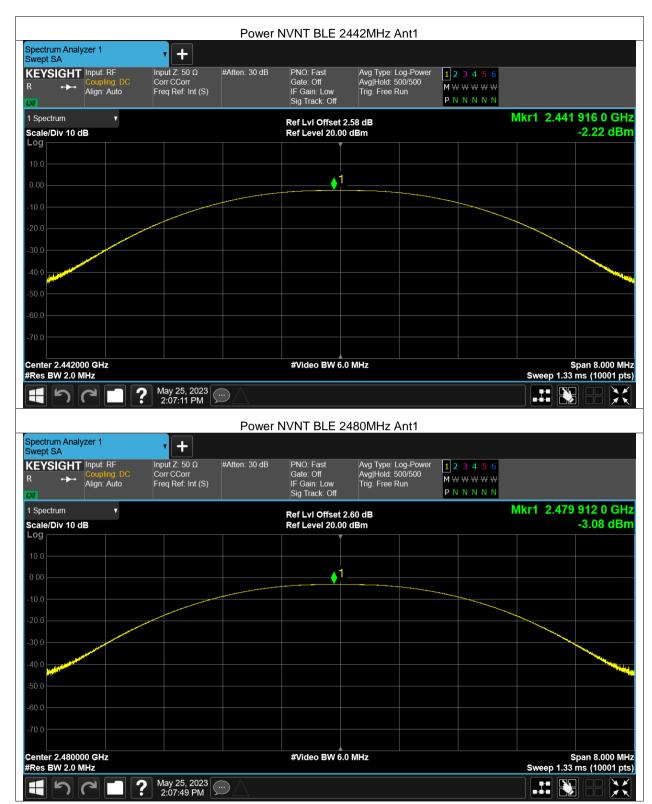
Remark:

- 1. Pass¹: The EUT complies with the essential requirements in the standard.
- 2. Pass²: Please refer to JYTSZ-R12-2201870 report, issued by Jian Yan Testing Group Shenzhen Co., Ltd.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

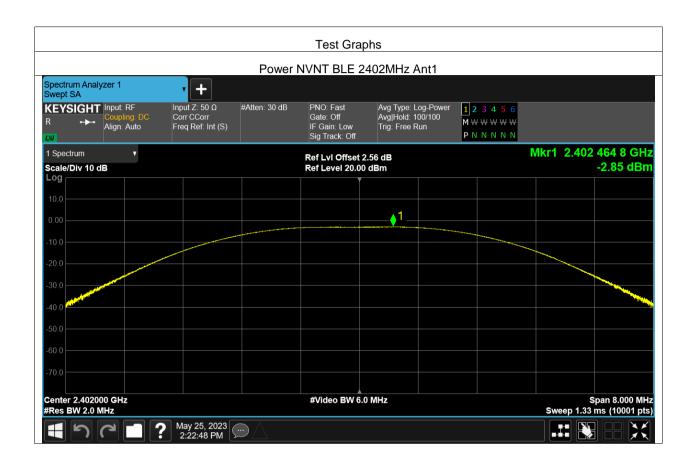
5.1.2 Test Limit

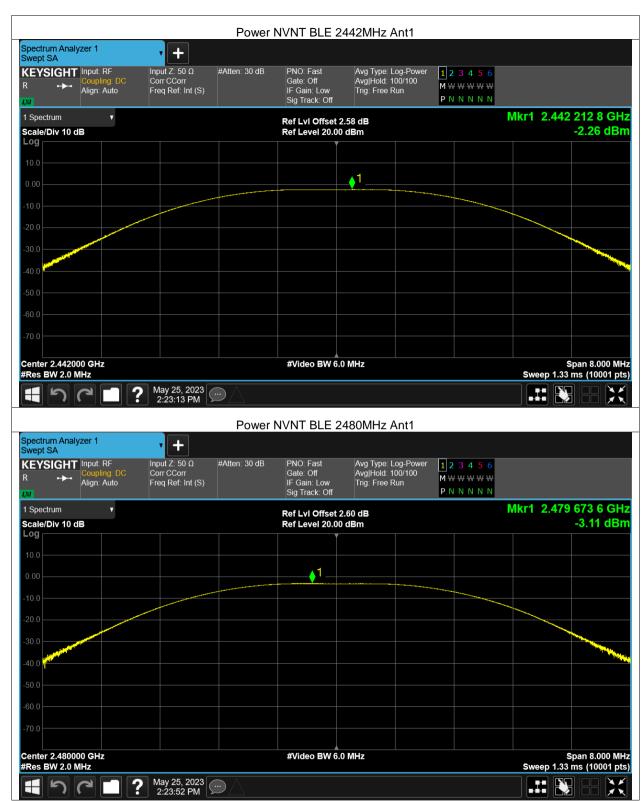

	Limit					
Frequency Limit (dBµ			Limit (d	dΒμV)		
	(MHz)	Quas	si-Peak	Average		
	0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1		
	0.5 – 5			46		
Note 1: The limit level in dBµV decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies.						
			the 902-928	MHz, 2400-2483.5 MH	lz,	
The	minimum 6 dB bandwid	Ith shall be a	at least 500 k	Hz.		
N/A						
inte	ntional radiator to the ar	itenna shall i	not be greate	er than 8 dBm in any 3		
spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply						
	the radiated emission li	ands, as defi	ired. In addit ined in §15.2	nuation below the gene ion, radiated emission 205(a), must also comp	cted nder eral	
		ands, as defi	ired. In addit ined in §15.2 ed in §15.209	nuation below the generation, radiated emission (205(a), must also compo(a) (see §15.205(c)).	cted nder eral	
	the radiated emission li	ands, as defi	ired. In addit ined in §15.2 ed in §15.209	nuation below the gene ion, radiated emission 205(a), must also comp	cted nder eral	
	the radiated emission li	ands, as defi mits specifie	ired. In addit ined in §15.2 ed in §15.209 BµV/m)	nuation below the generion, radiated emission 205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak	cted nder eral	
	Frequency (MHz)	ands, as defi mits specifie Limit (d @ 3m	ired. In addit ined in §15.2 ed in §15.209 BµV/m) @ 10m	nuation below the generation, radiated emission 205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak	cted nder eral	
	### Tequency (MHz) 30 – 88 88 – 216 216 – 960	Limit (d @ 3m 40.0 43.5 46.0	ired. In addit ined in §15.2 ed in §15.209 BµV/m) @ 10m 30.0	nuation below the generion, radiated emission 205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak	cted nder eral	
	the radiated emission li Frequency (MHz) 30 – 88 88 – 216	Limit (d @ 3m 40.0 43.5	ired. In additined in §15.29 in §15.209 in §15.209 in §15.209 in §10m in §15.209 in §15.	nuation below the generation, radiated emission 205(a), must also compo(a) (see §15.205(c)). Detector Quasi-peak Quasi-peak	cted nder eral	
with	### Tequency (MHz) 30 – 88 88 – 216 216 – 960	Limit (d @ 3m 40.0 43.5 46.0 54.0	ired. In additined in §15.29 in §15.209 in §15.209 in §15.209 in §15.209 in frequencies.	nuation below the generion, radiated emission 205(a), must also composite (a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral	
with	Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000	Limit (d 3m 40.0 43.5 46.0 54.0 opplies at transition	ired. In additined in §15.209 BµV/m) @ 10m 30.0 33.5 36.0 44.0 In frequencies. Limit (dBµV/	nuation below the generion, radiated emission (205(a), must also composite (a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral	
with	the radiated emission li Frequency (MHz) 30 – 88 88 – 216 216 – 960 960 – 1000 Note: The more stringent limit a	Limit (d 3m 40.0 43.5 46.0 54.0 pplies at transition	ired. In additined in §15.209 BµV/m) @ 10m 30.0 33.5 36.0 44.0 In frequencies. Limit (dBµV/	nuation below the generion, radiated emission 205(a), must also composite (a) (see §15.205(c)). Detector Quasi-peak Quasi-peak Quasi-peak Quasi-peak	cted nder eral	
	The N/A For interband In all specific dB thigh radial the power permithis	Note 1: The limit level in dBµV (Note 2: The more stringent limit and 5725-5850 MHz bands: The minimum 6 dB bandwid N/A For digitally modulated systematic intentional radiator to the and band during any time interval In any 100 kHz bandwidth of spectrum or digitally modulated spectrum or digitally modulated spectrum or digitally modulated power that is provided below that in the 100 kH highest level of the desired radiated measurement, provided the peak conducted power I power limits based on the upermitted under paragraph of this paragraph shall be 30 desired.	Note 1: The limit level in dBµV decreases linearl Note 2: The more stringent limit applies at transi For systems using digital modulation in and 5725-5850 MHz bands: 1 Watt. The minimum 6 dB bandwidth shall be a N/A For digitally modulated systems, the powintentional radiator to the antenna shall band during any time interval of continuous in any 100 kHz bandwidth outside the frapectrum or digitally modulated intentior frequency power that is produced by the dB below that in the 100 kHz bandwidth highest level of the desired power, base radiated measurement, provided the trait the peak conducted power limits. If the topower limits based on the use of RMS apermitted under paragraph (b)(3) of this	0.5 – 5 5 σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	Note 1: The limit level in dBµV decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies. For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MH and 5725-5850 MHz bands: 1 Watt. The minimum 6 dB bandwidth shall be at least 500 kHz. N/A For digitally modulated systems, the power spectral density conducted from intentional radiator to the antenna shall not be greater than 8 dBm in any 3 band during any time interval of continuous transmission. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a	


5.2 Conducted Output Power

1M PHY:

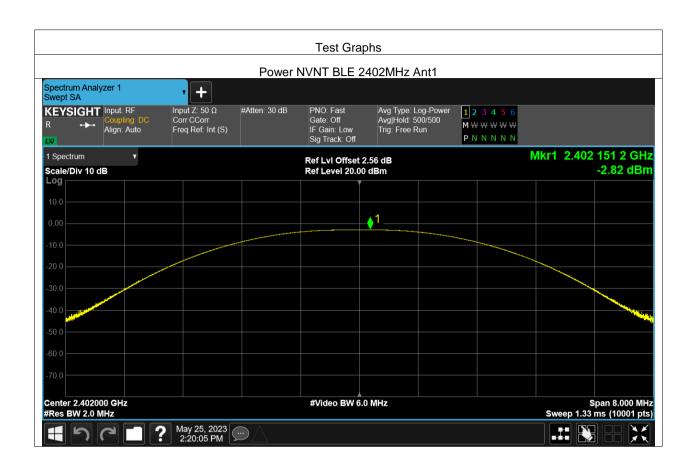
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-2.813	30	Pass
NVNT	BLE	2442	Ant1	-2.221	30	Pass
NVNT	BLE	2480	Ant1	-3.075	30	Pass

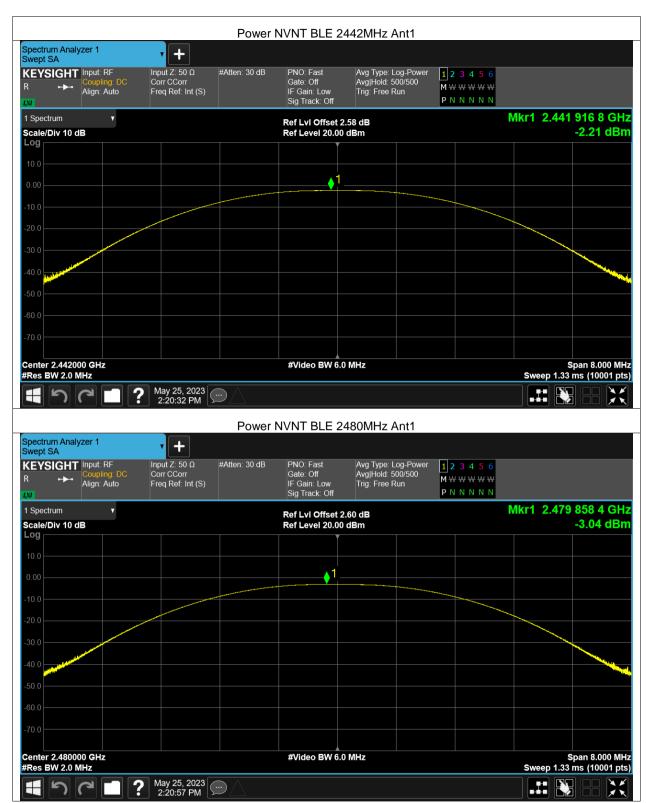




2M PHY:

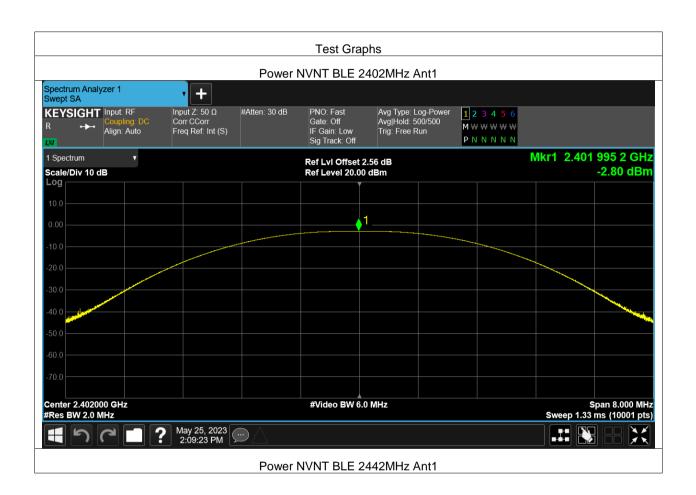
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-2.85	30	Pass
NVNT	BLE	2442	Ant1	-2.262	30	Pass
NVNT	BLE	2480	Ant1	-3.108	30	Pass

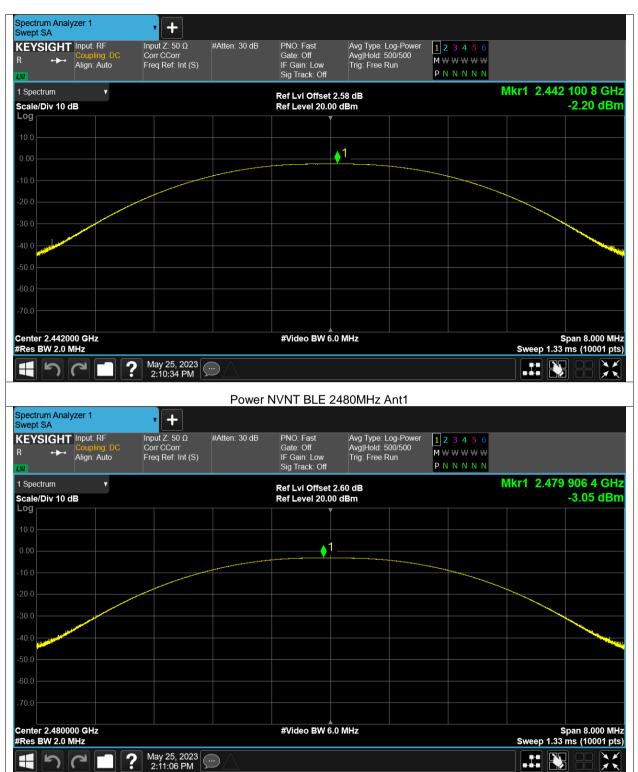




PHY, S=2:

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-2.815	30	Pass
NVNT	BLE	2442	Ant1	-2.212	30	Pass
NVNT	BLE	2480	Ant1	-3.039	30	Pass





PHY, S=8:

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-2.798	30	Pass
NVNT	BLE	2442	Ant1	-2.204	30	Pass
NVNT	BLE	2480	Ant1	-3.054	30	Pass

5.3 Emissions in Non-restricted Frequency Bands

Above 1GHz

ADOVE 1GHZ:								
	BLE Tx (LE 1M PHY)							
		Test o	hannel: Lowest c	hannel				
		D	etector: Peak Val	ue				
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4804.00	56.15	-9.08	47.07	74.00	26.93	Vertical		
4804.00	57.36	-9.08	48.28	74.00	25.72	Horizontal		
		Det	ector: Average Va	alue				
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4804.00	48.42	-9.08	39.34	54.00	14.66	Vertical		
4804.00	48.20	-9.08	39.12	54.00	14.88	Horizontal		
		Test o	channel: Middle ch	nannel				
		D	etector: Peak Val	ue				
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4884.00	56.33	-8.59	47.74	74.00	26.26	Vertical		
4884.00	57.41	-8.59	48.82	74.00	25.18	Horizontal		
		Det	ector: Average V:	alue				

	(GD)	(ασμν/π)	(ασμν/π)	(GD)	(α Β μ <i>ν)</i>	(1711 12)		
Vertical	26.26	74.00	47.74	-8.59	56.33	4884.00		
Horizontal	25.18	74.00	48.82	-8.59	57.41	4884.00		
Detector: Average Value								
Polarization	Margin	Limit	Level	Factor	Read Level	Frequency		
Polarization	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)		
Vertical	13.86	54.00	40.14	-8.59	48.73	4884.00		
Horizontal	14.19	54.00	39.81	-8.59	48.40	4884.00		

	Test channel: Highest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4960.00	56.54	-8.03	48.51	74.00	25.49	Vertical		
4960.00	56.92	-8.03	48.89	74.00	25.11	Horizontal		
		Det	ector: Average Va	alue				
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4960.00	48.48	-8.03	40.45	54.00	13.55	Vertical		
4960.00	47.86	-8.03	39.83	54.00	14.17	Horizontal		

Remark:

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

	BLE Tx (LE 2M PHY)							
		Test c	hannel: Lowest cl	hannel				
	Detector: Peak Value							
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
4804.00	56.32	-9.08	47.24	74.00	26.76	Vertical		
4804.00	56.91	-9.08	47.83	74.00	26.17	Horizontal		
		Det	ector: Average Va	alue				
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	r oranzanori		
4804.00	48.10	-9.08	39.02	54.00	14.98	Vertical		
4804.00	47.71	-9.08	38.63	54.00	15.37	Horizontal		
		Test o	channel: Middle ch	nannel				
		D	etector: Peak Val	ue				
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Folanzation		
4884.00	56.51	-8.59	47.92	74.00	26.08	Vertical		
4884.00	57.73	-8.59	49.14	74.00	24.86	Horizontal		
		Det	ector: Average Va	alue				
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarization		
4884.00	48.18	-8.59	39.59	54.00	14.41	Vertical		
4884.00	48.36	-8.59	39.77	54.00	14.23	Horizontal		
		Test c	hannel: Highest c	hannel				
		D	etector: Peak Val	ue				
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	FUIdIIZAIIUII		
4960.00	56.12	-8.03	48.09	74.00	25.91	Vertical		
4960.00	57.49	-8.03	49.46	74.00	24.54	Horizontal		

Remark:

Frequency

(MHz)

4960.00

4960.00

Read Level

(dBµV)

47.92

47.81

Detector: Average Value

Level

 $(dB\mu V/m)$

39.89

39.78

Limit

 $(dB\mu V/m)$

54.00

54.00

Margin

(dB)

14.11

14.22

Factor

(dB)

-8.03

-8.03

Project No.: JYTSZR2305026

Polarization

Vertical

Horizontal

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

		BEL T	x (LE Coded PH)	Y, S=2)		
		Test o	hannel: Lowest ch	nannel		
		D	etector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	55.93	-9.08	46.85	74.00	27.15	Vertical
4804.00	57.55	-9.08	48.47	74.00	25.53	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	48.66	-9.08	39.58	54.00	14.42	Vertical
4804.00	47.90	-9.08	38.82	54.00	15.18	Horizontal
		Test o	channel: Middle ch	nannel		
			etector: Peak Valu			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	55.93	-8.59	47.34	74.00	26.66	Vertical
4884.00	57.01	-8.59	48.42	74.00	25.58	Horizontal
		Det	ector: Average Va	alue		
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4884.00	48.55	-8.59	39.96	54.00	14.04	Vertical
4884.00	48.33	-8.59	39.74	54.00	14.26	Horizontal
			hannel: Highest c			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	etector: Peak Valu Level (dBµV/m)	Limit (dΒμV/m)	Margin (dB)	Polarization
4960.00	56.05	-8.03	48.02	74.00	25.98	Vertical
4960.00	57.01	-8.03	48.98	74.00	25.02	Horizontal
			ector: Average Va	alue		•
Frequency	Read Level	Factor	Level	Limit	Margin (dB)	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(ub)	
(MHz) 4960.00	(dBµV) 48.30	(dB) -8.03	(dBµV/m) 40.27	(авµv/III) 54.00	13.73	Vertical

Remark:

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

		BEL T	x (LE Coded PH	Y, S=8)				
			channel: Lowest cl					
Detector: Peak Value								
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4804.00	55.90	-9.08	46.82	74.00	27.18	Vertical		
4804.00	57.48	-9.08	48.40	74.00	25.60	Horizontal		
		Det	tector: Average Va	alue				
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4804.00	48.54	-9.08	39.46	54.00	14.54	Vertical		
4804.00	48.17	-9.08	39.09	54.00	14.91	Horizontal		
		Test	channel: Middle ch	nannel				
			etector: Peak Val					
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	N ()		
4884.00	56.21	-8.59	47.62	74.00	26.38	Vertical		
4884.00	57.67	-8.59	49.08	74.00	24.92	Horizontal		
	I 5 I		tector: Average Va					
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4884.00	48.66	-8.59	40.07	54.00	13.93	Vertical		
4884.00	47.85	-8.59	39.26	54.00	14.74	Horizontal		
			hannel: Highest c					
	T		etector: Peak Val		T			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4960.00	56.01	-8.03	47.98	74.00	26.02	Vertical		
4960.00	56.94	-8.03	48.91	74.00	25.09	Horizontal		
		Det	ector: Average Va	alue				
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization		
4960.00	48.24	-8.03	40.21	54.00	13.79	Vertical		
		-			1			

Remark:

4960.00

48.56

40.53

54.00

13.47

-----End of report-----

-8.03

Project No.: JYTSZR2305026

Horizontal

^{1.} Level = Reading + Factor.

^{2.} Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.