

FCC PART 15.247

TEST REPORT

For

TECNO MOBILE LIMITED

FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT Hong Kong

FCC ID: 2ADYY-BDE01

Report Type: Original Report **Product Type:**

Wireless Earphone

Report Number: SZ1210701-26663E-RF-00B

Report Date: 2021-09-02

Reviewed By: RF Engineer

Jimmy Xiao

Timmy	XÌ
111-	

ao

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Test Methodology Measurement Uncertainty	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
Support Equipment List and Details External I/O Cable Block Diagram of Test Setup	7
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE CORRECTED FACTOR & MARGIN CALCULATION TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD EUT SETUP EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP TEST PROCEDURE CORRECTED AMPLITUDE & MARGIN CALCULATION TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
Applicable Standard Test Procedure Test Data	25
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
Applicable Standard Test Procedure Test Data	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
FCC Part 15.247	Page 2 of 44

Report No.: SZ1210701-26663E-RF-00B

Applicable Standard Test Procedure Test Data	27
FCC §15.247(e) - POWER SPECTRAL DENSITY	
Applicable Standard	
Test Procedure	
TEST DATA	
APPENDIX	29
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
	27
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	

GENERAL INFORMATION

Product	Wireless Earphone
Tested Model	BDE01
Frequency Range	BLE: 2402-2480MHz
Maximum Conducted Peak Power	BLE: -1.10 dBm
Modulation Technique	GFSK
Antenna Specification*	-0.35dBi(It is provided by the applicant)
Voltage Range	DC 3.7V from battery or DC 5.0V from USB port
Date of Test	2021-07-13 to 2021-09-02
Sample number	SZ1210701-26663E-RF -S1(Assigned by BACL, Shenzhen)
Received date	2021-07-01
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Para	meter	Uncertainty
Occupied Char	nnel Bandwidth	±5%
RF Output Power	with Power meter	±0.73dB
RF conducted te	est with spectrum	±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	$\pm 4.88 \mathrm{dB}$
Temperature		±1 °C
Humidity		±6%
Supply	voltages	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

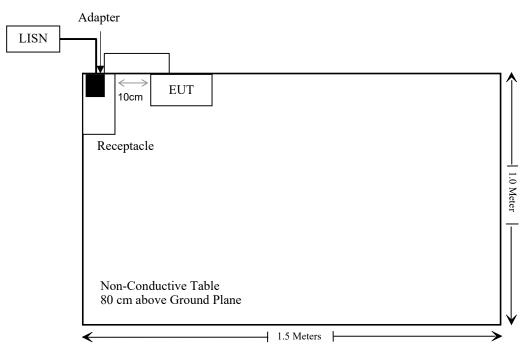
No modification was made to the EUT tested.

EUT Exercise Software

"Bluetest 3.exe"* exercise software was used and the power level is default*. The software and power level was provided by the applicant.

Duty cycle

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Dongguan Aohai Power Technology Co.,Ltd.	Adapter	A8-501000	A1906034835
BULL	Receptacle	GN-415K	5503290068073

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-Shielding Detachable USB Cable	0.2	EUT	Adapter

Block Diagram of Test Setup

For conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Conducted Emissions Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2021/07/07	2022/07/06		
Rohde & Schwarz	LISN	ENV216	101613	2021/07/07	2022/07/06		
Rohde & Schwarz	Transient Limitor	ESH3Z2	DE25985	2020/11/29	2021/11/28		
Unknown	CE Cable	CE Cable	UF A210B-1- 0720-504504	2020/11/29	2021/11/28		
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR		
	Radia	ated Emission T	est				
R&S	EMI Test Receiver	ESR3	102455	2021/07/06	2022/07/05		
Sonoma instrument	Pre-amplifier	310 N	186238	2021/08/03	2022/08/02		
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2020/12/22	2023/12/21		
Unknown	Cable 2	RF Cable 2	F-03-EM197	2020/11/29	2021/11/28		
Unknown	Cable	Chamber Cable 1	F-03-EM236	2020/11/29	2021/11/28		
Rohde & Schwarz	Auto test software	EMC 32	V9.10.00	NCR	NCR		
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2021/07/06	2022/07/05		
COM-POWER	Pre-amplifier	PA-122	181919	2020/11/29	2021/11/28		
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2020/11/28	2021/11/27		
Sunol Sciences	Horn Antenna	3115	9107-3694	2021/01/15	2024/01/14		
Unknown	RF Cable	W1101-EQ1 OUT	F-19-EM005	2020/11/29	2021/11/28		
Insulted Wire Inc.	RF Cable	SPS-2503- 3150	02222010	2020/11/29	2021/11/28		
SNSD	Band Reject filter	BSF2402- 2480MN- 0898-001	2.4G filter	2021/04/20	2022/04/20		
Ducommun Technolagies	Horn antenna	ARH-4223- 02	1007726-02 1304	2020/12/06	2023/12/05		
	RF	Conducted Tes	t	1			
Tonscend Corporation	RF control Unit	JS0806-2	19D8060154	2021/07/06	2022/07/05		
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2021/07/06	2022/07/05		

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum Tune-up power				Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
2402-2480	-1.00	0.79	5	0.2	3.0	Yes

Result: No Standalone SAR test is required

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

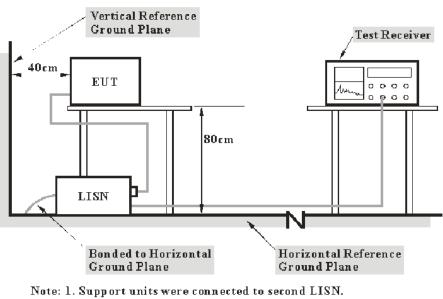
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has an internal antenna arrangement, which was permanently attached and the antenna gain is -0.35 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

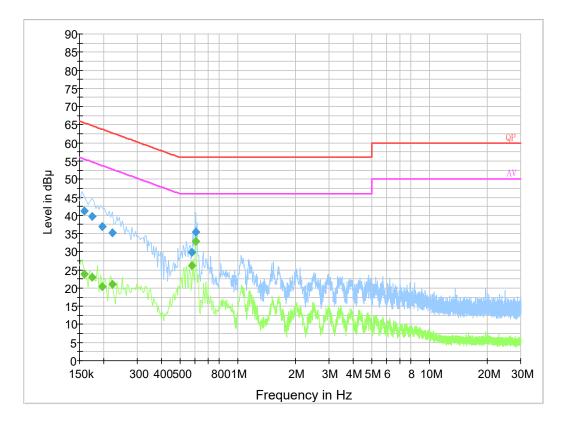
Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	66 %
ATM Pressure:	101.0 kPa

The testing was performed by Haiguo Li on 2021-07-13.

EUT operation mode: Charging

Report No.: SZ1210701-26663E-RF-00B

AC 120V/60 Hz, Line

Final Result 1

Frequency (MHz)	QuasiPeak (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.158500	41.1	9.000	L1	19.8	24.4	65.5
0.173500	39.8	9.000	L1	19.9	25.0	64.8
0.197500	36.9	9.000	L1	19.8	26.8	63.7
0.221500	35.3	9.000	L1	19.8	27.5	62.8
0.577210	29.9	9.000	L1	19.8	26.1	56.0
0.604910	35.5	9.000	L1	19.8	20.5	56.0

Final Result 2

Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.158500	23.9	9.000	L1	19.8	31.6	55.5
0.173500	23.1	9.000	L1	19.9	31.7	54.8
0.197500	20.4	9.000	L1	19.8	33.3	53.7
0.221500	21.0	9.000	L1	19.8	31.8	52.8
0.577210	26.2	9.000	L1	19.8	19.8	46.0
0.604910	32.8	9.000	L1	19.8	13.2	46.0

Report No.: SZ1210701-26663E-RF-00B

90_T 85 80 75 70 65 60 55 Level in dBµ 50 45 40 35 30 25 20-15 10 5-0+ 150k 300 400500 8001M 2M 3M 4M 5M 6 8 10M 20M 30M Frequency in Hz

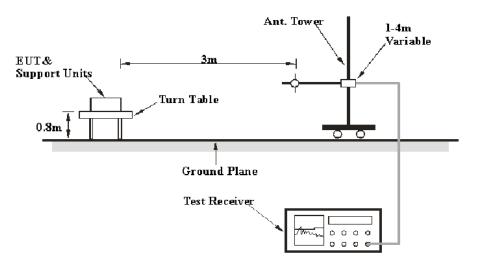
AC 120V/60 Hz, Neutral

Final Result 1

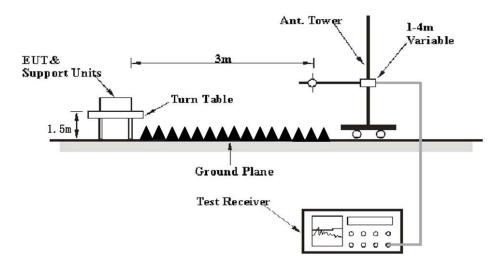
Frequency (MHz)	QuasiPeak (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.161500	46.1	9.000	Ν	19.8	19.3	65.4
0.165500	46.4	9.000	N	19.8	18.8	65.2
0.185500	43.3	9.000	Ν	19.8	20.9	64.2
0.213500	40.1	9.000	N	19.8	23.0	63.1
0.233500	38.4	9.000	N	19.8	23.9	62.3
0.597030	38.0	9.000	N	19.8	18.0	56.0

Final Result 2

Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.162000	30.1	9.000	N	19.8	25.3	55.4
0.210000	27.3	9.000	N	19.8	25.9	53.2
0.290000	24.0	9.000	N	19.7	26.5	50.5
0.518000	20.7	9.000	N	19.8	25.3	46.0
0.582000	25.7	9.000	N	19.8	20.3	46.0
0.602000	30.8	9.000	N	19.8	15.2	46.0


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Average
	1MHz	> 1/T ^{Note 2}	/	Average

Note 1: when duty cycle is no less than 98%

Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Corrected Amplitude & Margin Calculation

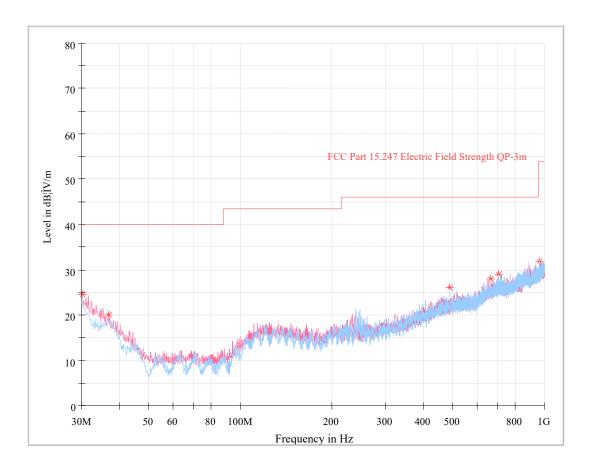
The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data


Environmental Conditions

Temperature:	28.8~30 ℃
Relative Humidity:	51~57 %
ATM Pressure:	101~101.2 kPa

The testing was performed by Cloud Qiu on 2021-09-02 for below 1GHz and Dio Ding on 2021-08-20 for above 1GHz.

EUT operation mode: Transmitting

30 MHz~1 GHz:

Critical_Freqs

Frequency (MHz)	MaxPeak (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.121250	24.41	40.00	15.59	300.0	Н	241.0	-3.6
36.911250	20.06	40.00	19.94	300.0	V	0.0	-8.5
489.658750	26.05	46.00	19.95	100.0	Н	86.0	-5.2
664.986250	28.04	46.00	17.96	100.0	Н	45.0	-2.2
707.545000	29.12	46.00	16.88	200.0	Н	295.0	-1.5
964.837500	31.80	53.90	22.10	100.0	Н	138.0	2.2

Report No.: SZ1210701-26663E-RF-00B

1 GHz-25 GHz:

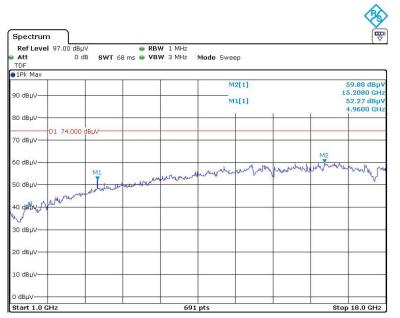
BLE 1M

Frequency	Re	eceiver	Turntable	Rx An	tenna	Corrected	Corrected	Limit	Margin	
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)		
Low Channel(2402MHz)										
2365.86	28.37	РК	54	2.2	Н	31.87	60.24	74	13.76	
2365.86	14.78	Ave.	54	2.2	Н	31.87	46.65	54	7.35	
2485.63	28.61	РК	286	2.0	Н	32.13	60.74	74	13.26	
2485.63	14.93	Ave.	286	2.0	Н	32.13	47.06	54	6.94	
4804.00	44.01	РК	84	1.3	Н	6.28	50.29	74	23.71	
4804.00	29.18	Ave.	84	1.3	Н	6.28	35.46	54	18.54	
	Middle Channel(2440MHz)									
4880.00	44.14	РК	323	1.6	Н	6.76	50.90	74	23.10	
4880.00	30.04	Ave.	323	1.6	Н	6.76	36.80	54	17.20	
			High C	hannel(2	2480MF	Iz)				
2371.42	28.25	РК	122	1.2	Н	31.87	60.12	74	13.88	
2371.42	14.84	Ave.	122	1.2	Н	31.87	46.71	54	7.29	
2496.02	28.28	РК	106	1.4	Н	32.13	60.41	74	13.59	
2496.02	15.06	Ave.	106	1.4	Н	32.13	47.19	54	6.81	
4960.00	46.81	РК	196	1.4	Н	6.80	53.61	74	20.39	
4960.00	38.49	Ave.	196	1.4	Н	6.80	45.29	54	8.71	

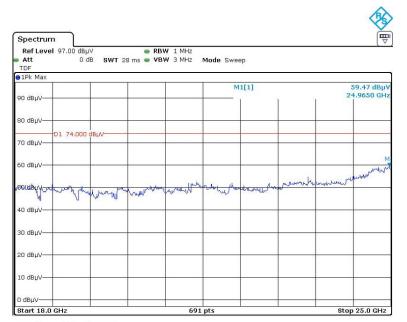
BLE 2M

Frequency	Re	ceiver	Turntable	Rx An	tenna	Corrected	Corrected	Limit	Margin	
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)	
	Low Channel(2402MHz)									
2389.35	29.03	РК	330	1.7	Н	31.87	60.90	74	13.10	
2389.35	16.17	Ave.	330	1.7	Н	31.87	48.04	54	5.96	
2483.75	29.44	РК	251	1.1	Н	32.13	61.57	74	12.43	
2483.75	16.28	Ave.	251	1.1	Н	32.13	48.41	54	5.59	
4804.00	43.43	РК	145	1.2	Н	6.28	49.71	74	24.29	
4804.00	30.40	Ave.	145	1.2	Н	6.28	36.68	54	17.32	
	Middle Channel(2440MHz)									
4880.00	43.54	РК	71	1.6	Н	6.76	50.30	74	23.70	
4880.00	30.07	Ave.	71	1.6	Н	6.76	36.83	54	17.17	
			High Cl	hannel(2	2480MF	łz)				
2389.61	29.31	РК	266	2.0	Н	31.87	61.18	74	12.82	
2389.61	16.14	Ave.	266	2.0	Н	31.87	48.01	54	5.99	
2484.21	29.18	РК	95	2.2	Н	32.13	61.31	74	12.69	
2484.21	16.00	Ave.	95	2.2	Н	32.13	48.13	54	5.87	
4960.00	45.14	РК	84	1.5	Н	6.80	51.94	74	22.06	
4960.00	35.15	Ave.	84	1.5	Н	6.80	41.95	54	12.05	

Note:

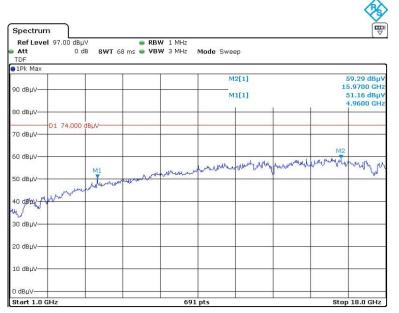

 $Corrected \ Factor = Antenna \ factor \ (RX) + Cable \ Loss - Amplifier \ Factor$

Corrected Amplitude = Corrected Factor + Reading


Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

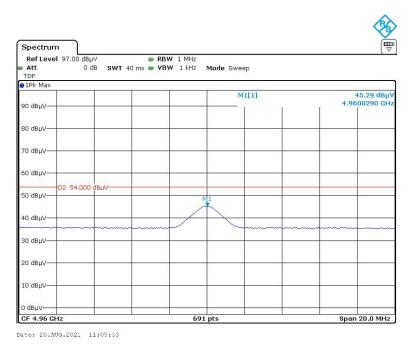
Pre-scan with High channel Peak Horizontal



Date: 20.AUG.2021 11:00:11

Date: 20.AUG.2021 11:45:07

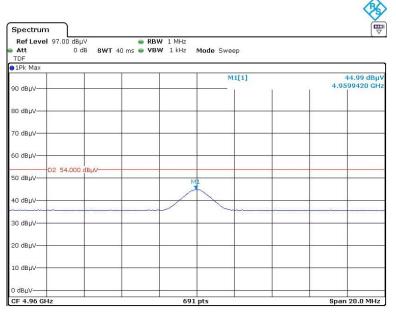
Vertical



Date: 20.AUG.2021 11:10:08

	l 97.00 dBµ	V	🖷 RE	3W 1 MHz					
Att TDF	0 c	IB SWT :	28 ms 👄 V E	3W 3 MHz	Mode Swe	ер			
1Pk Max									
90 dBµV					N	11[1]	ĺ		i9.54 dBµ' i.9850 GH
30 dBµV									
70 dBµV	D1 74.000	dBµV							
50 dBµV									- when
iCudauV	number pres	Murthauf a	Mundula	mulan white	Here where	worth all worth	want	-minute and	ullru
ν 10 dBμV	υ								8
									0
O dBµV		1							
90 dBµV 90 dBµV									

Date: 20.AUG.2021 11:55:08



Ref Leve	el 97.00 dBp	IV	RBW	1 MHz				
Att	0 0		40 ms 👄 VBV		de Sweep			
1DF 1Pk Max								
90 dBµV—	dBµV-				M1[1] 4 24.962			
BO dBµV—								
70 dBµV—								
60 dBµV—								
50 dBµV—	D2 54.000	dBµV	M1					
40 dBµV—						_		
30 dBµV—								
20 dBµV—		-						
10 dBµV—								

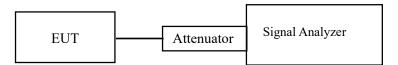
Date: 20.AUG.2021 11:50:13

Vertical

Date: 20.AUG.2021 11:15:09

Att TDF	l 97.00 dBµ 0 d		e RBW Homs e VBW	Sweep	
1Pk Max					
90 dBµV				 M1[1]	47.31 dBµ' 24.9943490 GH
80 dBµV				 	
70 dBµV		-		 	
60 dBµV				 	
50 dBµV—	D2 54.000	dBµV		 	M1
40 dBµV—					
30 dBµV				 	
20 dBµV				 	
10 dBµV					

Date: 20.AUG.2021 23:59:52


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

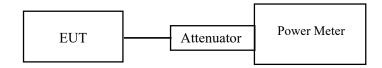
Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Bravos Zhao on 2021-07-21.

EUT operation mode: Transmitting


FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Bravos Zhao on 2021-07-21.

EUT operation mode: Transmitting

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Bravos Zhao on 2021-07-21.

EUT operation mode: Transmitting

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

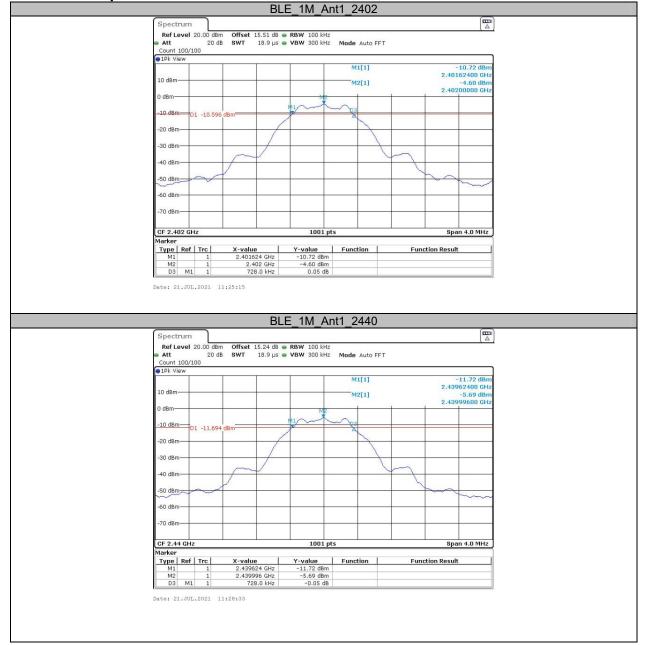
Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

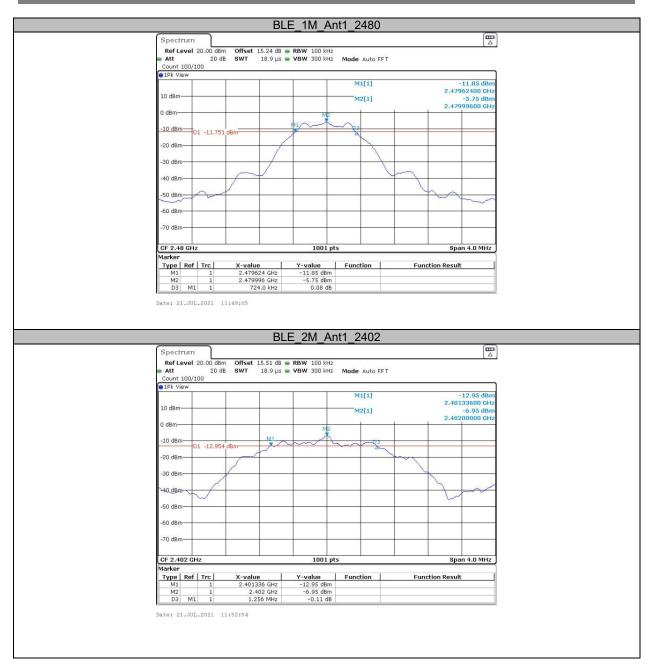
The testing was performed by Bravos Zhao on 2021-07-21.

EUT operation mode: Transmitting

APPENDIX


Appendix A: DTS Bandwidth

Test Result


Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.728	0.5	PASS
BLE_1M	Ant1	2440	0.728	0.5	PASS
		2480	0.724	0.5	PASS
		2402	1.256	0.5	PASS
BLE_2M	Ant1	2440	1.268	0.5	PASS
		2480	1.256	0.5	PASS

Report No.: SZ1210701-26663E-RF-00B

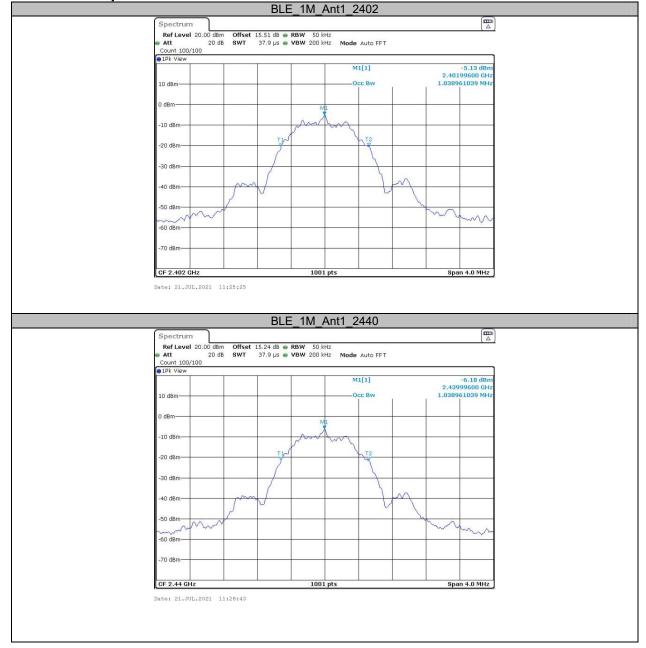
Test Graphs

Report No.: SZ1210701-26663E-RF-00B

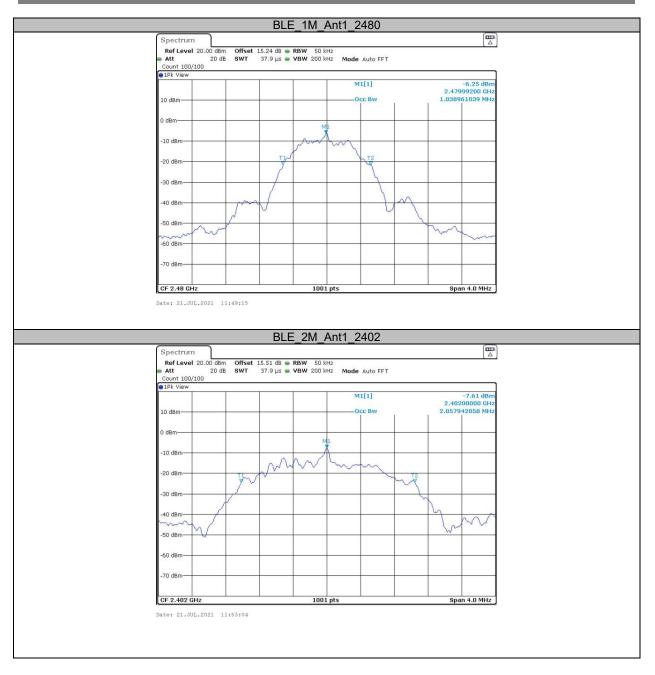
FCC Part 15.247

Page 31 of 44

Report No.: SZ1210701-26663E-RF-00B

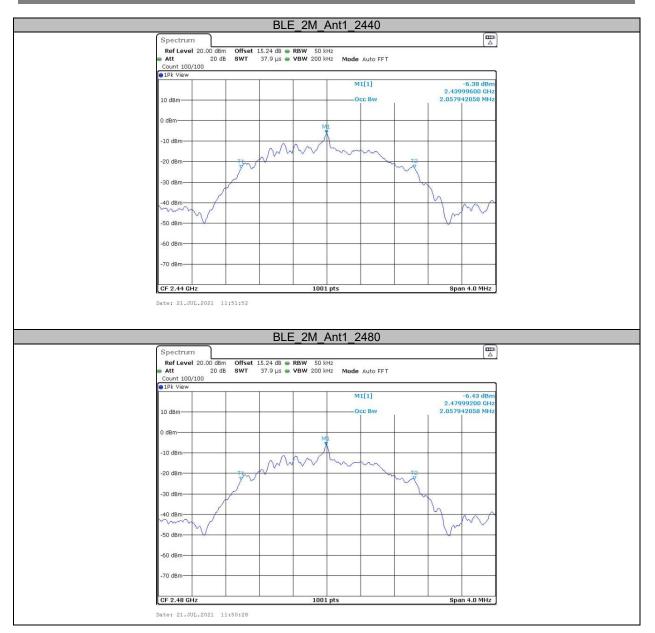

Appendix B: Occupied Channel Bandwidth

Test Result


Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2402	1.039		PASS
BLE_1M	Ant1	2440	1.039		PASS
		2480	1.039		PASS
		2402	2.058		PASS
BLE_2M	Ant1	2440	2.058		PASS
		2480	2.058		PASS

Report No.: SZ1210701-26663E-RF-00B

Test Graphs


Report No.: SZ1210701-26663E-RF-00B

FCC Part 15.247

Page 35 of 44

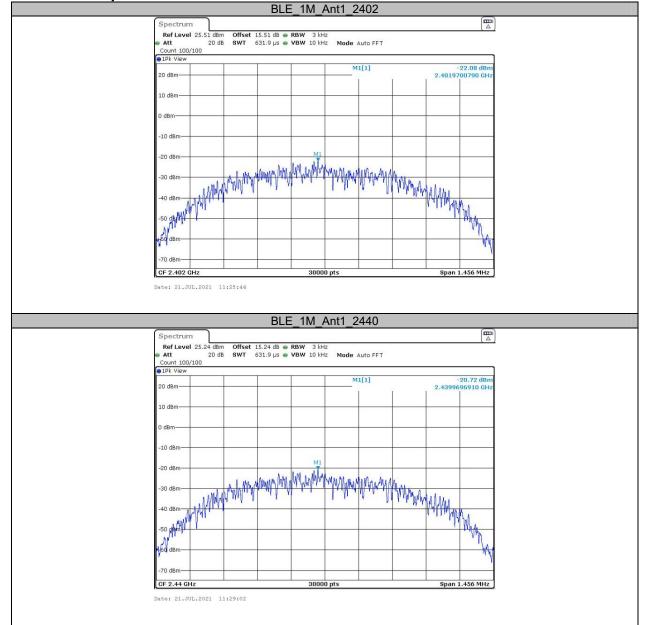
Report No.: SZ1210701-26663E-RF-00B

Appendix C: Maximum conducted Peak output power

Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	-2.23	≤30	PASS
BLE_1M	Ant1	2440	-1.10	≤30	PASS
		2480	-1.33	≤30	PASS
		2402	-2.67	≤30	PASS
BLE_2M	Ant1	2440	-1.21	≤30	PASS
		2480	-1.33	≤30	PASS

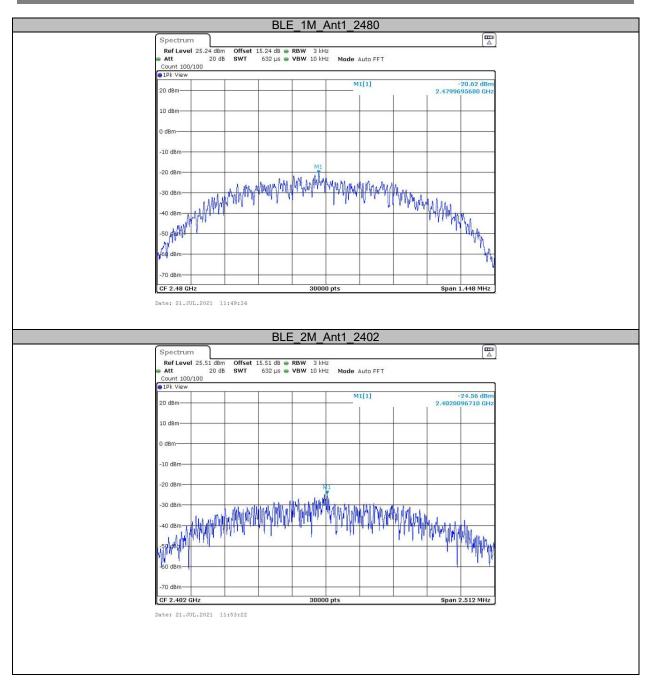
Report No.: SZ1210701-26663E-RF-00B


Appendix D: Maximum power spectral density

Test Result

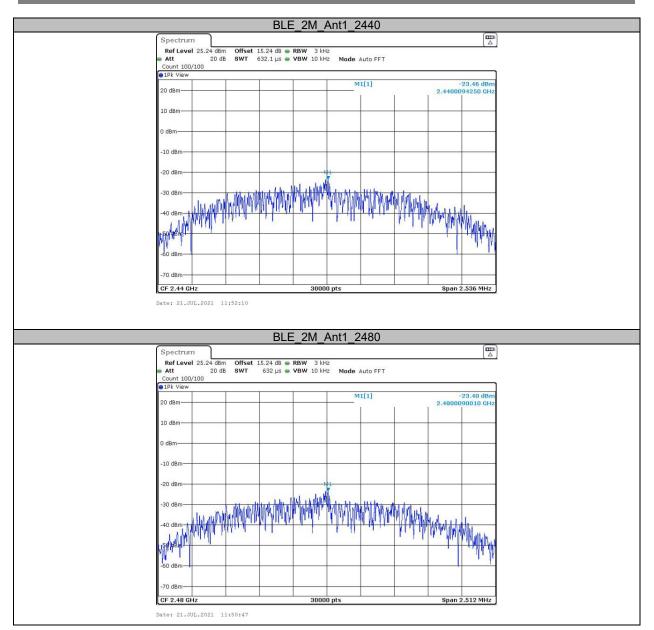
Test Mode	Antenna	Channel	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
		2402	-22.08	≤8	PASS
BLE_1M	Ant1	2440	-20.72	≤8	PASS
		2480	-20.62	≤8	PASS
		2402	-24.56	≤8	PASS
BLE_2M	Ant1	2440	-23.46	≤8	PASS
		2480	-23.40	≤8	PASS

Report No.: SZ1210701-26663E-RF-00B


Test Graphs

FCC Part 15.247

Page 39 of 44


Report No.: SZ1210701-26663E-RF-00B

FCC Part 15.247

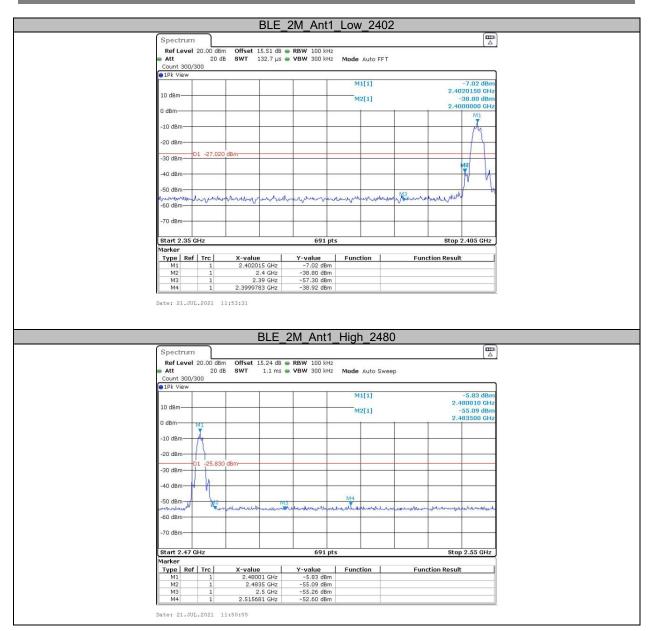
Page 40 of 44

Report No.: SZ1210701-26663E-RF-00B

FCC Part 15.247

Page 41 of 44

Report No.: SZ1210701-26663E-RF-00B


Appendix E: Band edge measurements Test Graphs

					NA Anti		$\gamma \Lambda \cap \gamma$	1						
Inf Level 200 Bits Offset 15:21 die BWV 200 Hz Mode Auto FTT 10 dan 10 dan 10 dan 10 dan 10 dan 0 dan 0 dan 10 dan<		_	ľ	BLE_1	IM_Anti	_Low_	2402			C				
<pre></pre>	Spectrum									6				
Control 2000 I i i von Milli 2.400000000 1 i den Milli 2.4000000000 1 i den Milli 2.4000000000000000000000000000000000000														
Bit Now 37.0 GPT 20.0000 CPF 0 dm	Att Count 200/	20 dB	SWT 1	32.7 µs 👄	VBW 300 kHz	Mode Au	uto FFT							
In the second		300												
10 dBm 4000 345.0 dBm 10 dBm 4000 345.0 dBm 10 dBm 4000 4000 4000 10 dBm 4000 4000 4000 10 dBm 4000 4000 4000 4000 10 dBm 4000 4000 4000 4000 4000 10 dBm 4000 4000 4000 4000 4000 4000 10 dBm 40000 4000 4000		1	1			M1[]	1]							
Image: Sector in the sector	10 dBm													
Image: section of the section of th						M2[1	1]							
add mm add m add m add mm	0 dBm				+ +	-								
add mm add m add m add mm	-10 dBm-									Å	_			
30 dtm 40					1 1	- 1		1		1 1	1			
100 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 400 880 100 400 500 880 100 400 600 880 100 400 90 880 100 400 10 880 100 880 10 880 100 400 10 880 100 400 10 880 100 400 10 880 100 400 10 880 100 400 10 880 100 400 10 880 100 400 10 880 100 400 10 880 100 400 10 880 100 400 10 880 100 400 10 880 100 400 10 880 100 400 10 880	-20 dBm									+	-			
u0 dem u0 under unde	20 dBm	01 -26.700	dBm											
Bit dots 01 pts Bit dots Bit dots 01 pts Bit dots Bit dots 0.0 pts Bit dots Marker 10 pts 10 pts Marker 10 pts <td>-50 0011</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>111</td> <td></td> <td></td> <td></td>	-50 0011									111				
Spectrum Control of the second se	-40 dBm				+ +					1 1	-			
Spectrum Control of the second se	4co dom							NED						
-od dm -od of the drift		Pur man	mound	un hand	ma manana	youth our a	Martin 1		mahad are		de			
Bit Bit 2 2.05 GHz Narker Tarker Turction Result 111 1 2.40011 GHz -55.37 dm Deter 11 Turction Result A GHz -55.37 dm Deter 21.,000,2001 GHz -55.37 dm Deter 21.,000,2001 GHz -55.37 dm Deter 21.,000,2001 GHz -55.37 dm Spectrum Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Deter 21.,000,2001 GHz Spectrum Colspan="2" Of the colspan="2" Spectrum Of the colspan="2" Spectrum <td col<="" td=""><td></td><td>-41 - 9 - 94</td><td></td><td>- man</td><td></td><td></td><td></td><td>. V</td><td></td><td></td><td>17</td><td></td><td></td></td>	<td></td> <td>-41 - 9 - 94</td> <td></td> <td>- man</td> <td></td> <td></td> <td></td> <td>. V</td> <td></td> <td></td> <td>17</td> <td></td> <td></td>		-41 - 9 - 94		- man				. V			17		
Bit Bit 2 2.05 GHz Narker Tarker Turction Result 111 1 2.40011 GHz -55.37 dm Deter 11 Turction Result A GHz -55.37 dm Deter 21.,000,2001 GHz -55.37 dm Deter 21.,000,2001 GHz -55.37 dm Deter 21.,000,2001 GHz -55.37 dm Spectrum Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Deter 21.,000,2001 GHz Spectrum Colspan="2" Of the colspan="2" Spectrum Of the colspan="2" Spectrum <td col<="" td=""><td>70 do-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>70 do-</td> <td></td>	70 do-												
Myter Function Function Mg 1 2.402015 G/z -6.70 d/m Mg 1 2.390 d/z -5.43 d/m Mg 1 2.390 d/z -5.357 d/m Mg 1 2.390 d/z -5.31 d/m Mg 1 2.400 d/z -5.31 d/m Court 300 d/d Mg 10 d/z -5.31 d/m 0 d/m Mg 1 2.400 d/z -5.31 d/m -30 d/m Mg 1 2.400 d/z -5.31 d/m -30 d/m -10 d/z -10 d/z -10 d/z -10 d/z -30 d/m -10 d/z	-/U dBm										1			
Myter Function Function Mg 1 2.402015 G/z -6.70 d/m Mg 1 2.390 d/z -5.43 d/m Mg 1 2.390 d/z -5.357 d/m Mg 1 2.390 d/z -5.31 d/m Mg 1 2.400 d/z -5.31 d/m Court 300 d/d Mg 10 d/z -5.31 d/m 0 d/m Mg 1 2.400 d/z -5.31 d/m -30 d/m Mg 1 2.400 d/z -5.31 d/m -30 d/m -10 d/z -10 d/z -10 d/z -10 d/z -30 d/m -10 d/z	Start 2 25 (2112			601 m				Ston	2 405 CH				
Type Ref Tro: X-value Function Function Result Hd 1 2.40015 GHz 65.07 dBm 1 <td></td> <td>at 12</td> <td></td> <td></td> <td>oar bi</td> <td></td> <td></td> <td></td> <td>acup</td> <td>2.700 GH</td> <td>-</td> <td></td> <td></td>		at 12			oar bi				acup	2.700 GH	-			
htt 1 2.40015 ofter -6.70 dbm htt 1 2.30077 obc -54.37 dbm htt 1 2.30077 obc -53.77 dbm Dates 21.VUL.2021 11:25:02 Dtes 21.VUL.2021 11:25:02 Dtes 21.VUL.2021 11:25:02 BEE 1M Antl High 2480 Control of Set 15:24 db e RBW 100 lbtz Att 20.00 dbm Offset 15:24 db e RBW 100 lbtz Att 20.00 dbm Offset 15:24 db e RBW 100 lbtz Att 20.00 dbm Offset 15:24 db e RBW 100 lbtz Att 20.00 dbm Offset 15:24 db e RBW 100 lbtz Att 20.00 dbm Offset 15:24 db e RBW 100 lbtz Att 20 db SWT 1.1 ms e VBW 300 lbtz Mode Auto Sweep Control offset 15:24 db e RBW 100 lbtz Att 20 db SWT 1.1 ms e VBW 300 lbtz Mode Auto Sweep Control offset 15:24 db e RBW 100 lbtz Att 20 dbm -5.83 dbm -2.400010 GbH 0 dbm -4.10 dbm -4.10 dbm -5.83 dbm 0 dbm -4.10 dbm -4.10 dbm -4.10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 dbm -10 d		Trc	X-value	1	Y-value	Functio	n	Fund	tion Result	t .				
M3 1 2.39 GHz -54.35 dBm Date: 21.JUL.2021 11:25:52 BLE 1M Ant1 High 2480 BLE 1M Ant1 High 2480 Spectrum Total 200 dBm Offset 15.24 dB & RBW 100 Hz Total 200 dBm Court 300/300 M101 2.460010 GHz -5.81 dBm O dBm M101 2.460010 GHz -5.81 dBm O dBm M121 2.460300 GHz -35.34 dBm -0 dBm M2[1] 2.460300 GHz -35.34 dBm -0 dBm M2[1] 2.460300 GHz -35.34 dBm -0 dBm M2[1] 2.460300 GHz -55.31 dBm -0 dBm M2[1] 2.460300 GHz -55.31 dBm -0 dBm M2[1] 2.460300 GHz -55.31 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0	M1	1			-6.70 dBm						_			
Main 1 2.3500797 GHz -53.57 dBm Dete: 21.0002.0001 BEE_IM_Antl_High_2480 Dete: 21.0002.0001 Dete: 20.00 dBm Offset A to 20 dB SWT 1.1 ms WM 100 Hz A to 20 dB SWT 1.1 ms WM 200 Hz Offset State offset Offset DEte: 15.24 dB SWT 100 Hz A to 20 dB SWT 1.1 ms WM 200 Hz -5.01 dBm Offset MZ[1] -5.01 dBm 0 dBm MZ[1] -5.01 dBm Offset MZ[1] -5.01 dBm Offset MZ[1] -5.01 dBm											-			
BLE 1M Ant1 High 2480 Spectrum Ref Level 20.00 dim Offset 15.24 dib @ RBW 100 Hit Att 20 dis SWT 1.1 ms @ VBW 300 Hit Mode Auto Sweep Count 300/300 @ IP. View M1(3) -5.81 diam 10 dim M1(3) -5.81 diam 10 dim M2(1) 2.480300 cHz -30 dim M2(1) 2.480300 cHz -40 dim M2(1) 2.480300 cHz -30 dim M2(1) 2.480300 cHz -0 dim M2(1) Stop 2.55 cHz M2(1) 2.4901 cHz -52.34 dim -0 dim -1.490 cHz -52.34 dim -0 dim -1.53.44 dim -1.490 cHz -1.10 dim -1.53.54 dim -1.400 cHz		1	2.350079	7 GHz	-53.57 dBm									
BLE 1M Ant1 High 2480 Spectrum Colspan="2">Colspan="2" Colspan="2">MIC MIC Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan= 2" Colspan= 2" <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
© Low 1 200/300 © IPk View 10 dBm M1[1] 2.460010 GHz 0 dBm M2[1] 2.33.44 dbm 0 dBm M2[1] 2.463300 GHz -10 dBm M1 2.463300 GHz -20 dBm M1 2.463300 GHz -30 dBm M2 M4 -30 dBm M2 M4 -40 dBm M2 M4 -50 dBm M2 M4 -50 dBm M2 M4 -50 dBm M2 M4 -50 dBm M2 M4 -70 dBm M2 691 pts Start 2.47 GHz 691 pts Stap 2.55 GHz M4 1 2.4603 GHz -5.81 dBm M2 1 2.4603 GHz -5.81 dBm M3 1 2.56 GHz -5.81 dBm	Spectrum		E	BLE_1	M_Ant1	_High	2480)		ſ				
● 1Pk View M1[1] -5.81 dBm 10 dBm M2[1] -55.34 dBm 0 dBm M2[1] -55.34 dBm 0 dBm M1 2.483000 GHz -10 dBm M1 -50 dBm -20 dBm 01 -25.810 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm	Ref Level	20.00 dBm	Offset 1	5.24 dB 🖷	RBW 100 kHz	:				Ē				
10 dBm M1[1] -5.81 dBm 0 dBm M1 2.480010 GHz -10 dBm 2.480300 GHz -20 dBm - -20 dBm - -30 dBm - -40 dBm - -30 dBm - -40 dBm - -50 dBm - -70 dBm - -1 2.48001 GHz </th <th>Ref Level</th> <th>20.00 dBm 20 dB</th> <th>Offset 1</th> <th>5.24 dB 🖷</th> <th>RBW 100 kHz</th> <th>:</th> <th></th> <th></th> <th></th> <th>Ē</th> <th></th> <th></th> <th></th>	Ref Level	20.00 dBm 20 dB	Offset 1	5.24 dB 🖷	RBW 100 kHz	:				Ē				
10 dBm M2[1] -55.34 dBm 0 dBm 2.483500 GHz -10 dBm 2.483500 GHz -20 dBm 4 -20 dBm 4 -30 dBm 4 -40 dBm 4 -30 dBm 4 -30 dBm 4 -30 dBm 4 -40 dBm 4 -50 dBm 4 -60 dBm 4 -70 dBm 5	Ref Level Att Count 300/3	20.00 dBm 20 dB	Offset 1	5.24 dB 🖷	RBW 100 kHz	:				[
0 dBm 10 dBm 2.483300 GH2 -10 dBm 2.483300 GH2 -20 dBm 1 -20 dBm 1 -20 dBm 1 -30 dBm 1 -40 dBm 1 -50 dBm 1 -70 dBm 1	Ref Level Att Count 300/3	20.00 dBm 20 dB	Offset 1	5.24 dB 🖷	RBW 100 kHz	: Mode Au	uto Swee			-5.81 dB	im			
0 dbm M1 Image: Constraint of the second of the secon	Ref Level Att Count 300/3 1Pk View	20.00 dBm 20 dB	Offset 1	5.24 dB 🖷	RBW 100 kHz	: Mode Au M1[1	uto Swee 1]			-5.81 dB	im Hz			
-10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -1 -70 dBm -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	Ref Level Att Count 300/3 1Pk View 10 dBm	20.00 dBm 20 dB	Offset 1	5.24 dB 🖷	RBW 100 kHz	: Mode Au M1[1	uto Swee 1]			-5.81 dB 180010 GI -55.34 dB	im Hz			
-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70	Ref Level Att Count 300/3 1Pk View 10 dBm	20.00 dBm 20 dB 300	Offset 1	5.24 dB 🖷	RBW 100 kHz	: Mode Au M1[1	uto Swee 1]			-5.81 dB 180010 GI -55.34 dB	im Hz			
OI 25.810 dBm -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -40 dBm -60 dBm -40 dBm -70 dBm -50 dBm	Ref Level Att Count 30D/3 1Pk View 10 dBm 0 dBm	20.00 dBm 20 dB 300	Offset 1	5.24 dB 🖷	RBW 100 kHz	: Mode Au M1[1	uto Swee 1]			-5.81 dB 180010 GI -55.34 dB	im Hz			
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm	20.00 dBm 20 dB 300	Offset 1	5.24 dB 🖷	RBW 100 kHz	: Mode Au M1[1	uto Swee 1]			-5.81 dB 180010 GI -55.34 dB	im Hz			
40 d8m 40 -50 d8m 40 -50 d8m 40 -60 d8m 40 -70 d8m 691 pts Start 2.47 GHz 691 pts Marker 5.81 d8m M1 1 2.4803 GHz -5.81 d8m M2 1 2.4835 GHz -54.06 d8m M3 1 M4 1 2.537014 GHz -52.38 d8m	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 20 dB 300	Offset 1: SWT	5.24 dB 🖷	RBW 100 kHz	: Mode Au M1[1	uto Swee 1]			-5.81 dB 180010 GI -55.34 dB	im Hz			
S0 dBm M2 M4 -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm Marker -50 dBm -50 dBm M1 1 2.4930 GHz -5.91 dBm M2 1 2.4935 GHz -55.03 dBm M3 1 -55.03 dBm -55.23 B dBm	Ref Level Att Count 300/3 1Pk View 10 dBm - 10 dBm -20 dBm - 0	20.00 dBm 20 dB 300	Offset 1: SWT	5.24 dB 🖷	RBW 100 kHz	: Mode Au M1[1	uto Swee 1]			-5.81 dB 180010 GI -55.34 dB	im Hz			
Store Store <th< td=""><td>Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm</td><td>20.00 dBm 20 dB 300</td><td>Offset 1: SWT</td><td>5.24 dB 🖷</td><td>RBW 100 kHz</td><td>: Mode Au M1[1</td><td>uto Swee 1]</td><td></td><td></td><td>-5.81 dB 180010 GI -55.34 dB</td><td>im Hz</td><td></td><td></td></th<>	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB 300	Offset 1: SWT	5.24 dB 🖷	RBW 100 kHz	: Mode Au M1[1	uto Swee 1]			-5.81 dB 180010 GI -55.34 dB	im Hz			
No. No. No. No. -60 dBm -00 dBm -00 dBm -70 dBm -00 dBm -00 dBm Start 2.47 GHz 691 pts Stop 2.55 GHz Marker	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 20 dB 300	Offset 1: SWT	5.24 dB 🖷	RBW 100 kHz	: Mode Au M1[1	uto Swee 1]			-5.81 dB 180010 GI -55.34 dB	im Hz			
Type Eff Trc X-value Y-value Function Function Result Marker 1 2.48001 GHz -55.34 dBm -55.34 dBm -55.34 dBm M3 1 2.5 GHz -54.06 dBm -52.38 dBm -52.38 dBm	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 20 dB 300	Offset 1: SWT	5.24 dB 🖷	RBW 100 kHz	: Mode Au M1[1	uto Swee 1]		2.4 M4	-5.81 dB 180010 GI -55.34 dB	im Hz			
Start 2.47 GHz 691 pts Stop 2.55 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.44001 GHz -55.34 dBm - - - - M2 1 2.4305 GHz -55.34 dBm - - - - M3 1 2.5 GHz -54.06 dBm - - - - M4 1 2.537014 GHz -52.38 dBm - - - - -	Ref Level Att Count 300/3 Plk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 20 dB 300	Offset 13 SWT	5.24 dB • 1.1 ms •	RBW 100 kHz VBW 300 kHz	Mode Au M1[1 M2[1	1] 1]	P	2.4 M4	-5.81 dB 80010 G 55.34 dB 83500 G	m Hz Hz			
Start 2.47 GHz 691 pts Stop 2.55 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.44001 GHz -55.34 dBm - - - - M2 1 2.4305 GHz -55.34 dBm - - - - M3 1 2.5 GHz -54.06 dBm - - - - M4 1 2.537014 GHz -52.38 dBm - - - - -	Ref Level Att Count 300/3 Plk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 20 dB 300	Offset 13 SWT	5.24 dB • 1.1 ms •	RBW 100 kHz VBW 300 kHz	Mode Au M1[1 M2[1	1] 1]	P	2.4 M4	-5.81 dB 80010 G 55.34 dB 83500 G	m Hz Hz			
Marker Yuge Ref Trc X-value Y-value Function Function Result M1 1 2.4800 GHz -5.81 dBm M2 1 2.4835 GHz -55.81 dBm M3 1 2.6 GHz -54.06 dBm M4 1 2.537014 GHz -52.38 dBm <td>Ref Level Att Count 300/3 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm</td> <td>20.00 dBm 20 dB 300</td> <td>Offset 13 SWT</td> <td>5.24 dB • 1.1 ms •</td> <td>RBW 100 kHz VBW 300 kHz</td> <td>Mode Au M1[1 M2[1</td> <td>1] 1]</td> <td>P</td> <td>2.4 M4</td> <td>-5.81 dB 80010 G 55.34 dB 83500 G</td> <td>m Hz Hz</td> <td></td> <td></td>	Ref Level Att Count 300/3 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 20 dB 300	Offset 13 SWT	5.24 dB • 1.1 ms •	RBW 100 kHz VBW 300 kHz	Mode Au M1[1 M2[1	1] 1]	P	2.4 M4	-5.81 dB 80010 G 55.34 dB 83500 G	m Hz Hz			
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.4800 GHz -5.81 dBm -5.84 dBm -5.91 dBm M2 1 2.4835 GHz -55.34 dBm -55.44 dBm -55.44 dBm M3 1 2.5 GHz -55.40 dBm -54.06 dBm -54.06 dBm M4 1 2.537014 GHz -52.38 dBm -52.38 dBm -52.38 dBm	Ref Level Att Count 300/3 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 20 dB 300	Offset 13 SWT	5.24 dB • 1.1 ms •	RBW 100 kHz VBW 300 kHz	Mode Au M1[1 M2[1	1] 1]	P	2.4 M4	-5.81 dB 80010 G 55.34 dB 83500 G	m Hz Hz			
Type Ref Trc X-value Y-value Function Function Result M1 1 2.46001 GHz -5.81 dBm -5.34 dB	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm	20.00 dBm 20 dB 300	Offset 13 SWT	5.24 dB • 1.1 ms •	RBW 100 kHz VBW 300 kHz	Mode Au M1[1 	1] 1]	P	2,4	-5.81 dB	m Hz m Hz			
M2 1 2:4835 GHz -55:34 dBm M3 1 2:5 GHz -54:06 dBm M4 1 2:537014 GHz -52:38 dBm	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -50 dBm -70 dBm -70 dBm Start 2.47 C	20.00 dBm 20 dB 300	Offset 13 SWT	5.24 dB • 1.1 ms •	RBW 100 kHz VBW 300 kHz	Mode Au M1[1 	1] 1]	P	2,4	-5.81 dB	m Hz m Hz			
M3 1 2.5 GHz -54.06 dBm M4 1 2.537014 GHz -52.38 dBm	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -50 dBm -70 dBm -70 dBm -70 dBm Type [Ref	20.00 dBm 20 dB 300	Offset 1: SWT	5.24 dB	RBW 100 kHz VBW 300 kHz	Mode Au M1[: M2[: M2[: M2[: Ks	1] 1]	р	M4 Stop	-5.81 dB 60010 G 55.34 dB 83500 G 	m Hz m Hz			
M4 1 2.537014 GHz -52.38 dBm	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.47 C Marker Type Ref	20.00 dBm 20 dB 300	dBm dBm dBm 2.4600	5.24 dB 1.1 ms 1.1 ms 1.	RBW 100 kHz VBW 300 kHz 200 kH	Mode AL M1[] M2[] m2[] m2[] m2[] m2[] m2[] m2[] m2[] m	1] 1]	р	M4 Stop	-5.81 dB 60010 G 55.34 dB 83500 G 	m Hz m Hz			
Date: 21.JUL.2021 11:49:42	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm -70 dBm Type [Ref M1 M2	20.00 dBm 20 dB 300 M1 25,810 M2 3Hz Trc 1 3	dBm	5.24 dB 1.1 ms 1.1 m	RBW 100 kHz VBW 300 kHz VBW 300 kHz 691 pt 691 pt Y-value -55.34 dBm	Mode AL M1[1 M2[1 M2[1 M2[1 S	1] 1]	р	M4 Stop	-5.81 dB 60010 G 55.34 dB 83500 G 	m Hz m Hz			
pafe: 51.000.5051 11:42.45	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 2.47 C Marker Type M1 M2	20.00 dBm 20 dB 300 MI 20 dB 300 MI 20 dB 300 MI 20 dB 300 300 300 300 300 311 25,810 4 311 311 311 311 311 311 311 311 311 3	Offset 1: SWT	5.24 dB = 1.1 ms = 1.1 ms =	RBW 100 kHz VBW 300 kHz VBW 300 kHz Comparison Comparis	Mode Au M1[] M2[] M2[] M2[] KS	1] 1]	р	M4 Stop	-5.81 dB 60010 G 55.34 dB 83500 G 	m Hz m Hz			
	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm Start 2.47 C M1 M2 M3	20.00 dBm 20 dB 300 M1 1 -25.810 01 -25.810 1 -25.810 3Hz 3Hz	Offset 1: SWT dBm dBm 2.4800 2.4800 2.4830 2.4830 2.4830	5.24 dB = 1.1 ms = 1.1 ms =	RBW 100 kHz VBW 300 kHz VBW 300 kHz Comparison Comparis	Mode Au M1[] M2[] M2[] M2[] KS	1] 1]	р	M4 Stop	-5.81 dB 60010 G 55.34 dB 83500 G 	m Hz m Hz			
	Ref Level Att Count 300/3 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm Start 2.47 C M1 M2 M3	20.00 dBm 20 dB 300 M1 1 -25.810 01 -25.810 1 -25.810 3Hz 3Hz	Offset 1: SWT dBm dBm 2.4800 2.4800 2.4830 2.4830 2.4830	5.24 dB = 1.1 ms = 1.1 ms =	RBW 100 kHz VBW 300 kHz VBW 300 kHz Comparison Comparis	Mode Au M1[] M2[] M2[] M2[] KS	1] 1]	р	M4 Stop	-5.81 dB 60010 G 55.34 dB 83500 G 	m Hz m Hz			

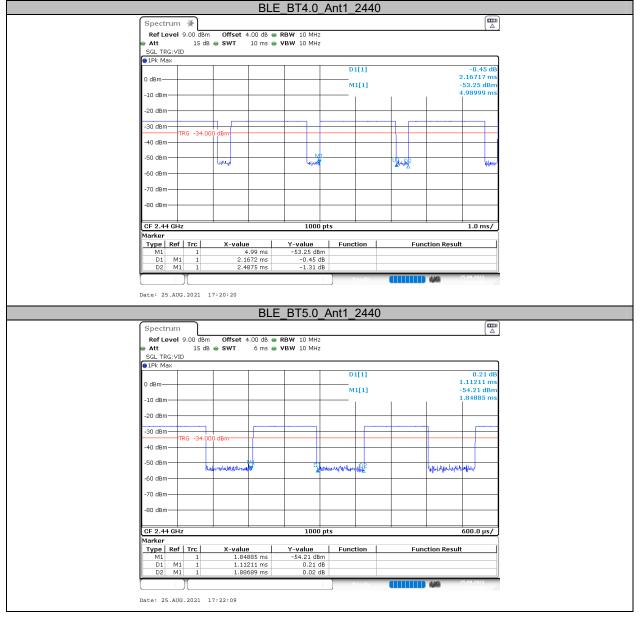
FCC Part 15.247

Page 42 of 44

Report No.: SZ1210701-26663E-RF-00B

FCC Part 15.247

Page 43 of 44


Report No.: SZ1210701-26663E-RF-00B

Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
BLE_1M	Ant1	2440	2.17	2.49	87.15
BLE_2M	Ant1	2440	1.11	1.89	58.73

Test Graphs

***** END OF REPORT *****