

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101634

FCC REPORT (WIFI)

Applicant: TECNO MOBILE LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35

SHAN MEI STREET FOTAN NT

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: BD4

Trade mark: TECNO

FCC ID: 2ADYY-BD4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Aug., 2021

Date of Test: 28 Aug., to 08 Sep., 2021

Date of report issued: 08 Sep., 2021

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	08 Sep., 2021	Original

Tested by:	_Mike.ou	Date:	08 Sep., 2021	
	Test Engineer			

Winner Thang
Project Engineer Reviewed by: Date: 08 Sep., 2021

Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
	3 CONTENTS	•
	4 TEST SUMMARY	
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T	
	5.3 TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLA	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 LABORATORY FACILITY	
	5.7 LABORATORY LOCATION	
	5.8 TEST INSTRUMENTS LIST	7
6	6 TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT	8
	6.2 CONDUCTED EMISSION	
	6.3 CONDUCTED OUTPUT POWER	
	6.4 OCCUPY BANDWIDTH	13
	6.5 POWER SPECTRAL DENSITY	14
	6.6 BAND EDGE	
		15
		16
	6.7 Spurious Emission	
		29
		30
7	7 TEST SETUP PHOTO	36
8	8 EUT CONSTRUCTIONAL DETAILS	38
_		

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass
Power Spectral Density	15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass
Conducted Band Edge	45 247 (4)	Appendix A – 2.4G Wi-Fi	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	15 205 8 15 200	Appendix A – 2.4G Wi-Fi	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	BD4
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 72.2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0dBi
Power supply:	Rechargeable Li-ion Polymer Battery DC3.85V, 4900mAh
AC adapter:	Model: A8-501000
	Input: AC100-240V, 50/60Hz, 200mA
	Output: DC 5.0V, 1.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.

5.3 Test environment and mode, and test samples plans

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

the LOT in transmitting operation, which was shown in this test report and defined as follows.							
Per-scan all kind of data rate, the follow list were the worst case.							
Mode	Mode Data rate						
802.11b		1Mbps					
802.11g		6Mbps					
802.11n(HT2	0)	6.5Mbps					
Test Samples Plans:							
Samples Number	Samples Number Used for Test Items						
3#	Conducted measurer	ments test method					
1#	Radiated measureme	ents test method					
1# EUT constructional details							
Remark: Jian Yan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.							

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

or measurement entertainty	
Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	07-02-2021	07-01-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-26-2021	06-25-2022
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-16-2021	07-15-2022
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40)

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2021	06-17-2022
Cable	HP	10503A	N/A	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	Version: 6.110919b		

Conducted method:										
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021					
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021					
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021					
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021					
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021					
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A					
PDU	MWRF-test	XY-G10	N/A	N/A	N/A					
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0							
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

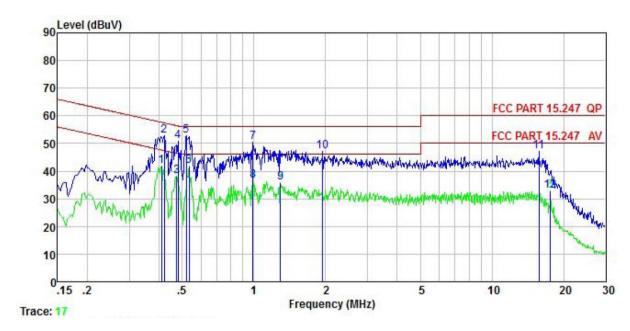
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

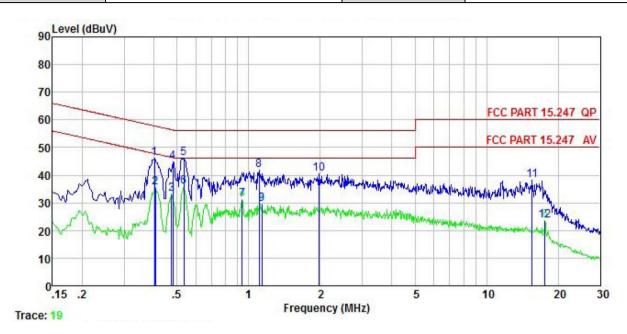
6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.2	207							
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz							
Class / Severity:	Class B	Class B							
Receiver setup:	RBW=9 kHz, VBW=30 kHz								
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarit	hm of the frequency.							
Test procedure	line impedance stabiliz 50ohm/50uH coupling 2. The peripheral devices LISN that provides a 50 termination. (Please re photographs). 3. Both sides of A.C. line interference. In order to positions of equipment	LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).							
Test setup:	LISN	st	er — AC power						
Test Instruments:	Refer to section 5.9 for deta	ails							
Test mode:	Refer to section 5.3 for deta	ails							
Test results:	Passed								

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data:

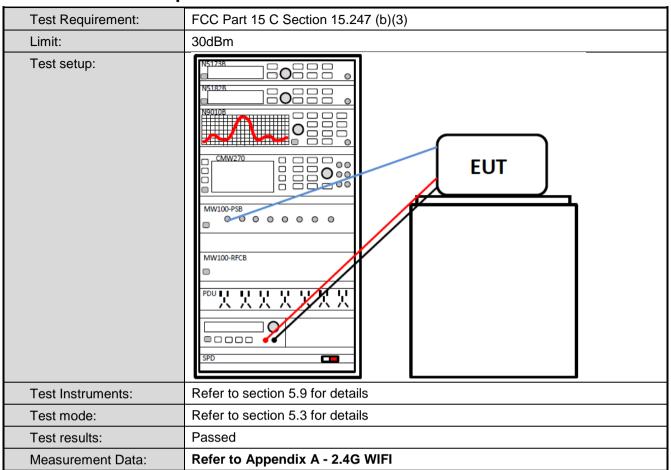
Product name:	Mobile Phone	Product model:	BD4
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu₹	₫B	₫B	₫B	dBu₹	dBu₹	dB	
1	0.410	31.08	10.28	0.33	0.04	41.73	47.64		Average
2	0.421	42.31	10.28	0.25	0.04	52.88	57.42	-4.54	
3	0.474	28.05	10.29	-0.18	0.03	38.19	46.45	-8.26	Average
4	0.481	40.71	10.29	-0.24	0.03	50.79	56.32	-5.53	QP
2 3 4 5	0.521	42.87	10.29	-0.36	0.03	52.83	56.00	-3.17	QP
6	0.535	31.73	10.29	-0.36	0.03	41.69	46.00	-4.31	Average
7	0.989	39.60	10.32	0.42	0.05	50.39	56.00	-5.61	
6 7 8 9	0.989	25.74	10.32	0.42	0.05	36.53	46.00		Average
9	1.296	25.22	10.32	0.17	0.11	35.82	46.00		Average
10	1.949	36.81	10.33	-0.29	0.20	47.05	56.00	-8.95	
11	15.718	33.08	10.79	3.22	0.15	47.24		-12.76	
12	17.568	19.88	10.85	2.13	0.15	33.01		-16.99	

Notes:

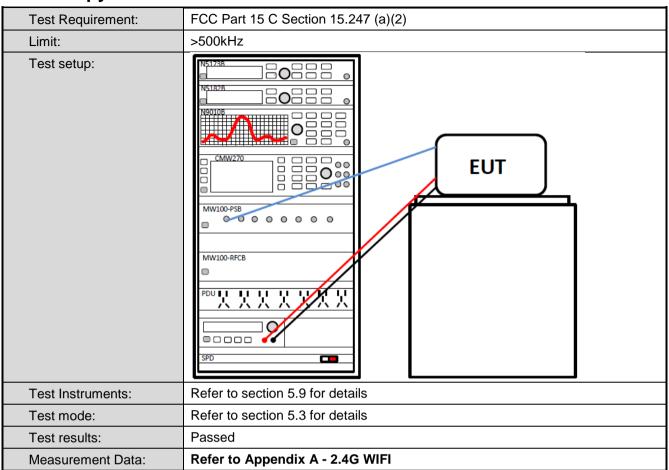
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	BD4
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

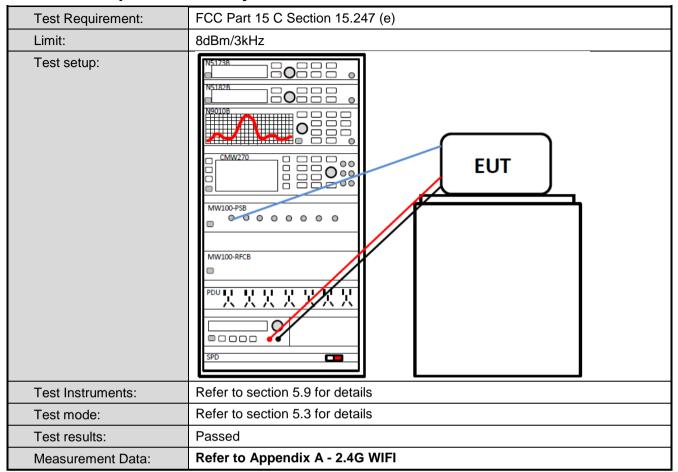

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	dB	āĒ	dB	dBu₹	₫₿u₹	dB	
1	0.402	35.92	10.27	-0.06	0.04	46.17	57.81	-11.64	QP
2	0.406	25.33	10.27	-0.05	0.04	35.59	47.73	-12.14	Average
3	0.474	22.84	10.28	0.01	0.03	33.16	46.45	-13.29	Average
4	0.481	34.41	10.28	0.02	0.03	44.74	56.32	-11.58	QP
5	0.535	35.87	10.28	0.03	0.03	46.21	56.00	-9.79	QP
1 2 3 4 5 6 7 8 9	0.535	25.68	10.28	0.03	0.03	36.02	46.00	-9.98	Average
7	0.938	20.67	10.31	0.07	0.04	31.09	46.00	-14.91	Average
8	1.106	31.37	10.31	0.09	0.07	41.84	56.00	-14.16	QP
9	1.135	18.98	10.31	0.10	0.08	29.47	46.00	-16.53	Average
10	1.970	29.91	10.32	0.17	0.21	40.61	56.00	-15.39	QP
11	15.552	24.50	10.75	2.79	0.15	38.19	60.00	-21.81	QP
12	17.568	11.11	10.81	1.55	0.15	23.62	50.00	-26.38	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power



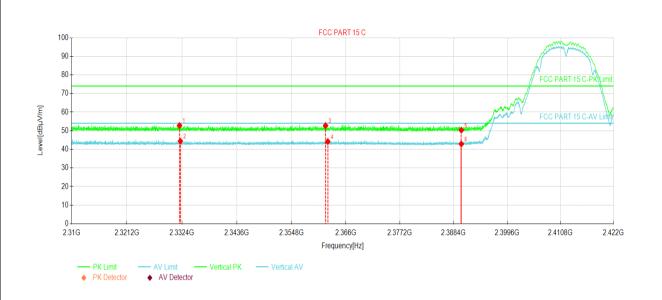
6.4 Occupy Bandwidth

6.5 Power Spectral Density

6.6 Band Edge

6.6.1 Conducted Emission Method

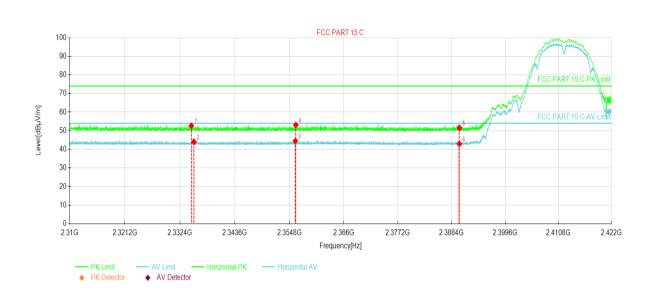
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS112B					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					


6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Frequency Range:	2310 MHz to 2390	2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz							
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VBW					
	Above 1GHz	Peak	1MHz	3MHz	+				
Limite	Frequency	RMS	<u> 1MHz </u>	3MHz	z Average Value Remark				
Limit:			54.00	3111)	Average Value				
	Above 1GH		74.00		Peak Value				
Test procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 								
Test setup:	- 150cm	AE EUT (Turntable)	Ground Reference Plane		na Tower				
Test Instruments:	Refer to section 5	.9 for details							
Test mode:	Refer to section 5	.3 for details							
Test results:	Passed								

802.11b mode:

Product Name:	Mobile Phone	Product Model:	BD4
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace₽	Polarity₽
1₽	2331.88	45.90₽	52.79₽	6.89₽	74.00₽	21.21₽	PK₽	Vertical₽
2₽	2332.06	37.50₽	44.39₽	6.89₽	54.00₽	9.61₽	AV₽	Vertical₽
3₽	2361.82	45.77₽	52.75₽	6.98₽	74.00₽	21.25₽	PK₽	Vertical₽
4.₽	2362.29	37.19₽	44.18₽	6.99₽	54.00₽	9.82₽	AV₽	Vertical₽
5₽	2390.01	43.23₽	50.31₽	7.08₽	74.00₽	23.69₽	PK₽	Vertical₽
6₽	2390.01	35.81₽	42.89₽	7.08₽	54.00₽	11.11₽	AV₽	Vertical₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	BD4
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∂	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∂	Trace₽	Polarity∉
1₽	2334.71	45.77₽	52.66₽	6.89₽	74.00₽	21.34₽	PK₽	Horizontal₽
2₽	2335.24	37.14₽	44.04₽	6.90₽	54.00₽	9.96₽	AV₽	Horizontal₽
3₽	2356.01	37.56₽	44.52₽	6.96₽	54.00₽	9.48₽	AV₽	Horizontal₽
4.₽	2356.11	46.10₽	53.07₽	6.97₽	74.00₽	20.93₽	PK₽	Horizontal₽
5₽	2390.01	44.45₽	51.53₽	7.08₽	74.00₽	22.47₽	PK₽	Horizontal₽
6₽	2390.01	35.87₽	42.95₽	7.08₽	54.00₽	11.05₽	AV₽	Horizontal₽

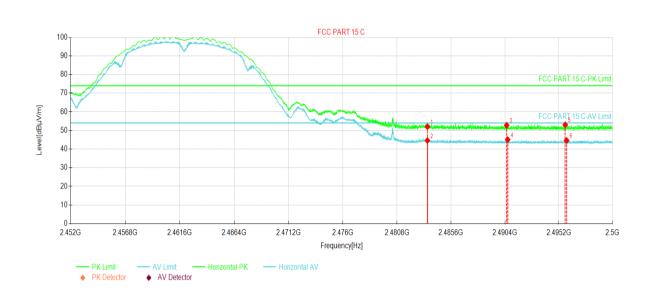
Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 18 of 38

Product Name:	Mobile Phone	Product Model:	BD4
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.₽	Freq.	Reading	Level⊬	Factor	Limit⊬	Margin⊬	Trace₽	Polarity <i></i>
110.	[MHz]∂	[dBµV/m]∂	[dBµV/m]₽	[dB]₽	[dBµV/m]∂	[dB]₽	Hucc.	1 olulity*
1₽	2483.50	43.41₽	51.10₽	7.69₽	74.00₽	22.90₽	PK₽	Vertical₽
2₽	2483.50	37.47₽	45.16₽	7.69₽	54.00₽	8.84₽	AV₽	Vertical₽
3₽	2490.86	45.68₽	53.42₽	7.74₽	74.00₽	20.58₽	PK₽	Vertical₽
4.₽	2490.88	37.02₽	44.76₽	7.74₽	54.00₽	9.24₽	AV₽	Vertical₽
5₽	2496.01	36.76₽	44.53₽	7.77₽	54.00₽	9.47₽	AV₽	Vertical₽
6₽	2496.17	44.70₽	52.47₽	7.77₽	74.00₽	21.53₽	PK₽	Vertical₽

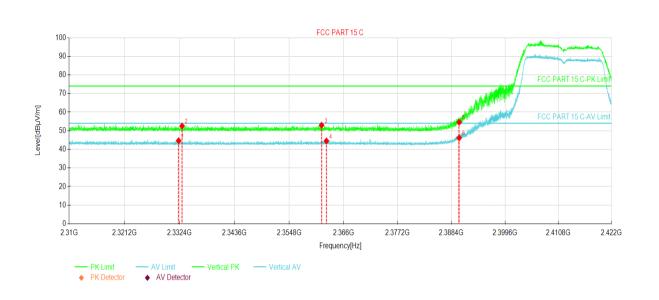

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Mobile Phone	Product Model:	BD4
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

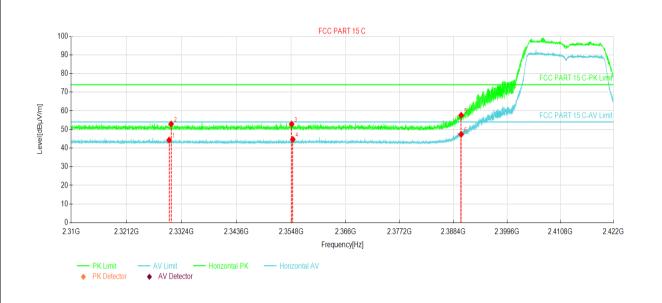
NO.₽	Freq.↓ [MHz]↓	Reading√ [dBµV/m]√	Level. [dBµV/m].	Factor⊬ [dB]⊭	Limit⊬ [dBµV/m]⊬	Margin. [dB].	Trace₽	Polarity₽
1₽	2483.50	44.31₽	52.00₽	7.69₽	74.00₽	22.00₽	PK₽	Horizontal -
2₽	2483.50	36.91₽	44.60₽	7.69₽	54.00₽	9.40₽	AV₽	Horizontal₽
3₽	2490.55	45.01₽	52.74₽	7.73₽	74.00₽	21.26₽	PK₽	Horizontal₽
4.₽	2490.64	37.33₽	45.07₽	7.74₽	54.00₽	8.93₽	AV₽	Horizontal₽
5₽	2495.77	45.23₽	53.00₽	7.77₽	74.00₽	21.00₽	PK₽	Horizontal₽
6₽	2495.89	36.84₽	44.61₽	7.77₽	54.00₽	9.39₽	AV₽	Horizontal₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g mode:

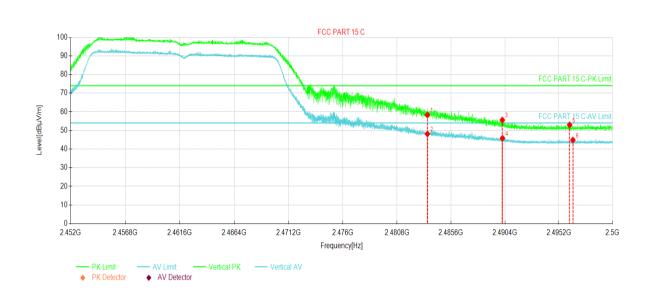
Product Name:	Mobile Phone	Product Model:	BD4
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


NO.₽	Freq.⊌ [MHz]⊌	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]₄	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace₽	Polarity
1₽	2332.19	37.72₽	44.61₽	6.89₽	54.00₽	9.39₽	AV₽	Vertical₽
2₽	2332.89	45.63₽	52.52₽	6.89₽	74.00₽	21.48₽	PK₽	Vertical₽
3₽	2361.47	45.98₽	52.96₽	6.98₽	74.00₽	21.04₽	PK₽	Vertical₽
4₽	2362.47	37.50₽	44.49₽	6.99₽	54.00₽	9.51₽	AV₽	Vertical₽
5₽	2390.01	47.50₽	54.58₽	7.08₽	74.00₽	19.42₽	PK₽	Vertical₽
6₽	2390.01	39.12₽	46.20₽	7.08₽	54.00₽	7.80₽	AV₽	Vertical₽

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	BD4
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

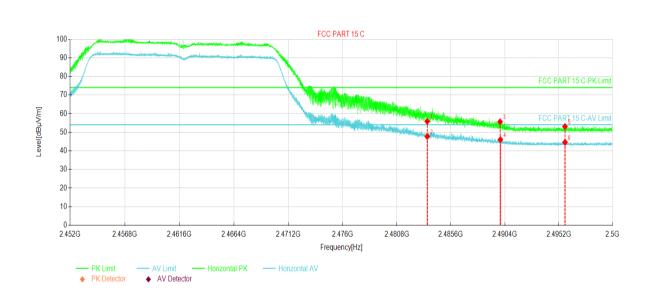

NO.	Freq.⊬ [MHz]∂	Reading⊬ [dBµV/m]⊬	Level [dBµV/m]∂	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]⊲	Margin⊬ [dB]⊬	Trace₽	Polarity∉
1₽	2329.85	37.40₽	44.28₽	6.88₽	54.00₽	9.72₽	AV₽	Horizontal₽
2₽	2330.25	46.03₽	52.91₽	6.88₽	74.00₽	21.09₽	PK₽	Horizontal₽
3₽	2354.89	45.89₽	52.85₽	6.96₽	74.00₽	21.15₽	PK₽	Horizontal₽
4.₽	2355.13	37.69₽	44.65₽	6.96₽	54.00₽	9.35₽	AV₽	Horizontal₽
5₽	2390.01	50.51₽	57.59₽	7.08₽	74.00₽	16.41₽	PK₽	Horizontal₽
6₽	2390.01	40.33₽	47.41₽	7.08₽	54.00₽	6.59₽	AV₽	Horizontal₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	BD4	
Test By:	Mike	Test mode:	802.11g Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]₽	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity∂
1₽	2483.50	50.64₽	58.33₽	7.69₽	74.00₽	15.67₽	PK₽	Vertical₽
2₽	2483.50	40.43₽	48.12₽	7.69₽	54.00₽	5.88₽	AV₽	Vertical₽
3₽	2490.16	47.87₽	55.60₽	7.73₽	74.00₽	18.40₽	PK₽	Vertical₽
4.₽	2490.17	38.08₽	45.81₽	7.73₽	54.00₽	8.19₽	AV₽	Vertical₽
5₽	2496.16	45.20₽	52.97₽	7.77₽	74.00₽	21.03₽	PK₽	Vertical₽
6₽	2496.46	37.06₽	44.84₽	7.78₽	54.00₽	9.16₽	AV₽	Vertical₽

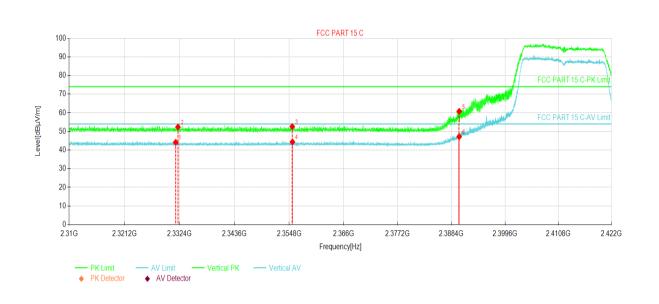

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Mobile Phone	Product Model:	BD4
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

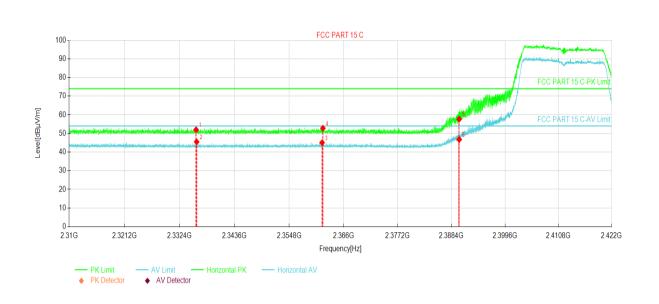
NO.	Freq.⊬ [MHz]∂	Reading⊮ [dBµV/m]⊮	Level⊬ [dBµV/m]₽	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊲	Margin⊬ [dB]⊬	Trace₽	Polarity₀
1₽	2483.50	48.15₽	55.84₽	7.69₽	74.00₽	18.16₽	PK₽	Horizontal₽
2↩	2483.50	40.04₽	47.73₽	7.69₽	54.00₽	6.27₽	AV₽	Horizontal₽
3₽	2489.97	47.87₽	55.60₽	7.73₽	74.00₽	18.40₽	PK₽	Horizontal₽
4.₽	2490.00	38.29₽	46.02₽	7.73₽	54.00₽	7.98₽	AV₽	Horizontal₽
5₽	2495.75	45.29₽	53.06₽	7.77₽	74.00₽	20.94₽	PK₽	Horizontal₽
6₽	2495.76	36.81₽	44.58₽	7.77₽	54.00₽	9.42₽	AV₽	Horizontal₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT20):

Product Name:	Mobile Phone	Product Model:	BD4	
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

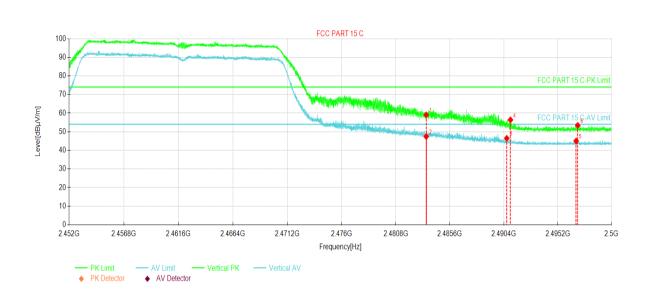

NO.₽	Freq.⊬ [MHz]	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace∂	Polarity∂
1₽	2331.58	37.26₽	44.14₽	6.88₽	54.00₽	9.86₽	AV₽	Vertical₽
2↩	2332.05	45.49₽	52.38₽	6.89₽	74.00₽	21.62₽	PK₽	Vertical₽
3₽	2355.43	45.63₽	52.59₽	6.96₽	74.00₽	21.41₽	PK₽	Vertical₽
4₽	2355.47	37.41₽	44.37₽	6.96₽	54.00₽	9.63₽	AV₽	Vertical₽
5₽	2390.01	53.68₽	60.76₽	7.08₽	74.00₽	13.24₽	PK₽	Vertical₽
6₽	2390.01	40.11₽	47.19₽	7.08₽	54.00₽	6.81₽	AV₽	Vertical₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Mobile Phone	Product Model:	BD4	
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Lowest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]₽	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊲	Margin⊬ [dB]∉	Trace₽	Polarity₀
1₽	2335.74	45.08₽	51.98₽	6.90₽	74.00₽	22.02₽	PK₽	Horizontal₽
2↩	2335.85	38.59₽	45.49₽	6.90₽	54.00₽	8.51₽	AV₽	Horizontal₽
3₽	2361.57	38.06₽	45.04₽	6.98₽	54.00₽	8.96₽	AV₽	Horizontal₽
4₽	2361.74	45.82₽	52.80₽	6.98₽	74.00₽	21.20₽	PK₽	Horizontal₽
5₽	2390.01	50.61₽	57.69₽	7.08₽	74.00₽	16.31₽	PK₽	Horizontal₽
6₽	2390.01	39.65₽	46.73₽	7.08₽	54.00₽	7.27₽	AV₽	Horizontal₽

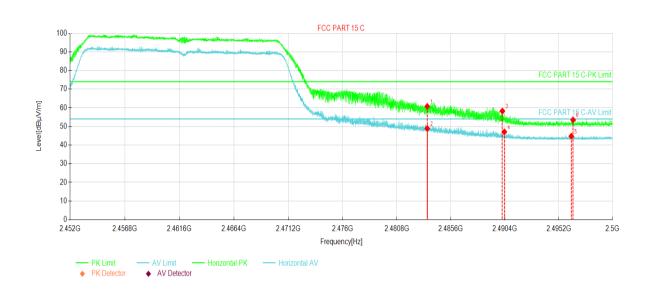

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Mobile Phone	Product Model:	BD4		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization: Vertical			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

NO.₽	Freq.⊌ [MHz]⊌	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]₽	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity∉
1₽	2483.50	51.36₽	59.05₽	7.69₽	74.00₽	14.95₽	PK₽	Vertical₽
2₄೨	2483.50	39.75₽	47.44₽	7.69₽	54.00₽	6.56₽	AV₽	Vertical₽
3₽	2490.65	38.70₽	46.44₽	7.74₽	54.00₽	7.56₽	AV₽	Vertical₽
4.₽	2490.98	48.63₽	56.37₽	7.74₽	74.00₽	17.63₽	PK₽	Vertical₽
5₽	2496.84	37.26₽	45.04₽	7.78₽	54.00₽	8.96₽	AV₽	Vertical₽
6₽	2496.98	45.60₽	53.38₽	7.78₽	74.00₽	20.62₽	PK₽	Vertical₽


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Mobile Phone	Product Model:	BD4	
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Highest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]₄	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊲	Margin⊬ [dB]⊬	Trace₽	Polarity∂
1₽	2483.50	53.06₽	60.75₽	7.69₽	74.00₽	13.25₽	PK₽	Horizontal₽
2↩	2483.50	41.23₽	48.92₽	7.69₽	54.00₽	5.08₽	AV₽	Horizontal₽
3₽	2490.17	50.51₽	58.24₽	7.73₽	74.00₽	15.76₽	PK₽	Horizontal₽
4₽	2490.35	39.33₽	47.06₽	7.73₽	54.00₽	6.94₽	AV₽	Horizontal₽
5₽	2496.32	36.96₽	44.73₽	7.77₽	54.00₽	9.27₽	AV₽	Horizontal₽
6₽	2496.47	45.73₽	53.51₽	7.78₽	74.00₽	20.49₽	PK₽	Horizontal₽

Remark:

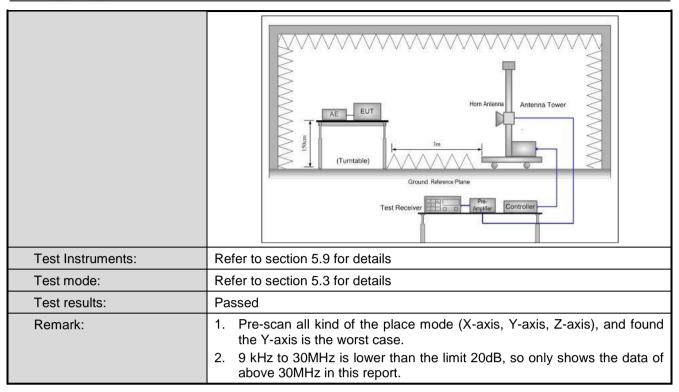
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.				
Test setup:	NS1173R				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Measurement Data:	Refer to Appendix A - 2.4G WIFI				

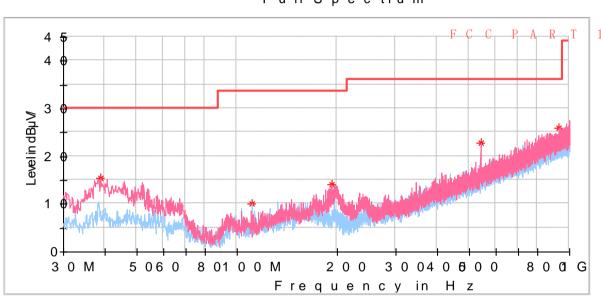

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Test Requirement:	FCC Part 15 C Se	ection 15.2	:09 an	d 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detecto	or	RBW	V	BW	Remark
	30MHz-1GHz	Quasi-peak		120KHz	300	OKHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz	3MHz		Peak Value
	Above IGIIZ	RMS	i	1MHz	31	ИHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @10)m)		Remark
	30MHz-88MH			30.0			uasi-peak Value
	88MHz-216MH			33.5			uasi-peak Value
	216MHz-960M			36.0			uasi-peak Value
	960MHz-1GH	1Z	Limi	44.0	\	Q	uasi-peak Value
	Frequency		LIIIIII	t (dBuV/m @3) 54.0	111)		Remark Average Value
	Above 1GHz	<u> </u>		74.0		, , , , , , , , , , , , , , , , , , ,	Peak Value
Test Procedure:	1. The EUT w	as placed	d on		a rot	tating	table 0.8m(below
Test setup:	(below 1GHz 360 degrees 2. The EUT wa away from the top of a v 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to maximum reasonable of the EUT wou 10dB margin average meth	c) or 3 meter to determine set 10 me interfere tariable-heicheight is vermine the determine the determine the determine the determine the determine the determine we table was trading. So we will be reported by the next to determine the dete	er cha ine the meters ence-r ight a varied e max polariz mission vas turned turned the El ting corted. (re-tes	mber(above e position of the position of the school of the position of the school of the position of the posit	the hideline	z). The ghest r 3 me which of our managed managed managed ct Functions 100 me sing peaking pea	ters(above 1GHz) was mounted on neters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the ction and dB lower than the beak values of that did not have ak, quasi-peak or
	Below 1GHz EUT Turn Table Ground Pl. Above 1GHz		m 1m			Searc Anter	nna :

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 31 of 38



Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	BD4		
Test By:	Mike	Test mode:	Wi-Fi Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

•	Frequency↓ (MHz)₽	MaxPeak↓ (dB ₩V/m)∂	Limit↓ (dB ⊬ V /m)∂	Margin↓ (dB)∂	Height↓ (cm)₽	Pol∉	Azimuth↓ (deg)₽	Corr.↓ (dB/m)₽
•	38.827000₽	15.54₽	30.00₽	14.46₽	100.0₽	V₽	0.0₽	-15.9₽
•	110.510000₽	10.03₽	33.50₽	23.47₽	100.0₽	H₽	0.0₽	-18.0↔
	192.087000₽	14.16₽	33.50₽	19.34₽	100.0₽	V₽	182.0↩	-17.9₽
•	540.0260004	22.93₽	36.00₽	13.07₽	100.0₽	V₄∍	118.0₽	-8.0↔
	931.615000₽	26.06₽	36.00₽	9.94₽	100.0₽	V₊⊃	144.0↵	-0.3₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Above 1GHz

			802.11b				
		Test ch	annel: Lowest ch	nannel			
		De	tector: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4824.00	55.58	-9.46	46.12	74.00	27.88	Vertical	
4824.00	56.11	-9.46	46.65	74.00	27.35	Horizontal	
	Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4824.00	47.52	-9.46	38.06	54.00	15.94	Vertical	
4824.00	47.84	-9.46	38.38	54.00	15.62	Horizontal	
Test channel: Middle channel							

I			Test ch	annel: Middle ch	nannel		
I			De	tector: Peak Valu	ie		
	Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
	4874.00	55.44	-9.11	46.33	74.00	27.67	Vertical
	4874.00	56.50	-9.11	47.39	74.00	26.61	Horizontal
			Dete	ctor: Average Va	alue		
	Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
	4874.00	47.21	-9.11	38.10	54.00	15.90	Vertical
	4874.00	47.48	-9.11	38.37	54.00	15.63	Horizontal
- 1							

		Test cha	annel: Highest cl	nannel		
		De	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	55.05	-8.74	46.31	74.00	27.69	Vertical
4924.00	56.64	-8.74	47.90	74.00	26.10	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	47.33	-8.74	38.59	54.00	15.41	Vertical
4924.00	46.98	-8.74	38.24	54.00	15.76	Horizontal

Remark:

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11g			
		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	55.13	-9.46	45.67	74.00	28.33	Vertical
4824.00	56.45	-9.46	46.99	74.00	27.01	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	47.12	-9.46	37.66	54.00	16.34	Vertical
4824.00	46.71	-9.46	37.25	54.00	16.75	Horizontal
		Test ch	annel: Middle ch	nannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	54.93	-9.11	45.82	74.00	28.18	Vertical
4874.00	56.71	-9.11	47.60	74.00	26.40	Horizontal
		Dete	ctor: Average Va	alue		_
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	46.94	-9.11	37.83	54.00	16.17	Vertical
4874.00	46.25	-9.11	37.14	54.00	16.86	Horizontal
		Test ch	annel: Highest cl	hannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	55.38	-8.74	46.64	74.00	27.36	Vertical
4924.00	56.24	-8.74	47.50	74.00	26.50	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	46.48	-8.74	37.74	54.00	16.26	Vertical
4924.00	46.70	-8.74	37.96	54.00	16.04	Horizontal
Remark: 1. Final Level = F	Receiver Read level	+ Factor.				

^{1.} Final Level = Receiver Read level + Factor.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11n(HT20)			
			annel: Lowest ch			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	ector: Peak Valu Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	54.96	-9.46	45.50	74.00	28.50	Vertical
4824.00	56.07	-9.46	46.61	74.00	27.39	Horizont
40 2 4.00	00.07	1	ctor: Average Va		27.00	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizati
4824.00	46.81	-9.46	37.35	54.00	16.65	Vertica
4824.00	47.18	-9.46	37.72	54.00	16.28	Horizont
		Test ch	annel: Middle ch	annel		
		Det	ector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizat
4874.00	54.81	-9.11	45.70	74.00	28.30	Vertica
4874.00	56.12	-9.11	47.01	74.00	26.99	Horizont
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizat
4874.00	46.90	-9.11	37.79	54.00	16.21	Vertica
4874.00	47.00	-9.11	37.89	54.00	16.11	Horizont
			annel: Highest ch			
	Dandlaud	Det	ector: Peak Valu		Maraia	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizat
4924.00	55.05	-8.74	46.31	74.00	27.69	Vertica
4924.00	56.47	-8.74	47.73	74.00	26.27	Horizont
		Dete	ctor: Average Va			_
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizat
4924.00	46.79	-8.74	38.05	54.00	15.95	Vertica
	47.12	-8.74	38.38	54.00	15.62	Horizont

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

8 EUT Constructional Details

Reference to the test report No.: JYTSZB-R12-2101630.

-----End of report-----