

FCC PART 15.247 TEST REPORT

For

TECNO MOBILE LIMITED

FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN MEI STREET FOTAN NT Hong Kong

FCC ID: 2ADYY-B1PRO

Report Type:

Original Report

Wireless Earphone

Report Number: SZ1211012-52322E-RF-00

Report Date: 2021-11-15

Candy Li

Reviewed By: RF Engineer

Prepared By: Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: (0755) 26503290

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★". Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

Fax: (0755) 26503396 Http://www.atc-lab.com

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
-	
FCC§15.247 (i), §1.1307 (b) (1) &\$2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	13
APPLICABLE STANDARD	13
EUT Setup	
EMI Test Receiver Setup	
TEST PROCEDURE	
CORRECT FACTOR & MARGIN CALCULATION TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUPEMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
FACTOR & MARGIN CALCULATION	
TEST DATA	18
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	23
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	23
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	24
APPLICABLE STANDARD	24
TEST PROCEDURE	
Test Data	24

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	26
APPLICABLE STANDARD	26
Test Procedure	
Test Data	26
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	27
APPLICABLE STANDARD	27
Test Procedure	
Test Data	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	28
APPLICABLE STANDARD	28
TEST PROCEDURE	
Test Data	28
FCC §15.247(d) - BAND EDGES TESTING	29
APPLICABLE STANDARD	
Test Procedure	
Test Data	
APPENDIX	30
APPENDIX A: 20DB EMISSION BANDWIDTH	30
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: CARRIER FREQUENCY SEPARATION	
APPENDIX E: TIME OF OCCUPANCY	
APPENDIX F: NUMBER OF HOPPING CHANNELS	51
Appendix G. Pand edge	52

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Wireless Earphone
Tested Model	B1 Pro
Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: 1.22dBm
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
Antenna Specification*	0.75dBi (provided by the applicant)
Voltage Range	DC 3.7V From Battery or DC 5V From Adapter
Date of Test	2021-10-22 to 2021-11-15
Sample serial number	SZ1211012-52322E-RF-S1 (Assigned by ATC)
Received date	2021-10-12
Sample/EUT Status	Good condition

Report No.: SZ1211012-52322E-RF-00

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation

FCC Part 15.247 Page 4 of 55

Measurement Uncertainty

Parameter		Uncertainty
Occupied Cha	annel Bandwidth	5%
RF output po	ower, conducted	0.73dB
Unwanted Em	ission, conducted	1.6dB
ъ	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
Temp	perature	1℃
Humidity		6%
Supply	v voltages	0.4%

Report No.: SZ1211012-52322E-RF-00

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

FCC Part 15.247 Page 5 of 55

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"BK32xx RF Test.exe" software was use to the EUT tested and power level is 10*. The power level was provided by the applicant.

Report No.: SZ1211012-52322E-RF-00

Special Accessories

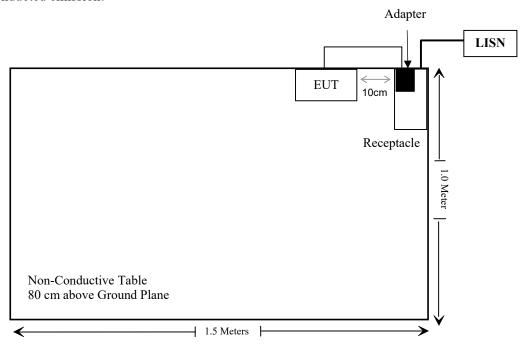
No special accessory.

Equipment Modifications

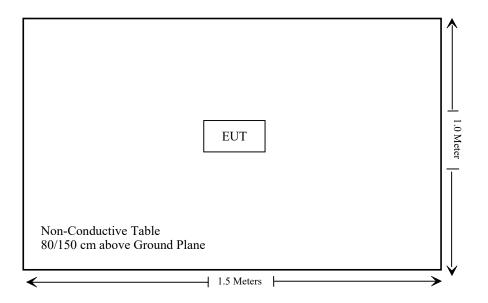
No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
ZTE	Adapter	STC-A51A	Unknown


External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB Cable	0.5	Adapter	EUT


FCC Part 15.247 Page 6 of 55

Block Diagram of Test Setup

For conducted emission:

For radiated emission:

FCC Part 15.247 Page 7 of 55

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307, §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges Complian	

Report No.: SZ1211012-52322E-RF-00

FCC Part 15.247 Page 8 of 55

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emissions Test						
Rohde& Schwarz	Test Receiver	ESPI3	100396	2020/12/24	2021/12/23	
R & S	L.I.S.N.	ENV216	101314	2020/12/25	2021/12/24	
Anritsu Corp	50ΩCoaxial Switch	MP59B	6200506474	2020/12/25	2021/12/24	
Unknown	RF Coaxial Cable	N-2m	No.2	2020/12/25	2021/12/24	
Conducted Emission	Test Software: e3 1982	IG (V9)				
		Radiated Emissi	ons Test			
Rohde& Schwarz	Test Receiver	ESR	101817	2020/12/24	2021/12/23	
Rohde&Schwarz	Spectrum Analyzer	FSV40	101495	2020/12/24	2021/12/23	
SONOMA INSTRUMENT	Amplifier	310 N	186131	2020/12/25	2021/12/24	
A.H. Systems, inc.	Preamplifier	PAM-0118P	531	2021/07/08	2022/07/07	
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2020/11/28	2021/11/27	
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2020/12/25	2021/12/24	
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2020/01/05	2023/01/04	
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04	
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04	
Unknown	RF Coaxial Cable	N-5m	No.3	2020/12/25	2021/12/24	
Unknown	RF Coaxial Cable	N-5m	No.4	2020/12/25	2021/12/24	
Unknown	RF Coaxial Cable	N-1m	No.5	2020/12/25	2021/12/24	
Unknown	RF Coaxial Cable	N-1m	No.6	2020/12/25	2021/12/24	
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2020/12/25	2021/12/24	
adiated Emission(be	elow 1GHz) Test Softwa	re: e3 19821G (V	9)			
Radiated Emission(be		re: e3 19821G (V	9)	2020/12/25	2021/12	

Report No.: SZ1211012-52322E-RF-00

FCC Part 15.247 Page 9 of 55

Manufacturer	Description	Description Model		Calibration Date	Calibration Due Date
		RF Conducte	d Test		
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2020/12/24	2021/12/23
Tonscend	RF Control Unit	JS0806-2	19G8060182	2021/07/06	2022/07/05

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 10 of 55

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: SZ1211012-52322E-RF-00

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum Tune-up power		Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
2402-2480	1.5	1.41	5	0.4	3.0	Yes

Result: No Standalone SAR test is required

FCC Part 15.247 Page 11 of 55

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

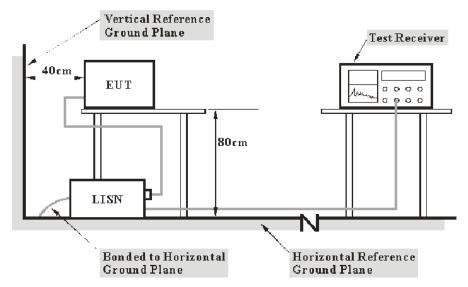
According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: SZ1211012-52322E-RF-00

Antenna Connector Construction

The EUT has one internal antenna which was permanently attached, and the maximum antenna gain is 0.75dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.


FCC Part 15.247 Page 12 of 55

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 13 of 55

Correct Factor & Margin Calculation

The Correct factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: SZ1211012-52322E-RF-00

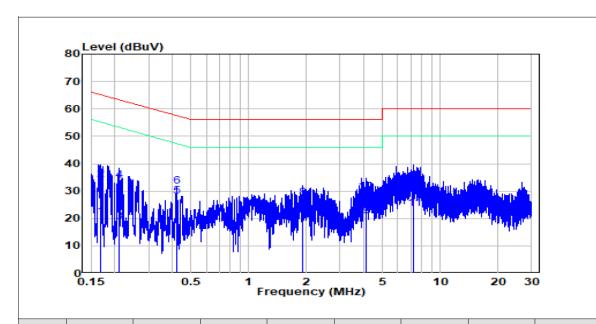
Correct Factor = LISN VDF + Cable Loss

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Over limit = Result – Limit Result = reading level+ Correct Factor

Test Data

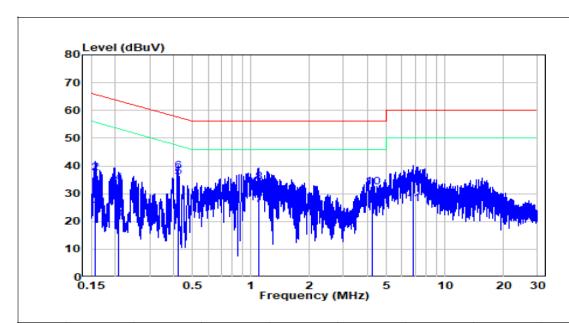
Environmental Conditions


Temperature:	25 ℃
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Bin Deng on 2021-10-27.

EUT operation mode: Charging

FCC Part 15.247 Page 14 of 55


AC 120V/60 Hz, Line

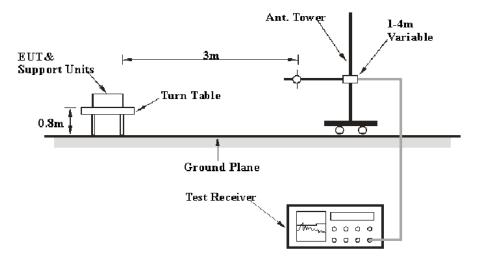
No.	Frequency	Reading	Correct	Result	Limit	Over	Remark	Phase
						Limit		
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)		
1	0.168	10.59	9.86	20.45	55.04	-34.59	Average	Line
2	0.168	24.16	9.86	34.02	65.04	-31.03	QP	Line
3	0.211	9.01	9.80	18.81	53.17	-34.36	Average	Line
4	0.211	23.99	9.80	33.79	63.17	-29.38	QP	Line
5	0.420	18.35	9.80	28.15	47.46	-19.31	Average	Line
6	0.420	21.80	9.80	31.60	57.46	-25.85	QP	Line
7	1.923	9.23	9.91	19.14	46.00	-26.86	Average	Line
8	1.923	17.42	9.91	27.34	56.00	-28.66	QP	Line
9	4.076	10.81	9.94	20.75	46.00	-25.25	Average	Line
10	4.076	19.52	9.94	29.47	56.00	-26.53	QP	Line
11	7.261	13.41	10.07	23.48	50.00	-26.52	Average	Line
12	7.261	21.93	10.07	32.00	60.00	-28.00	QP	Line

FCC Part 15.247 Page 15 of 55

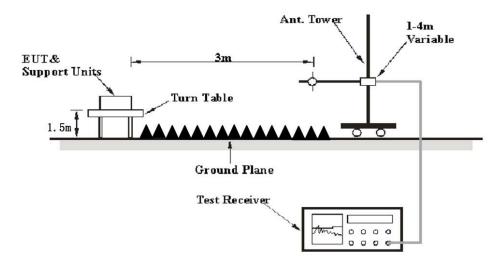
AC 120V/60 Hz, Neutral

No.	Frequency	Reading	Correct	Result	Limit	Over	Remark	Phase
						Limit		
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)		
1	0.158	13.98	9.92	23.90	55.57	-31.66	Average	Neutral
2	0.158	27.37	9.92	37.29	65.57	-28.28	QP	Neutral
3	0.208	10.82	10.00	20.82	53.28	-32.47	Average	Neutral
4	0.208	23.91	10.00	33.91	63.28	-29.38	QP	Neutral
5	0.419	26.07	9.92	35.99	47.46	-11.47	Average	Neutral
6	0.419	28.25	9.92	38.18	57.46	-19.28	QP	Neutral
7	1.090	16.05	9.91	25.96	46.00	-20.04	Average	Neutral
8	1.090	24.18	9.91	34.09	56.00	-21.91	QP	Neutral
9	4.224	15.50	10.04	25.54	46.00	-20.46	Average	Neutral
10	4.224	22.27	10.04	32.32	56.00	-23.68	QP	Neutral
11	6.855	16.24	10.07	26.31	50.00	-23.69	Average	Neutral
12	6.855	23.91	10.07	33.97	60.00	-26.03	QP	Neutral

FCC Part 15.247 Page 16 of 55


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

FCC Part 15.247 Page 17 of 55

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	Frequency Range RBW		IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
Above I GHZ	1 MHz	10 Hz	/	Average

Report No.: SZ1211012-52322E-RF-00

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Factor = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

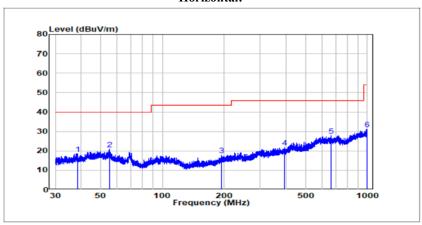
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin/Over limit = Result-Limit Result = Reading + Factor

Test Data

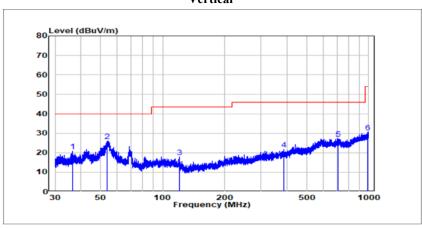
Environmental Conditions

Temperature:	20~27.3 °C
Relative Humidity:	45~56 %
ATM Pressure:	101.0 kPa


The testing was performed by Bin Deng on 2021-10-22 and 2021-10-27.

EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case of orientation was recorded)

FCC Part 15.247 Page 18 of 55


30MHz-1GHz: (worst case is 8DPSK Mode, Low channel)

Horizontal:

No.	Frequency	Reading	Correct	Result	Limit	Over	Remark	Phase
						Limit		
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)		
1	38.532	37.35	-18.88	18.47	40.00	-21.53		Horizontal
2	55.148	39.16	-18.41	20.75	40.00	-19.25		Horizontal
3	194.709	37.31	-19.64	17.66	43.50	-25.84		Horizontal
4	393.818	37.47	-15.79	21.68	46.00	-24.32		Horizontal
5	662.601	39.26	-11.44	27.82	46.00	-18.18		Horizontal
6	993.447	38.69	-7.49	31.21	54.00	-22.79		Horizontal

Vertical

Frequency	Reading	Correct	Result	Limit	Over	Remark	Phase
					Limit		
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)		
36.365	40.01	-19.23	20.78	40.00	-19.22		VERTICAL
53.929	44.20	-18.14	26.07	40.00	-13.93		VERTICAL
120.382	38.34	-20.51	17.83	43.50	-25.67		VERTICAL
385.618	37.40	-15.75	21.65	46.00	-24.35		VERTICAL
711.986	38.59	-11.37	27.22	46.00	-18.78		VERTICAL
984.344	38.28	-7.69	30.59	54.00	-23.41		VERTICAL
	(MHz) 36.365 53.929 120.382 385.618 711.986	(MHz) (dBuV) 36.365 40.01 53.929 44.20 120.382 38.34 385.618 37.40 711.986 38.59	(MHz) (dBuV) Factor(dB) 36.365 40.01 -19.23 53.929 44.20 -18.14 120.382 38.34 -20.51 385.618 37.40 -15.75 711.986 38.59 -11.37	(MHz) (dBuV) Factor(dB) (dBuV) 36.365 40.01 -19.23 20.78 53.929 44.20 -18.14 26.07 120.382 38.34 -20.51 17.83 385.618 37.40 -15.75 21.65 711.986 38.59 -11.37 27.22	(MHz) (dBuV) Factor(dB) (dBuV) (dBuV) 36.365 40.01 -19.23 20.78 40.00 53.929 44.20 -18.14 26.07 40.00 120.382 38.34 -20.51 17.83 43.50 385.618 37.40 -15.75 21.65 46.00 711.986 38.59 -11.37 27.22 46.00	(MHz) (dBuV) Factor(dB) (dBuV) (dBuV) (dB) 36.365 40.01 -19.23 20.78 40.00 -19.22 53.929 44.20 -18.14 26.07 40.00 -13.93 120.382 38.34 -20.51 17.83 43.50 -25.67 385.618 37.40 -15.75 21.65 46.00 -24.35 711.986 38.59 -11.37 27.22 46.00 -18.78	Columbia Columbia

FCC Part 15.247 Page 19 of 55

Above 1GHz: (Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode, the worst case is 8DPSK Mode)

_	Re	eceiver		Rx An	tenna	Corrected	Corrected		
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Low Channel (2402 MHz)									
2310	67.39	PK	46	2.4	Н	-6.84	60.55	74	-13.45
2310	52.75	Ave	46	2.4	Н	-6.84	45.91	54	-8.09
2310	67.71	PK	191	2.2	V	-6.84	60.87	74	-13.13
2310	52.73	Ave	191	2.2	V	-6.84	45.89	54	-8.11
2390	67.42	PK	41	1.4	Н	-6.44	60.98	74	-13.02
2390	52.93	Ave	41	1.4	Н	-6.44	46.49	54	-7.51
2390	67.13	PK	72	1.9	V	-6.44	60.69	74	-13.31
2390	52.92	Ave	72	1.9	V	-6.44	46.48	54	-7.52
4804	49.18	PK	335	1.8	Н	2.81	51.99	74	-22.01
4804	48.49	PK	295	1.5	V	2.81	51.30	74	-22.70
7206	48.74	PK	144	1.4	Н	7.46	56.20	74	-17.80
7206	36.42	Ave	144	1.4	Н	7.46	43.88	54	-10.12
7206	49.48	PK	349	2.2	V	7.46	56.94	74	-17.06
7206	37.24	Ave	349	2.2	V	7.46	44.70	54	-9.30
			Middle C	hannel	(2441 N	M(Hz)			
4882	49.75	PK	59	2.1	Н	3.04	52.79	74	-21.21
4882	48.74	PK	177	1.8	V	3.04	51.78	74	-22.22
7323	49.06	PK	339	1.5	Н	8.29	57.35	74	-16.65
7323	37.15	Ave	339	1.5	Н	8.29	45.44	54	-8.56
7323	49.24	PK	72	2.3	V	8.29	57.53	74	-16.47
7323	36.87	Ave	72	2.3	V	8.29	45.16	54	-8.84
			High Ch	nannel (2	2480 M	Hz)			
2483.5	67.93	PK	303	2	Н	-5.96	61.97	74	-12.03
2483.5	53.16	Ave	303	2	Н	-5.96	47.2	54	-6.80
2483.5	67.56	PK	117	1.5	V	-5.96	61.6	74	-12.40
2483.5	52.94	Ave	117	1.5	V	-5.96	46.98	54	-7.02
2500	67.68	PK	67	2.1	Н	-5.88	61.8	74	-12.20
2500	53.08	Ave	67	2.1	Н	-5.88	47.2	54	-6.80
2500	66.99	PK	183	1.8	V	-5.88	61.11	74	-12.89
2500	52.90	Ave	183	1.8	V	-5.88	47.02	54	-6.98
4960	49.00	PK	185	1.7	Н	3.29	52.29	74	-21.71
4960	49.19	PK	170	1.4	V	3.29	52.48	74	-21.52
7440	50.23	PK	162	1.8	Н	9.13	59.36	74	-14.64
7440	37.38	Ave	162	1.8	Н	9.13	46.51	54	-7.49
7440	49.50	PK	247	2	V	9.13	58.63	74	-15.37
7440	36.84	Ave	247	2	V	9.13	45.97	54	-8.03

Note:

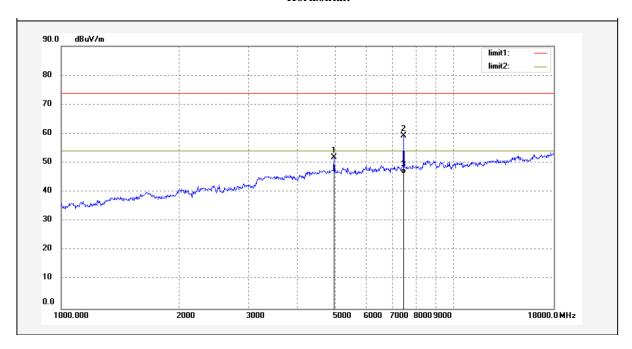
 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Corrected Amplitude = Corrected Factor + Reading

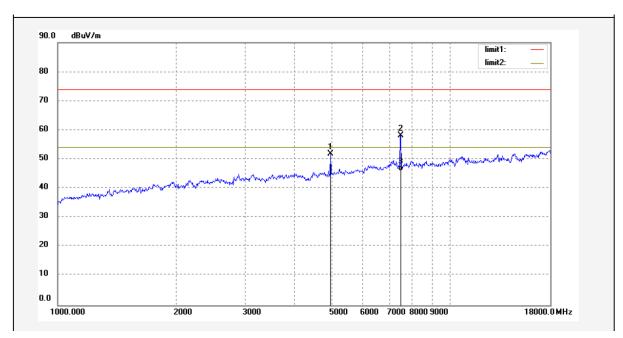
Margin = Corrected. Amplitude - Limit

The other spurious emission which is in the noise floor level was not recorded.

The test result of peak was less than the limit of average, so just peak value were recorded.


FCC Part 15.247 Page 20 of 55

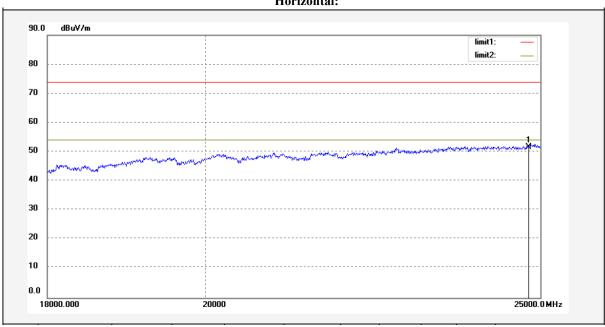
1-18GHz


Pre-scan for High Channel

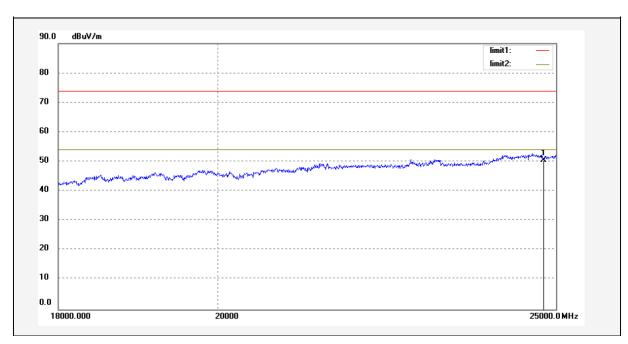
Report No.: SZ1211012-52322E-RF-00

Horizontal:

Vertical:



FCC Part 15.247 Page 21 of 55


Pre-scan for Low Channel

Report No.: SZ1211012-52322E-RF-00

Horizontal:

Vertical:

FCC Part 15.247 Page 22 of 55

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Report No.: SZ1211012-52322E-RF-00

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Ting Lv on 2021-11-05.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

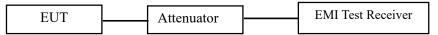
FCC Part 15.247 Page 23 of 55

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Report No.: SZ1211012-52322E-RF-00

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

FCC Part 15.247 Page 24 of 55

Test Data

Environmental Conditions

Temperature:	26 ℃
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

Report No.: SZ1211012-52322E-RF-00

The testing was performed by Ting Lv on 2021-11-05.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC Part 15.247 Page 25 of 55

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: SZ1211012-52322E-RF-00

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	26 ℃
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Ting Lv on 2021-11-05.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC Part 15.247 Page 26 of 55

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: SZ1211012-52322E-RF-00

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Ting Lv on 2021-11-06.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC Part 15.247 Page 27 of 55

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Report No.: SZ1211012-52322E-RF-00

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Ting Lv on 2021-11-05.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC Part 15.247 Page 28 of 55

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: SZ1211012-52322E-RF-00

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

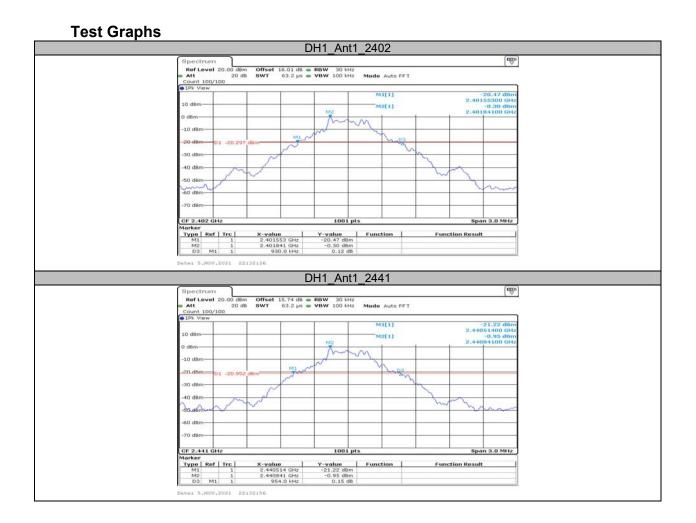
Environmental Conditions

Temperature:	26 °C	
Relative Humidity:	54 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Ting Lv on 2021-11-05 and 2021-11-15.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.


FCC Part 15.247 Page 29 of 55

APPENDIX


Appendix A: 20dB Emission Bandwidth Test Result

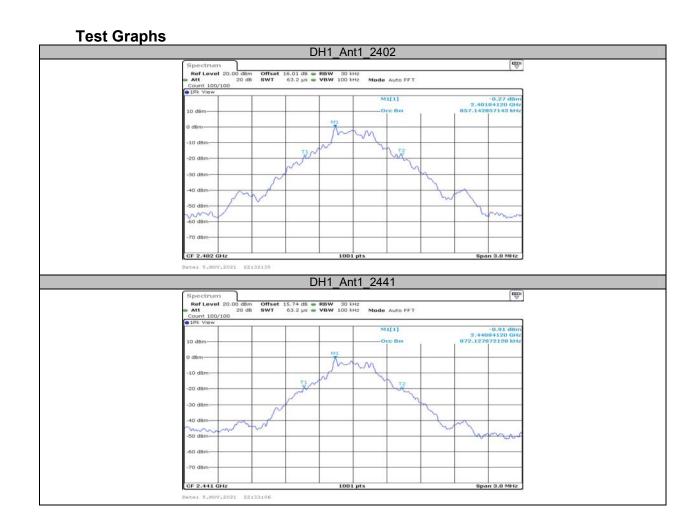
Test Mode	Antenna	Channel	20db EBW[MHz]	Limit[MHz]	Verdict
DH1	Ant1	2402	0.930		PASS
		2441	0.954		PASS
		2480	0.903		PASS
2DH1	Ant1	2402	1.227		PASS
		2441	1.224		PASS
		2480	1.224		PASS
3DH1	Ant1	2402	1.221		PASS
		2441	1.230		PASS
		2480	1.233		PASS

Report No.: SZ1211012-52322E-RF-00


FCC Part 15.247 Page 30 of 55

Page 31 of 55 FCC Part 15.247

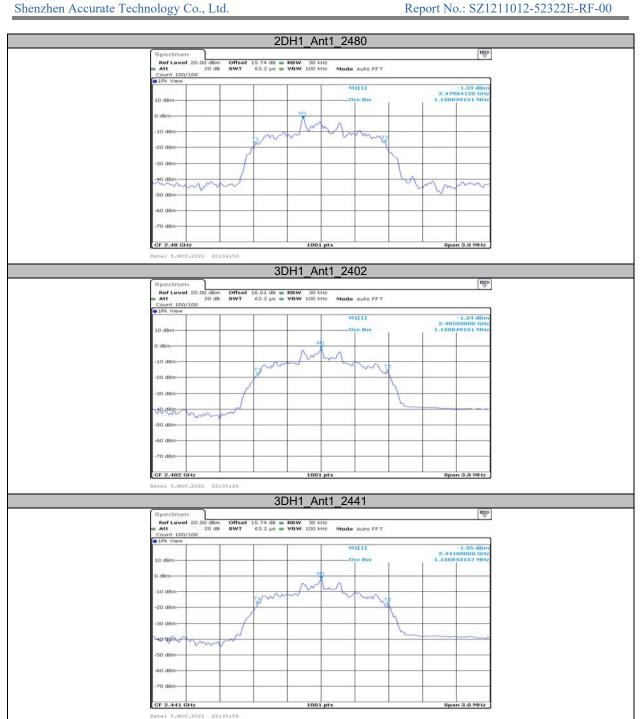
Page 32 of 55 FCC Part 15.247

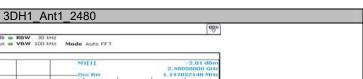


FCC Part 15.247 Page 33 of 55

Appendix B: Occupied Channel Bandwidth Test Result

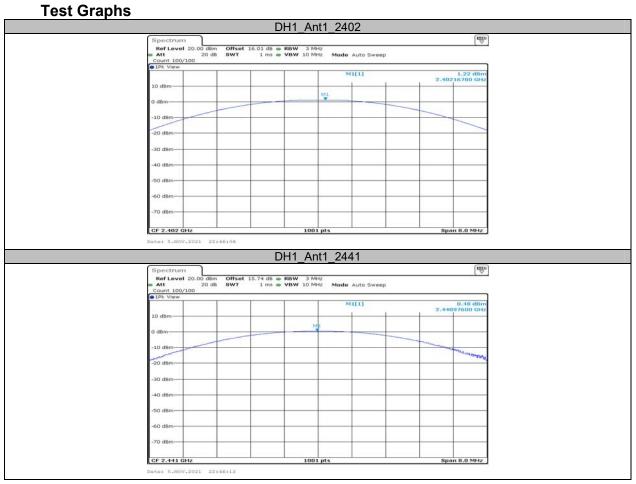
Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
DH1	Ant1	2402	0.857		PASS
		2441	0.872		PASS
		2480	0.860		PASS
2DH1	Ant1	2402	1.148		PASS
		2441	1.166		PASS
		2480	1.151		PASS
3DH1	Ant1	2402	1.151		PASS
		2441	1.157		PASS
		2480	1.148		PASS

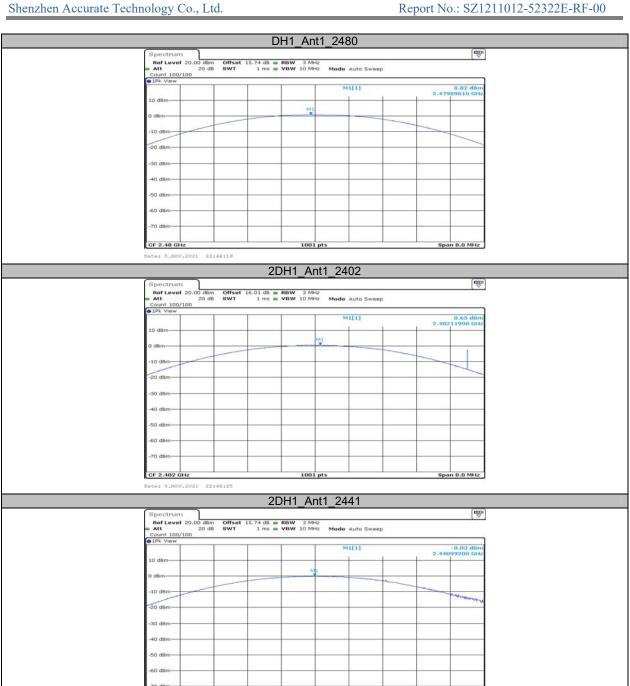

Report No.: SZ1211012-52322E-RF-00


FCC Part 15.247 Page 34 of 55


FCC Part 15.247 Page 35 of 55

CF 2.441 GHz


FCC Part 15.247 Page 36 of 55

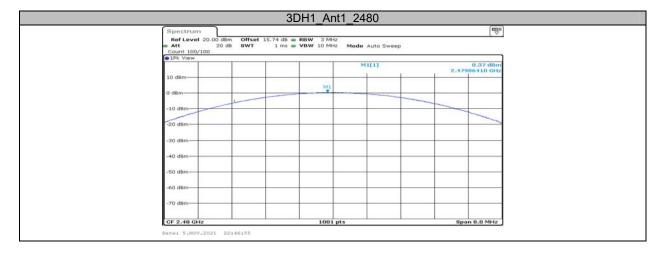


FCC Part 15.247 Page 37 of 55

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	1.22	≤20.97	PASS
DH1	Ant1	2441	0.48	≤20.97	PASS
		2480	0.82	≤20.97	PASS
		2402	0.65	≤20.97	PASS
2DH1	Ant1	2441	-0.03	≤20.97	PASS
		2480	0	≤20.97	PASS
3DH1	Ant1	2402	0.76	≤20.97	PASS
		2441	0.09	≤20.97	PASS
		2480	0.37	≤20.97	PASS

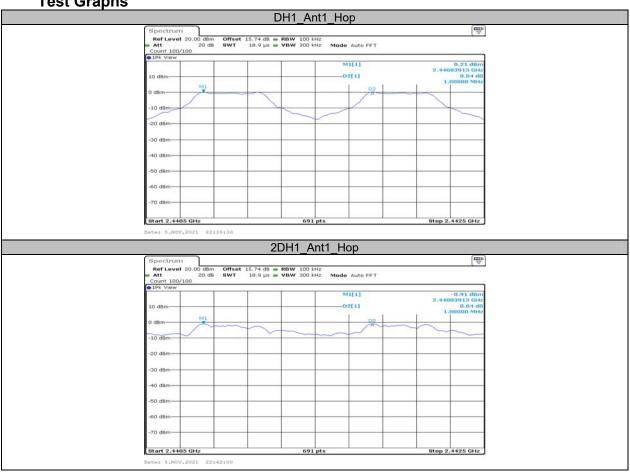
FCC Part 15.247 Page 38 of 55

FCC Part 15.247 Page 39 of 55

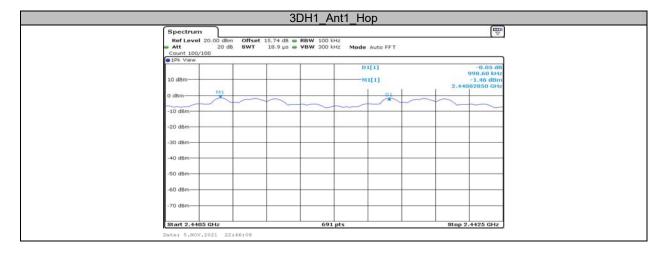

CF 2.441 GHz

FCC Part 15.247 Page 40 of 55

CF 2.441 GHz



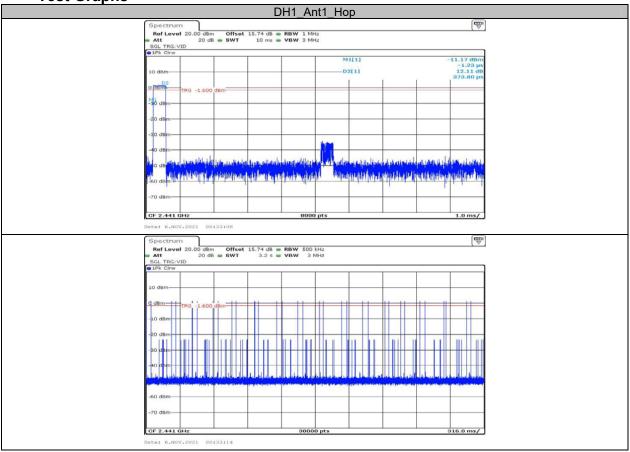
FCC Part 15.247 Page 41 of 55


Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1	≥0.636	PASS
2DH1	Ant1	Нор	1	≥0.818	PASS
3DH1	Ant1	Нор	0.999	≥0.822	PASS

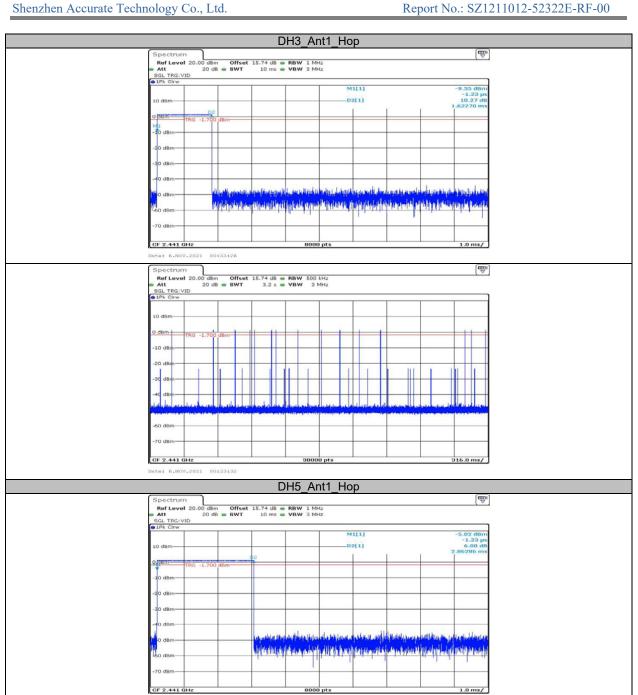
Test Graphs

FCC Part 15.247 Page 42 of 55

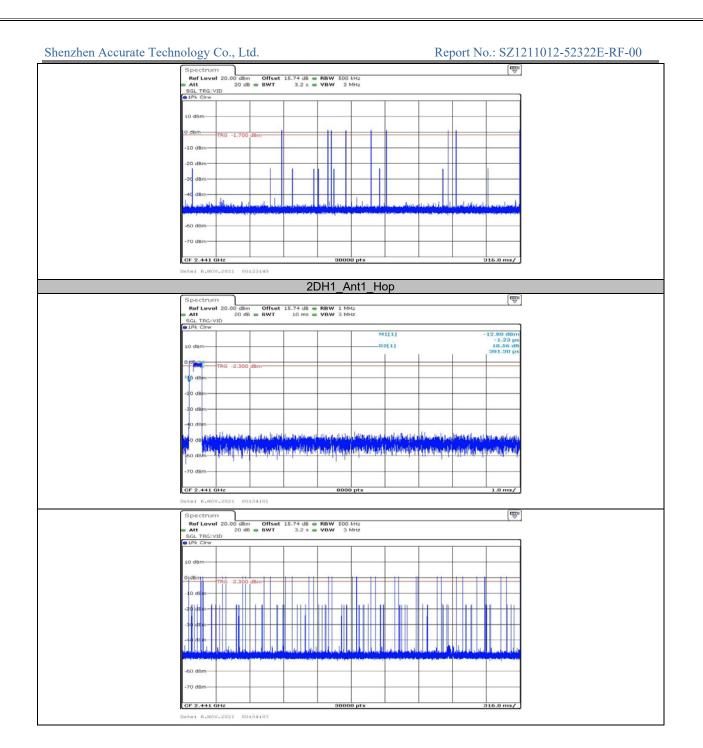
FCC Part 15.247 Page 43 of 55

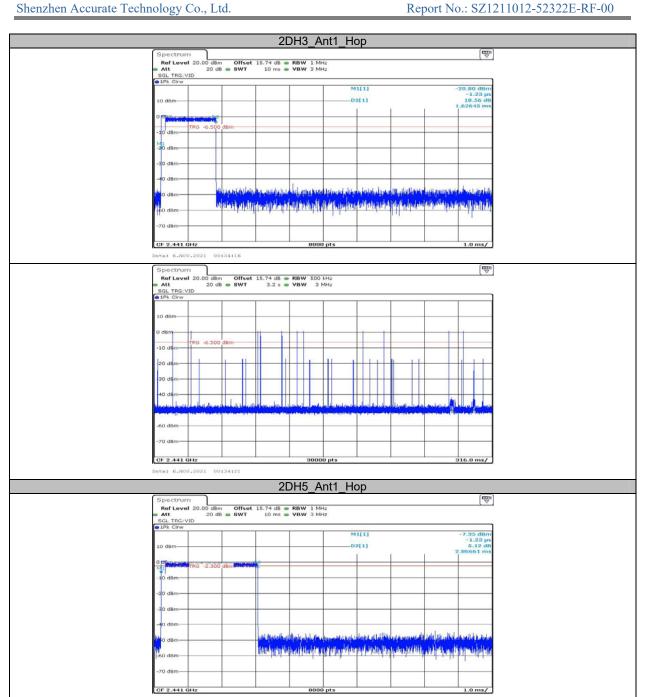

rest result							
Test Mode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.37	320	0.12	≤0.4	PASS
DH3	Ant1	Нор	1.62	160	0.26	≤0.4	PASS
DH5	Ant1	Нор	2.86	100	0.286	≤0.4	PASS
2DH1	Ant1	Нор	0.38	320	0.122	≤0.4	PASS
2DH3	Ant1	Нор	1.63	120	0.195	≤0.4	PASS
2DH5	Ant1	Нор	2.87	70	0.201	≤0.4	PASS
3DH1	Ant1	Нор	0.38	320	0.122	≤0.4	PASS
3DH3	Ant1	Нор	1.63	110	0.179	≤0.4	PASS
3DH5	Ant1	Нор	2.87	90	0.258	≤0.4	PASS

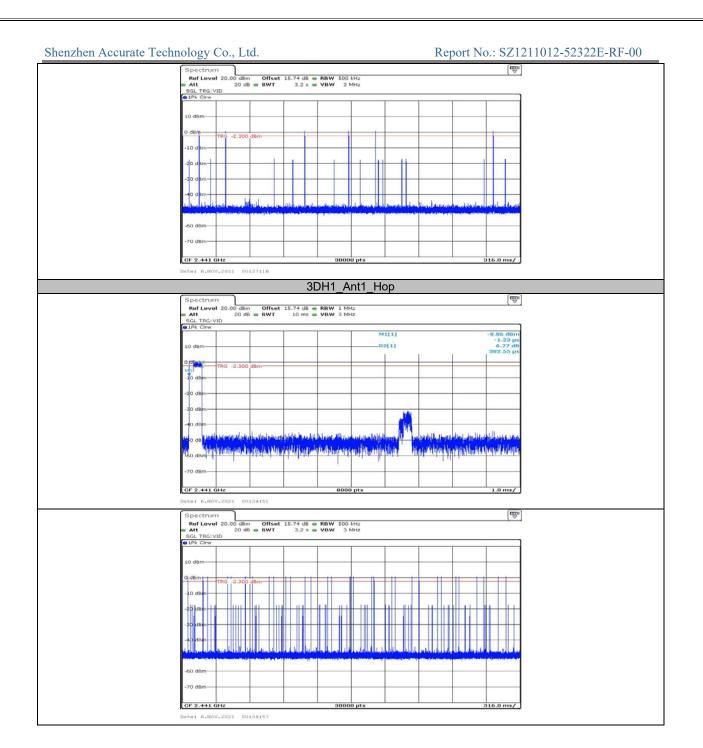
Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

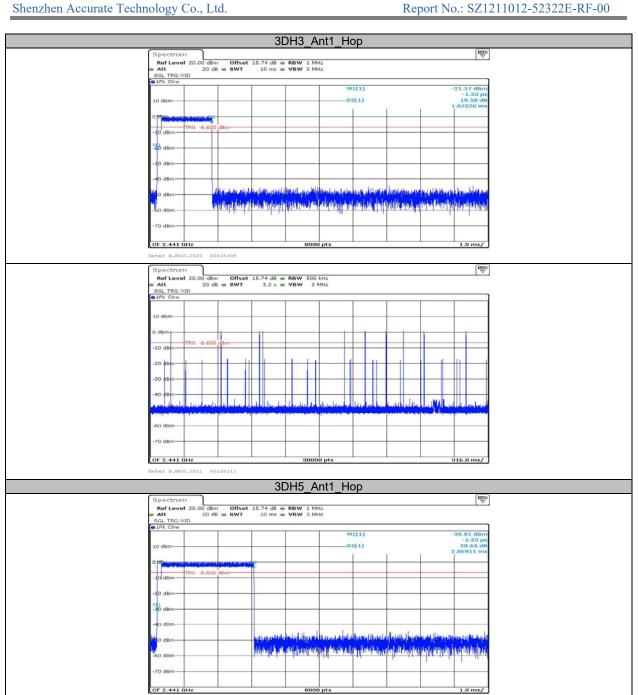

Note 2: Totalhops=Hopping Number in 3.16s*10

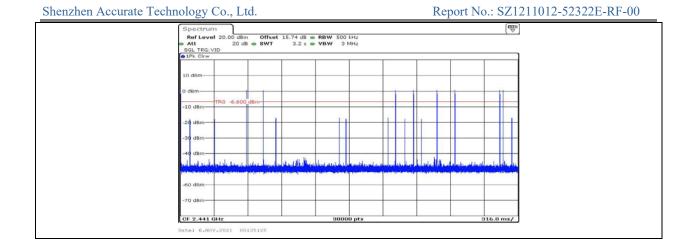
Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)


Test Graphs


FCC Part 15.247 Page 44 of 55

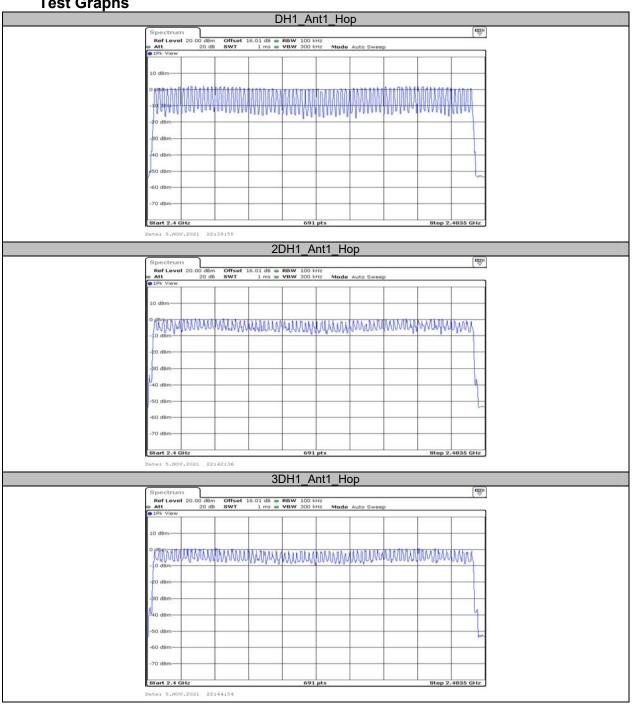

FCC Part 15.247 Page 45 of 55


FCC Part 15.247 Page 46 of 55


FCC Part 15.247 Page 47 of 55

FCC Part 15.247 Page 48 of 55

FCC Part 15.247 Page 49 of 55



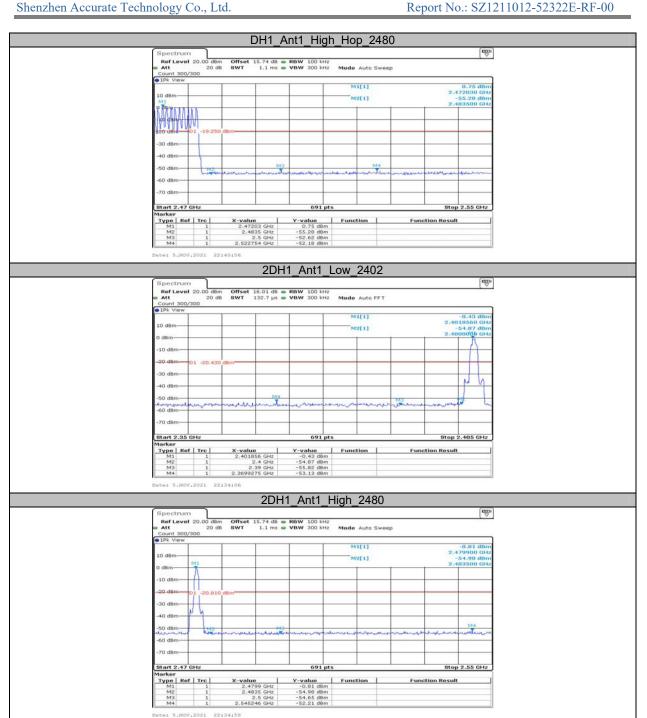
FCC Part 15.247 Page 50 of 55

Appendix F: Number of hopping channels **Test Result**

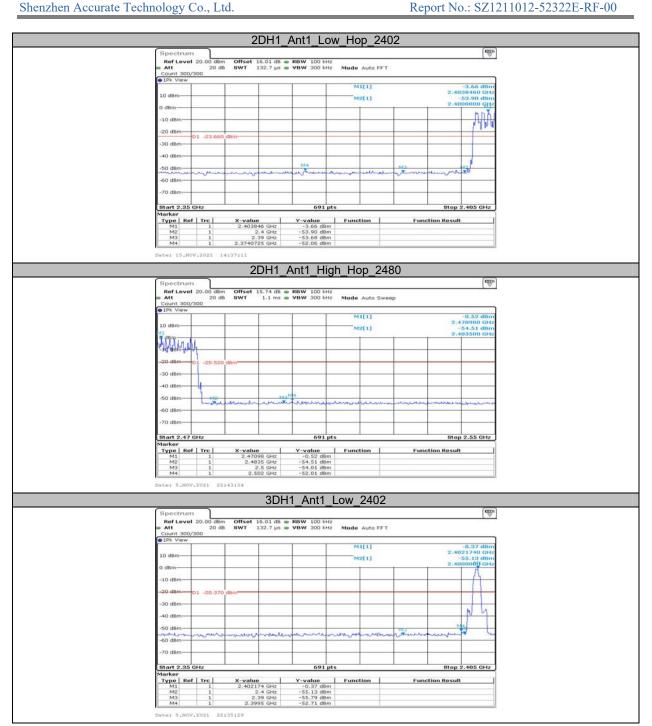
		<u> </u>			
Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

Test Graphs

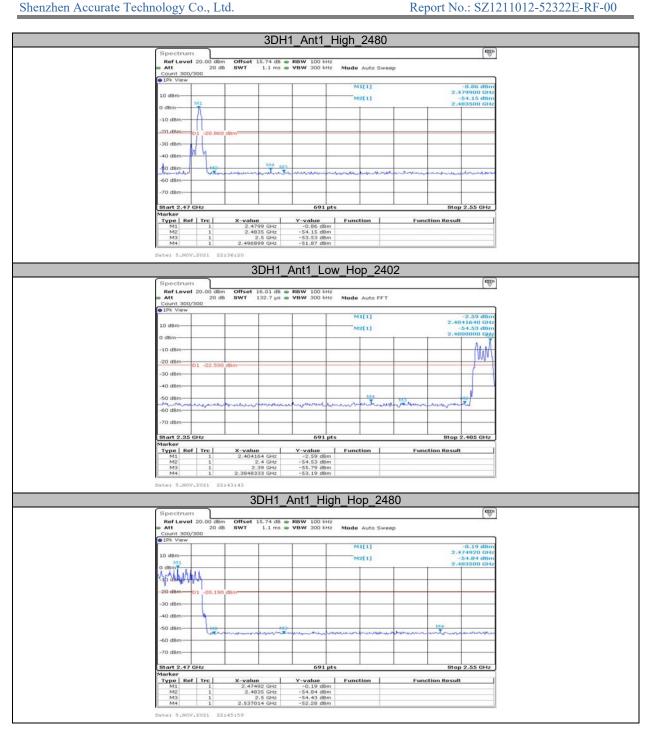
FCC Part 15.247 Page 51 of 55


Appendix G: Band edge

Test Graphs



Report No.: SZ1211012-52322E-RF-00


FCC Part 15.247 Page 52 of 55

Page 53 of 55 FCC Part 15.247

FCC Part 15.247 Page 54 of 55

***** END OF REPORT *****

FCC Part 15.247 Page 55 of 55