

### JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2100769

# FCC REPORT

Applicant: TECNO MOBILE LIMITED

Address of Applicant: FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35

SHAN MEI STREET FOTAN NT

**Equipment Under Test (EUT)** 

Product Name: Mobile Phone

Model No.: A571LS

Trade mark: TECNO

FCC ID: 2ADYY-A571LS

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 10 May, 2021

**Date of Test:** 11 May, to 22 Jun., 2021

Date of report issued: 23 Jun., 2021

Test Result: PASS\*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





**Version** 

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 23 Jun., 2021 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Test Engineer

Winner Thang Tested by: Date: 23 Jun., 2021

Reviewed by: Date: 23 Jun., 2021

**Project Engineer** 





### **Contents**

|                                     | Page |
|-------------------------------------|------|
| 1 COVER PAGE                        | 1    |
| 2 VERSION                           | 2    |
| 3 CONTENTS                          | 2    |
|                                     |      |
| 4 TEST SUMMARY                      |      |
| 5 GENERAL INFORMATION               | 5    |
| 5.1 CLIENT INFORMATION              | 5    |
| 5.2 GENERAL DESCRIPTION OF E.U.T    |      |
| 5.3 TEST ENVIRONMENT AND MODE       |      |
| 5.4 DESCRIPTION OF SUPPORT UNITS    |      |
| 5.5 MEASUREMENT UNCERTAINTY         |      |
| 5.6 LABORATORY FACILITY             |      |
| 5.7 LABORATORY LOCATION             |      |
| 5.8 TEST INSTRUMENTS LIST           |      |
| 6 TEST RESULTS AND MEASUREMENT DATA | 8    |
| 6.1 ANTENNA REQUIREMENT             | 8    |
| 6.2 CONDUCTED EMISSION              |      |
| 6.3 CONDUCTED OUTPUT POWER          | 12   |
| 6.4 OCCUPY BANDWIDTH                |      |
| 6.5 POWER SPECTRAL DENSITY          |      |
| 6.6 BAND EDGE                       |      |
| 6.6.1 Conducted Emission Method     |      |
| 6.6.2 Radiated Emission Method      |      |
| 6.7 SPURIOUS EMISSION               |      |
| 6.7.1 Conducted Emission Method     |      |
|                                     |      |
| 7 TEST SETUP PHOTO                  | 36   |
| B EUT CONSTRUCTIONAL DETAILS        | 37   |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 3 of 37





4 Test Summary

| Test Items                                    | Section in CFR 47   | Test Data                  | Result |
|-----------------------------------------------|---------------------|----------------------------|--------|
| Antenna requirement                           | 15.203 & 15.247 (b) | See Section 6.1            | Pass   |
| AC Power Line Conducted Emission              | 15.207              | See Section 6.2            | Pass   |
| Duty Cycle                                    | ANSI C63.10-2013    | Appendix A – 2.4G Wi-Fi    | Pass   |
| Conducted Peak Output Power                   | 15.247 (b)(3)       | Appendix A – 2.4G Wi-Fi    | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth | 15.247 (a)(2)       | Appendix A – 2.4G Wi-Fi    | Pass   |
| Power Spectral Density                        | 15.247 (e)          | Appendix A – 2.4G Wi-Fi    | Pass   |
| Conducted Band Edge                           | 45 247 (4)          | Appendix A – 2.4G Wi-Fi Pa |        |
| Radiated Band Edge                            | 15.247 (d)          | See Section 6.6.2          | Pass   |
| Conducted Spurious Emission                   | 45 205 8 45 200     | Appendix A – 2.4G Wi-Fi    | Pass   |
| Radiated Spurious Emission                    | 15.205 & 15.209     | See Section 6.7.2          | Pass   |

#### Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





### 5 General Information

### **5.1 Client Information**

| Applicant:    | TECNO MOBILE LIMITED                                                                                                   |
|---------------|------------------------------------------------------------------------------------------------------------------------|
| Address:      | FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN<br>MEI STREET FOTAN NT                                        |
| Manufacturer: | TECNO MOBILE LIMITED                                                                                                   |
| Address:      | FLAT 39 8/F BLOCK D WAH LOK INDUSTRIAL CENTRE 31-35 SHAN<br>MEI STREET FOTAN NT                                        |
| Factory:      | SHENZHEN TECNO TECHNOLOGY CO., LTD.                                                                                    |
| Address:      | 101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China |

### 5.2 General Description of E.U.T.

| Product Name:                                    | Mobile Phone                                                                  |  |  |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| Model No.:                                       | A571LS                                                                        |  |  |  |  |
| Operation Frequency:                             | 2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)                                |  |  |  |  |
| Channel numbers:                                 | 11: 802.11b/802.11g/802.11(HT20)                                              |  |  |  |  |
| Channel separation:                              | 5MHz                                                                          |  |  |  |  |
| Modulation technology:<br>(IEEE 802.11b)         | Direct Sequence Spread Spectrum (DSSS)                                        |  |  |  |  |
| Modulation technology:<br>(IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM)                              |  |  |  |  |
| Data speed (IEEE 802.11b):                       | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                                                 |  |  |  |  |
| Data speed (IEEE 802.11g):                       | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps                  |  |  |  |  |
| Data speed (IEEE 802.11n):                       | Up to 72.2Mbps                                                                |  |  |  |  |
| Antenna Type:                                    | Internal Antenna                                                              |  |  |  |  |
| Antenna gain:                                    | -1.0dBi                                                                       |  |  |  |  |
| Power supply:                                    | Rechargeable Li-ion Battery DC3.8V, 2950mAh                                   |  |  |  |  |
| AC adapter:                                      | Model:A18A-050100U-US2                                                        |  |  |  |  |
|                                                  | Input: AC100-240V, 50/60Hz, 0.2A<br>Output: DC 5.0V, 1A                       |  |  |  |  |
| Test Sample Condition:                           | The test samples were provided in good working order with no visible defects. |  |  |  |  |

| Operation Frequency each of channel for 802.11b/g/n(HT20) |           |         |           |         |           |         |           |
|-----------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                                                   | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                                         | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2                                                         | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3                                                         | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

#### Note:

<sup>1.</sup> For 802.11n-HT40 mode, the channel number is from 3 to 9;

<sup>2.</sup> Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.



### 5.3 Test environment and mode

| Operating Environment: |                                                         |
|------------------------|---------------------------------------------------------|
| Temperature:           | 24.0 °C                                                 |
| Humidity:              | 54 % RH                                                 |
| Atmospheric Pressure:  | 1010 mbar                                               |
| Test mode:             |                                                         |
| Transmitting mode      | Keep the EUT in continuous transmitting with modulation |

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

| Per-scan all kind of data rate, the follow list were the worst case. |           |  |  |  |
|----------------------------------------------------------------------|-----------|--|--|--|
| Mode                                                                 | Data rate |  |  |  |
| 802.11b                                                              | 1Mbps     |  |  |  |
| 802.11g                                                              | 6Mbps     |  |  |  |
| 802.11n(HT20)                                                        | 6.5Mbps   |  |  |  |

### 5.4 Description of Support Units

The EUT has been tested as an independent unit.

### **5.5 Measurement Uncertainty**

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | ±1.60 dB (k=2)       |
| Radiated Emission (9kHz ~ 30MHz)    | ±3.12 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.16 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±3.20 dB (k=2)       |

### 5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### • ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

### A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

### 5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com





### 5.8 Test Instruments list

| Test Equipment                  | Manufacturer    | Model No.     | Serial No.    | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
|---------------------------------|-----------------|---------------|---------------|-------------------------|-----------------------------|
| 3m SAC                          | ETS             | 9m*6m*6m      | 966           | 01-19-2021              | 01-18-2024                  |
| BiConiLog Antenna               | SCHWARZBECK     | VULB9163      | 497           | 03-03-2021              | 03-02-2022                  |
| Biconical Antenna               | SCHWARZBECK     | VUBA9117      | 359           | 06-18-2020              | 06-17-2021                  |
| Horn Antenna                    | SCHWARZBECK     | BBHA9120D     | 916           | 03-03-2021              | 03-02-2022                  |
| Horn Antenna                    | SCHWARZBECK     | BBHA9120D     | 1805          | 06-18-2020              | 06-17-2021                  |
| Horn Antenna                    | SCHWARZBECK     | BBHA 9170     | BBHA9170582   | 11-18-2020              | 11-17-2021                  |
| EMI Test Software               | AUDIX           | E3            | V             | ersion: 6.110919b       |                             |
| Pre-amplifier                   | HP              | 8447D         | 2944A09358    | 03-03-2021              | 03-02-2022                  |
| Pre-amplifier                   | CD              | PAP-1G18      | 11804         | 03-03-2021              | 03-02-2022                  |
| Spectrum analyzer               | Rohde & Schwarz | FSP30         | 101454        | 03-03-2021              | 03-02-2022                  |
| Spectrum analyzer               | Rohde & Schwarz | FSP40         | 100363        | 11-18-2020              | 11-17-2021                  |
| EMI Test Receiver               | Rohde & Schwarz | ESRP7         | 101070        | 03-03-2021              | 03-02-2022                  |
| Spectrum Analyzer               | Agilent         | N9020A        | MY50510123    | 11-18-2020              | 11-17-2021                  |
| Signal Generator                | Rohde & Schwarz | SMX           | 835454/016    | 03-03-2021              | 03-02-2022                  |
| Signal Generator                | R&S             | SMR20         | 1008100050    | 03-03-2021              | 03-02-2022                  |
| RF Switch Unit                  | MWRFTEST        | MW200         | N/A           | N/A                     | N/A                         |
| Test Software                   | MWRFTEST        | MTS8200       |               | Version: 2.0.0.0        |                             |
| Cable                           | ZDECL           | Z108-NJ-NJ-81 | 1608458       | 03-03-2021              | 03-02-2022                  |
| Cable                           | MICRO-COAX      | MFR64639      | K10742-5      | 03-03-2021              | 03-02-2022                  |
| Cable                           | SUHNER          | SUCOFLEX100   | 58193/4PE     | 03-03-2021              | 03-02-2022                  |
| DC Power Supply                 | XinNuoEr        | WYK-10020K    | 1409050110020 | 09-25-2020              | 09-24-2021                  |
| Temperature<br>Humidity Chamber | HengPu          | HPGDS-500     | 20140828008   | 11-01-2020              | 10-31-2021                  |
| Simulated Station               | Rohde & Schwarz | CMW500        | 140493        | 07-22-2020              | 07-21-2021                  |

| Conducted Emission: |                 |            |                    |                         |                             |
|---------------------|-----------------|------------|--------------------|-------------------------|-----------------------------|
| Test Equipment      | Manufacturer    | Model No.  | Serial No.         | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| EMI Test Receiver   | Rohde & Schwarz | ESCI       | 101189             | 03-03-2021              | 03-02-2022                  |
| Pulse Limiter       | SCHWARZBECK     | OSRAM 2306 | 9731               | 03-03-2021              | 03-02-2022                  |
| LISN                | CHASE           | MN2050D    | 1447               | 03-03-2021              | 03-02-2022                  |
| LISN                | Rohde & Schwarz | ESH3-Z5    | 8438621/010        | 06-18-2020              | 06-17-2021                  |
| Cable               | HP              | 10503A     | N/A                | 03-03-2021              | 03-02-2022                  |
| EMI Test Software   | AUDIX           | E3         | Version: 6.110919b |                         |                             |

| Conducted method:       |                 |            |                  |                         |                             |
|-------------------------|-----------------|------------|------------------|-------------------------|-----------------------------|
| Test Equipment          | Manufacturer    | Model No.  | Serial No.       | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| Spectrum Analyzer       | Keysight        | N9010B     | MY60240202       | 11-27-2020              | 11-26-2021                  |
| Vector Signal Generator | Keysight        | N5182B     | MY59101009       | 11-27-2020              | 11-26-2021                  |
| Analog Signal Generator | Keysight        | N5173B     | MY59100765       | 11-27-2020              | 11-26-2021                  |
| Power Detector Box      | MWRF-test       | MW100-PSB  | MW201020JYT      | 11-27-2020              | 11-26-2021                  |
| Simulated Station       | Rohde & Schwarz | CMW270     | 102335           | 11-27-2020              | 11-26-2021                  |
| RF Control Box          | MWRF-test       | MW100-RFCB | MW200927JYT      | N/A                     | N/A                         |
| PDU                     | MWRF-test       | XY-G10     | N/A              | N/A                     | N/A                         |
| Test Software           | MWRF-tes        | MTS 8310   | Version: 2.0.0.0 |                         |                             |
| DC Power Supply         | Keysight        | E3642A     | MY60296194       | 11-27-2020              | 11-26-2021                  |



### 6 Test results and Measurement Data

### 6.1 Antenna requirement

### Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **E.U.T Antenna:**

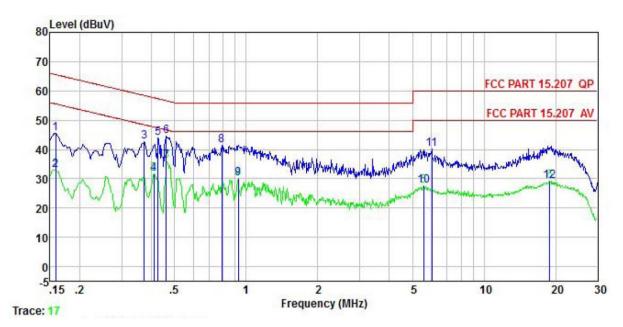
The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -1.0 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



### 6.2 Conducted Emission

| Test Requirement:     | FCC Part 15 C Section 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 207                  |               |  |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|--|--|--|--|--|
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 150 kHz to 30 MHz    |               |  |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |               |  |  |  |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |               |  |  |  |  |  |
| Limit:                | Limit (dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |               |  |  |  |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quasi-peak           | Average       |  |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66 to 56*            | 56 to 46*     |  |  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56                   | 46            |  |  |  |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                   | 50            |  |  |  |  |  |
|                       | * Decreases with the logarit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hm of the frequency. |               |  |  |  |  |  |
| Test procedure        | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement.</li> </ol> |                      |               |  |  |  |  |  |
| Test setup:           | LISN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st                   | er — AC power |  |  |  |  |  |
| Test Instruments:     | Refer to section 5.9 for deta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ails                 |               |  |  |  |  |  |
| Test mode:            | Refer to section 5.3 for deta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ails                 |               |  |  |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |               |  |  |  |  |  |


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

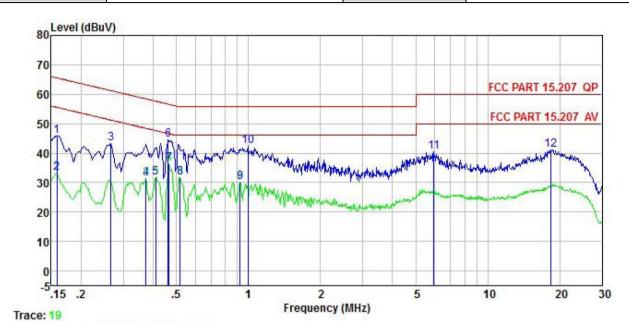
Page 9 of 37



#### **Measurement Data:**

| Product name:   | Mobile Phone     | Product model: | A571LS                |
|-----------------|------------------|----------------|-----------------------|
| Test by:        | Yaro             | Test mode:     | Wi-Fi Tx mode         |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Line                  |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp: 22.5℃ Huni: 55% |




|                                           | Freq   | Read<br>Level | LISN<br>Factor | Aux<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|--------|---------------|----------------|---------------|---------------|-------|---------------|---------------|---------|
|                                           | MHz    | dBu₹          | dB             | dB            | ₫B            | dBu₹  | ₫₿u₹          | <u>dB</u>     |         |
| 1                                         | 0.158  | 35.53         | 10.12          | -0.07         | 0.01          | 45.59 | 65.56         | -19.97        | QP      |
| 2                                         | 0.158  | 22.97         | 10.12          | -0.07         | 0.01          | 33.03 | 55.56         | -22.53        | Average |
| 3                                         | 0.373  | 32.20         | 10.27          | 0.25          | 0.03          | 42.75 | 58.43         | -15.68        | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.410  | 21.08         | 10.29          | 0.33          | 0.04          | 31.74 | 47.64         | -15.90        | Average |
| 5                                         | 0.426  | 33.36         | 10.30          | 0.19          | 0.03          | 43.88 | 57.33         | -13.45        | QP      |
| 6                                         | 0.461  | 34.29         | 10.32          | -0.06         | 0.03          | 44.58 | 56.67         | -12.09        | QP      |
| 7                                         | 0.461  | 25.68         | 10.32          | -0.06         | 0.03          | 35.97 | 46.67         | -10.70        | Average |
| 8                                         | 0.792  | 31.20         | 10.43          | -0.11         | 0.03          | 41.55 | 56.00         | -14.45        | QP      |
|                                           | 0.928  | 19.42         | 10.47          | 0.28          | 0.04          | 30.21 | 46.00         | -15.79        | Average |
| 10                                        | 5.564  | 16.23         | 10.68          | 0.47          | 0.09          | 27.47 | 50.00         | -22.53        | Average |
| 11                                        | 6.024  | 28.69         | 10.70          | 0.76          | 0.09          | 40.24 | 60.00         | -19.76        | QP      |
| 12                                        | 18.920 | 16.49         | 11.16          | 1.43          | 0.15          | 29.23 | 50.00         | -20.77        | Average |

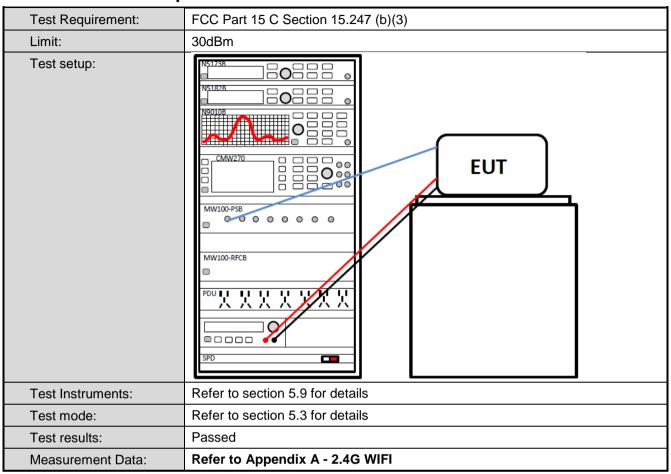
### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



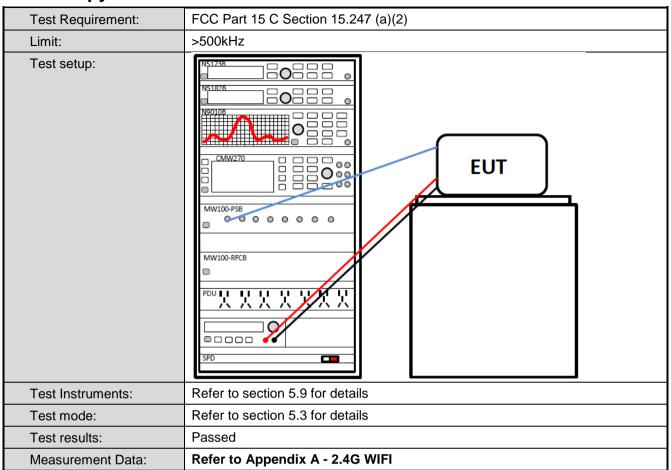
| Product name:   | Mobile Phone     | Product model: | A571LS                |
|-----------------|------------------|----------------|-----------------------|
| Test by:        | Yaro             | Test mode:     | Wi-Fi Tx mode         |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Neutral               |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp: 22.5℃ Huni: 55% |




|                                      | Freq   | Read<br>Level | LISN<br>Factor | Aux<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|--------|---------------|----------------|---------------|---------------|-------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | MHz    | ₫₿u₹          | <u>dB</u>      |               |               | dBu₹  | dBu∜          | <u>dB</u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                    | 0.158  | 36.04         | 9.90           | 0.01          | 0.01          | 45.96 |               | -19.60        | 100 To 10 |
| 2                                    | 0.158  | 23.23         | 9.90           | 0.01          | 0.01          | 33.15 |               |               | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3                                    | 0.266  | 33.21         | 9.98           | 0.01          | 0.02          | 43.22 | 61.25         | -18.03        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4                                    | 0.373  | 21.15         | 10.09          | -0.04         | 0.03          | 31.23 | 48.43         | -17.20        | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5                                    | 0.410  | 21.63         | 10.13          | -0.05         | 0.04          | 31.75 | 47.64         | -15.89        | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6                                    | 0.461  | 34.22         | 10.17          | 0.00          | 0.03          | 44.42 | 56.67         | -12.25        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.466  | 26.07         | 10.18          | 0.00          | 0.03          | 36.28 | 46.58         | -10.30        | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8                                    | 0.518  | 21.55         | 10.22          | 0.03          | 0.03          | 31.83 |               |               | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9                                    | 0.923  | 19.37         | 10.52          | 0.07          | 0.04          | 30.00 |               |               | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10                                   | 0.994  | 31.73         | 10.56          | 0.08          | 0.05          | 42.42 |               | -13.58        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                                   | 5.961  | 28.71         | 11.06          | 0.76          | 0.09          | 40.62 |               | -19.38        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12                                   | 18.426 | 28.38         | 11.56          | 1.06          | 0.15          | 41.15 |               | -18.85        | - 10.75 Co. L 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

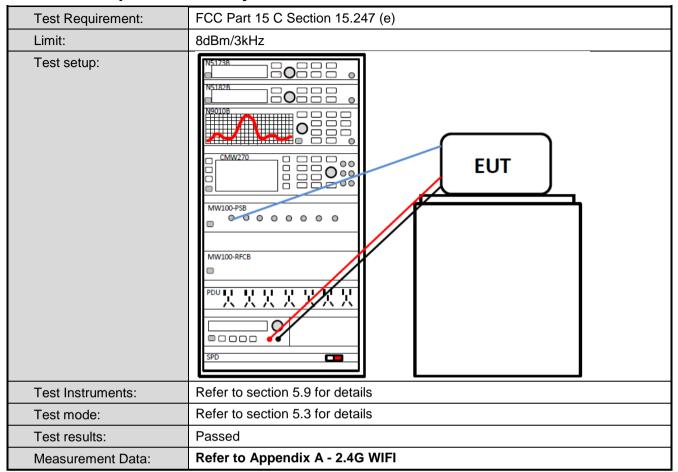
### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.




### **6.3 Conducted Output Power**






### 6.4 Occupy Bandwidth





### 6.5 Power Spectral Density



Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



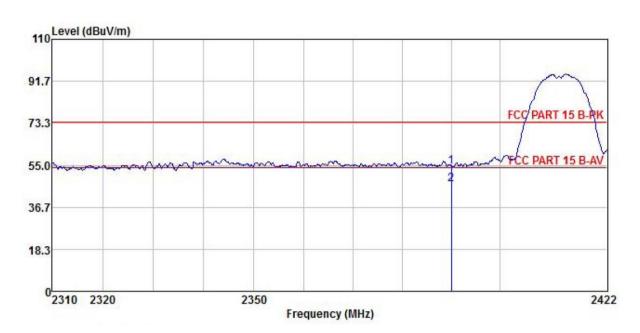
## 6.6 Band Edge

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Test setup:       | NS182B  NS18B  NS18 |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Measurement Data: | Refer to Appendix A - 2.4G WIFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366




### 6.6.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                      |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Frequency Range: | 2310 MHz to 2390                                                                                                                                                                                                                                                                        | 2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                      |  |  |
| Test Distance:        | 3m                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                      |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                               | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                                                                                                                  | VBW                                                                                                                                                                               |                                                                                                                                                                                                                      |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                              | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                 | 3MHz                                                                                                                                                                              | +                                                                                                                                                                                                                    |  |  |
| Limite                | Frequency                                                                                                                                                                                                                                                                               | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>        1MHz                            </u>                                                                                                                                                                      | 3MHz                                                                                                                                                                              | z Average Value<br>Remark                                                                                                                                                                                            |  |  |
| Limit:                |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.00                                                                                                                                                                                                                | 3111)                                                                                                                                                                             | Average Value                                                                                                                                                                                                        |  |  |
|                       | Above 1GH                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.00                                                                                                                                                                                                                |                                                                                                                                                                                   | Peak Value                                                                                                                                                                                                           |  |  |
| Test procedure:       | the ground at determine the 2. The EUT was antenna, which tower.  3. The antenna ground to det horizontal and measurement 4. For each sus and then the and the rota to maximum reasonable and the est-recesory Specified Bar 6. If the emission limit specified the EUT wou 10dB margin | t a 3 meter can be position of the position of | amber. The take the highest rades away from the sed from one measurement walue arizations of the stuned to heigh ned from 0 degrees was set to Peal Maximum Holder EUT in peak regional to the stop d. Otherwise the | ole was rolliation.  e interfere of a variable eter to four of the fielder antenna was arranged as from 1 arees to 36 k Detect Fill Mode, mode was ped and the emission one using | or meters above the d strength. Both are set to make the ged to its worst case meter to 4 meters 60 degrees to find the function and 10dB lower than the he peak values of ons that did not have peak, quasi-peak or |  |  |
| Test setup:           | - 150cm                                                                                                                                                                                                                                                                                 | AE EUT (Turntable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ground Reference Plane                                                                                                                                                                                               |                                                                                                                                                                                   | na Tower                                                                                                                                                                                                             |  |  |
| Test Instruments:     | Refer to section 5                                                                                                                                                                                                                                                                      | .9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                      |  |  |
| Test mode:            | Refer to section 5                                                                                                                                                                                                                                                                      | .3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                      |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                   |                                                                                                                                                                                                                      |  |  |

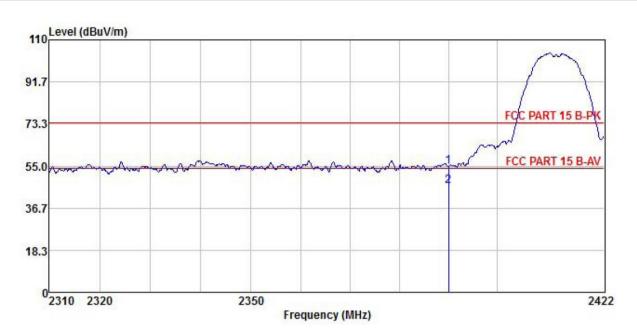


#### 802.11b mode:

| Product Name: | Mobile Phone   | Product Model: | A571LS              |
|---------------|----------------|----------------|---------------------|
| Test By:      | Yaro           | Test mode:     | 802.11b Tx mode     |
| Test Channel: | Lowest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |



|     | Freq                 |      | Antenna<br>Factor |    |           |        |        | Over<br>Limit |  |
|-----|----------------------|------|-------------------|----|-----------|--------|--------|---------------|--|
|     | MHz                  | dBu∜ |                   | dB | <u>dB</u> | dBu√/m | dBuV/m | <u>d</u> B    |  |
| 1 2 | 2390.000<br>2390.000 |      |                   |    |           |        |        |               |  |


### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

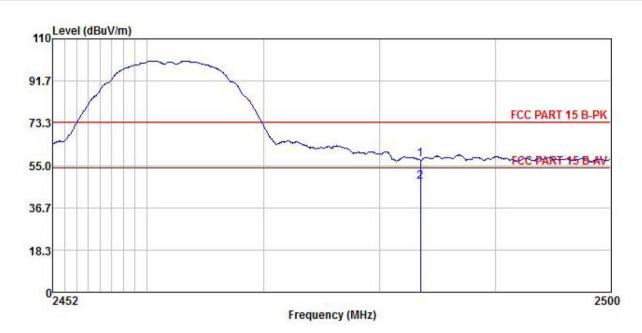
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Product Name: | Mobile Phone   | Product Model: | A571LS               |
|---------------|----------------|----------------|----------------------|
| Test By:      | Yaro           | Test mode:     | 802.11b Tx mode      |
| Test Channel: | Lowest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57% |



|   | Freq     |       | Antenna<br>Factor |      |           |                     |        | Over<br>Limit |         |
|---|----------|-------|-------------------|------|-----------|---------------------|--------|---------------|---------|
|   | MHz      | dBu∜  | <u>dB</u> /m      |      | <u>dB</u> | $\overline{dBuV/m}$ | dBu√/m | <u>db</u>     |         |
| 1 | 2390.000 | 19.21 | 27.03             | 8.73 | 0.00      | 54.97               | 74.00  | -19.03        | Peak    |
| 2 | 2390.000 | 10.45 | 27.03             | 8.73 | 0.00      | 46.21               | 54.00  | -7.79         | Average |


#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

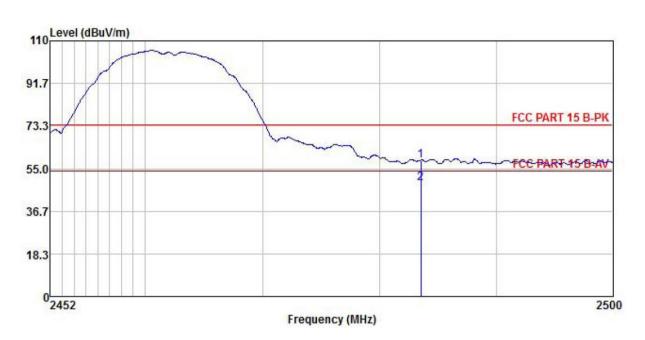
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Product Name: | Mobile Phone    | Product Model: | A571LS              |
|---------------|-----------------|----------------|---------------------|
| Test By:      | Yaro            | Test mode:     | 802.11b Tx mode     |
| Test Channel: | Highest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57% |



|     | Freq                 |      | Antenna<br>Factor |    |    |        |        |    | Remark |   |
|-----|----------------------|------|-------------------|----|----|--------|--------|----|--------|---|
|     | MHz                  | dBu∜ | dB/m              | ₫B | ₫B | dBuV/m | dBuV/m | ₫B |        | - |
| 1 2 | 2483.500<br>2483.500 |      |                   |    |    |        |        |    |        |   |


#### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 37



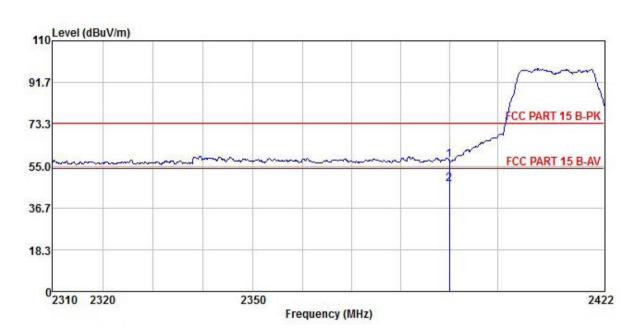
| Product Name: | Mobile Phone                         | Product Model: | A571LS               |  |  |
|---------------|--------------------------------------|----------------|----------------------|--|--|
| Test By:      | Yaro                                 | Test mode:     | 802.11b Tx mode      |  |  |
| Test Channel: | annel: Highest channel Polarization: |                | Horizontal           |  |  |
| Test Voltage: | AC 120/60Hz                          | Environment:   | Temp: 24°C Huni: 57% |  |  |



|     | Freq                 |      | Antenna<br>Factor |           |              |                     |        |           |  |
|-----|----------------------|------|-------------------|-----------|--------------|---------------------|--------|-----------|--|
|     | MHz                  | dBu∇ | <u>dB</u> /m      | <u>ab</u> |              | $\overline{dBuV/m}$ | dBu√/m | <u>dB</u> |  |
| 1 2 | 2483.500<br>2483.500 |      |                   |           | 0.00<br>0.00 |                     |        |           |  |

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 20 of 37





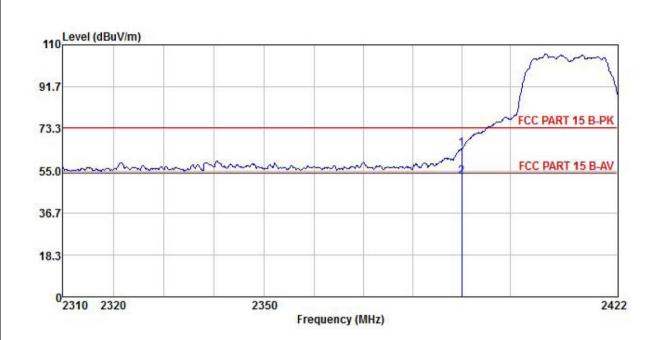
### 802.11g mode:

| Product Name: | Mobile Phone   | Product Model: | A571LS              |  |  |
|---------------|----------------|----------------|---------------------|--|--|
| Test By:      | Yaro           | Test mode:     | 802.11g Tx mode     |  |  |
| Test Channel: | Lowest channel | Polarization:  | Vertical            |  |  |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |  |  |



|     | Freq                 |      | Antenna<br>Factor |    |    |                     |        |    |  |
|-----|----------------------|------|-------------------|----|----|---------------------|--------|----|--|
|     | MHz                  | dBu∀ | _dB/m             | ₫B | ₫B | $\overline{dBuV/m}$ | dBu√/m | dB |  |
| 1 2 | 2390.000<br>2390.000 |      |                   |    |    |                     |        |    |  |

#### Remark


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 21 of 37

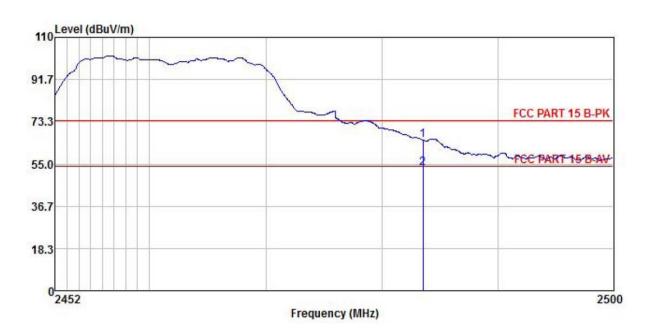


| Product Name: | Mobile Phone                          | Product Model: | A571LS               |  |  |
|---------------|---------------------------------------|----------------|----------------------|--|--|
| Test By:      | Yaro                                  | Test mode:     | 802.11g Tx mode      |  |  |
| Test Channel: | Channel: Lowest channel Polarization: |                | Horizontal           |  |  |
| Test Voltage: | AC 120/60Hz                           | Environment:   | Temp: 24°C Huni: 57% |  |  |



|     | Freq                 |      | Antenna<br>Factor |    |    |                     |                     | Over<br>Limit | Remark |
|-----|----------------------|------|-------------------|----|----|---------------------|---------------------|---------------|--------|
|     | MHz                  | dBu∇ | dB/m              | dB | dB | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ |               |        |
| 1 2 | 2390.000<br>2390.000 |      |                   |    |    |                     |                     |               |        |

#### Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

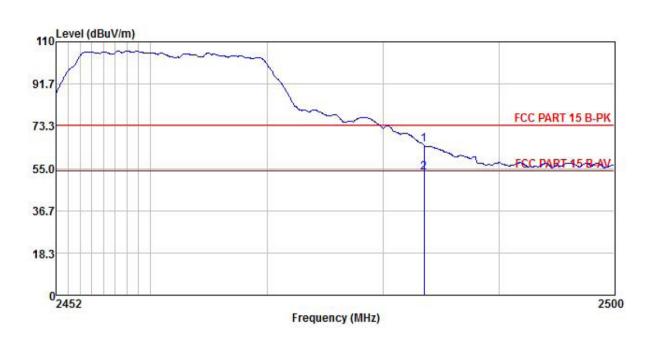
Page 22 of 37



| Product Name: | Mobile Phone    | A571LS        |                      |  |
|---------------|-----------------|---------------|----------------------|--|
| Test By:      | Yaro            | Test mode:    | 802.11g Tx mode      |  |
| Test Channel: | Highest channel | Polarization: | Vertical             |  |
| Test Voltage: | AC 120/60Hz     | Environment:  | Temp: 24°C Huni: 57% |  |



|     | Freq                 |      | Antenna<br>Factor |            |    |                     |                     |            |                       |
|-----|----------------------|------|-------------------|------------|----|---------------------|---------------------|------------|-----------------------|
|     | MHz                  | dBu₹ | $\overline{dB/m}$ | <u>d</u> B | dB | $\overline{dBuV/m}$ | $\overline{dBuV/m}$ | <u>d</u> B | 4100-141100 NO 9410-C |
| 1 2 | 2483.500<br>2483.500 |      |                   |            |    |                     |                     |            |                       |


#### Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

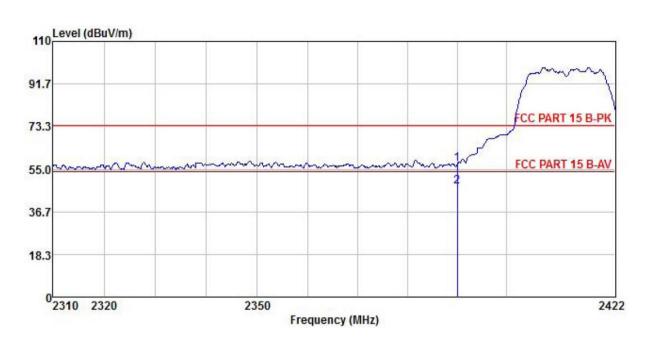
Page 23 of 37



| Product Name: | Mobile Phone    | Product Model:             | A571LS               |  |  |
|---------------|-----------------|----------------------------|----------------------|--|--|
| Test By:      | Yaro            | Test mode: 802.11g Tx mode |                      |  |  |
| Test Channel: | Highest channel | Polarization:              | Horizontal           |  |  |
| Test Voltage: | AC 120/60Hz     | Environment:               | Temp: 24°C Huni: 57% |  |  |



|   | Freq     |       | Antenna<br>Factor |            |           |        |                     | Limit     |         |
|---|----------|-------|-------------------|------------|-----------|--------|---------------------|-----------|---------|
|   | MHz      | dBu∇  | $\overline{dB/m}$ | <u>d</u> B | <u>dB</u> | dBuV/m | $\overline{dBuV/m}$ | <u>dB</u> |         |
| 1 | 2483.500 |       |                   |            |           |        |                     |           |         |
| 2 | 2483.500 | 17.03 | 21.21             | 8.82       | 0.00      | 55.12  | 54.00               | -0.88     | Average |


#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

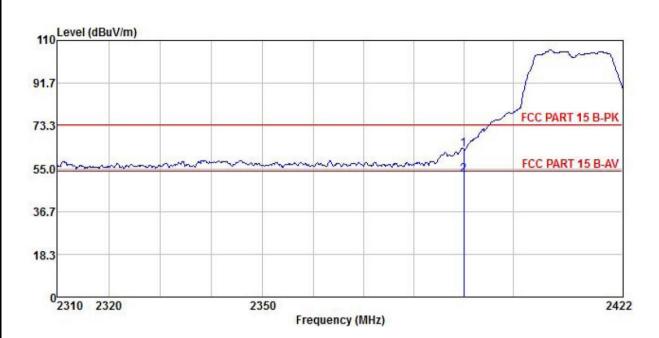


#### 802.11n(HT20):

| Product Name: | Mobile Phone   | A571LS        |                       |  |
|---------------|----------------|---------------|-----------------------|--|
| Test By:      | Yaro           | Test mode:    | 802.11n(HT20) Tx mode |  |
| Test Channel: | Lowest channel | Polarization: | Vertical              |  |
| Test Voltage: | AC 120/60Hz    | Environment:  | Temp: 24℃ Huni: 57%   |  |



|     | Freq                 |      | Antenna<br>Factor |           |           |                              | Limit<br>Line |           | Remark |
|-----|----------------------|------|-------------------|-----------|-----------|------------------------------|---------------|-----------|--------|
|     | MHz                  | dBu∇ | dB/m              | <u>dB</u> | <u>dB</u> | $\overline{\mathtt{dBuV/m}}$ | dBuV/m        | <u>dB</u> |        |
| 1 2 | 2390.000<br>2390.000 |      |                   |           |           |                              |               |           |        |


### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

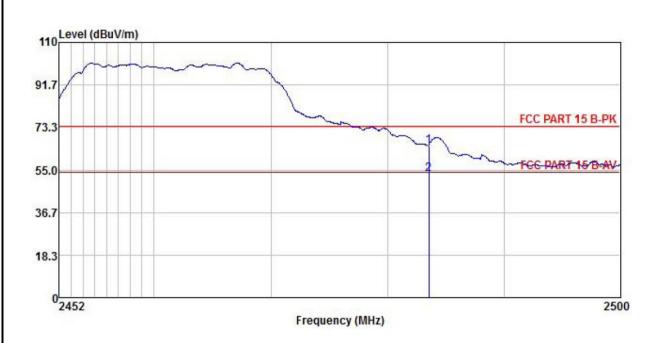


| Product Name: | Mobile Phone   | Product Model: | A571LS                |  |  |
|---------------|----------------|----------------|-----------------------|--|--|
| Test By:      | Yaro           | Test mode:     | 802.11n(HT20) Tx mode |  |  |
| Test Channel: | Lowest channel | Polarization:  | Horizontal            |  |  |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57%  |  |  |



|     | Freq                 |      | Antenna<br>Factor |           |    |                |        | Over<br>Limit | Remark                        |
|-----|----------------------|------|-------------------|-----------|----|----------------|--------|---------------|-------------------------------|
|     | MHz                  | dBu∇ | dB/m              | <u>dB</u> | dB | dBuV/m         | dBu√/m |               | 1 <u>-2-2-20-07-22-24-25-</u> |
| 1 2 | 2390.000<br>2390.000 |      |                   |           |    | 63.43<br>52.20 |        |               |                               |

#### Remark


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

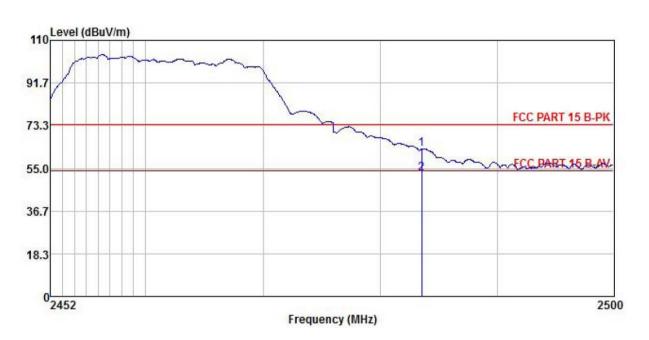
Project No.: JYTSZE2105036



| Product Name: | Mobile Phone    | Product Model: | A571LS                |
|---------------|-----------------|----------------|-----------------------|
| Test By:      | Yaro            | Test mode:     | 802.11n(HT20) Tx mode |
| Test Channel: | Highest channel | Polarization:  | Vertical              |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57%   |



|     | Freq                 |      | Antenna<br>Factor |            |            |        |                     |           |  |
|-----|----------------------|------|-------------------|------------|------------|--------|---------------------|-----------|--|
|     | MHz                  | dBu∇ | dB/m              | <u>d</u> B | <u>d</u> B | dBuV/m | $\overline{dBuV/m}$ | <u>dB</u> |  |
| 1 2 | 2483.500<br>2483.500 |      |                   |            |            |        |                     |           |  |


### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 27 of 37



| Product Name: | Mobile Phone    | Product Model: | A571LS                |
|---------------|-----------------|----------------|-----------------------|
| Test By:      | Yaro            | Test mode:     | 802.11n(HT20) Tx mode |
| Test Channel: | Highest channel | Polarization:  | Horizontal            |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57%   |



|     | Freq                 |      | Antenna<br>Factor |           |        |                     |        |            |  |
|-----|----------------------|------|-------------------|-----------|--------|---------------------|--------|------------|--|
|     | MHz                  | dBu∜ | $\overline{dB/m}$ | <u>dB</u> | −−−−dB | $\overline{dBuV/m}$ | dBuV/m | <u>d</u> B |  |
| 1 2 | 2483.500<br>2483.500 |      |                   |           |        | 63.12<br>52.58      |        |            |  |

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

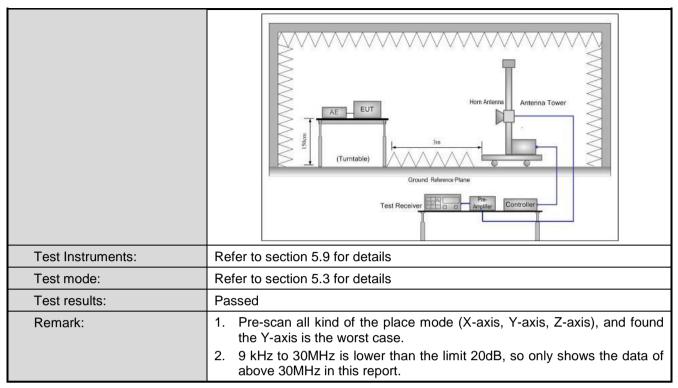
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 28 of 37



## 6.7 Spurious Emission

### 6.7.1 Conducted Emission Method

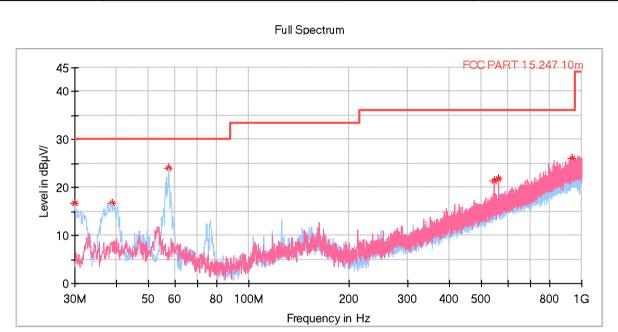

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. |  |  |  |  |  |  |
| Test setup:       | NS173B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Measurement Data: | Refer to Appendix A - 2.4G WIFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |



### 6.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Se                                                                                                                                                                                                                                                             | ction 15.2                                                                                                                            | 209 an                                                                                                      | nd 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Frequency Range: | 9kHz to 25GHz                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |  |
| Test Distance:        | 3m                                                                                                                                                                                                                                                                           |                                                                                                                                       |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                    | Detec                                                                                                                                 | tor RBW                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VBW                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remark                                                                                                                                                                                                                                         |  |
| ·                     | 30MHz-1GHz                                                                                                                                                                                                                                                                   | Quasi-p                                                                                                                               | oeak                                                                                                        | 120KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                                            | KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quasi-peak Value                                                                                                                                                                                                                               |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                   | Pea                                                                                                                                   | k                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak Value                                                                                                                                                                                                                                     |  |
|                       |                                                                                                                                                                                                                                                                              | RMS                                                                                                                                   |                                                                                                             | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                | ИHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Average Value                                                                                                                                                                                                                                  |  |
| Limit:                | Frequency                                                                                                                                                                                                                                                                    |                                                                                                                                       | Limi                                                                                                        | t (dBuV/m @3i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m)                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remark                                                                                                                                                                                                                                         |  |
|                       | 30MHz-88MH                                                                                                                                                                                                                                                                   |                                                                                                                                       |                                                                                                             | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak Value                                                                                                                                                                                                                               |  |
|                       | 88MHz-216MH                                                                                                                                                                                                                                                                  |                                                                                                                                       |                                                                                                             | 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uasi-peak Value                                                                                                                                                                                                                                |  |
|                       | 216MHz-960MHz 46.0                                                                                                                                                                                                                                                           |                                                                                                                                       |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | uasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |  |
|                       | 960MHz-1GH                                                                                                                                                                                                                                                                   | Z                                                                                                                                     |                                                                                                             | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uasi-peak Value                                                                                                                                                                                                                                |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                   | <u>.</u>                                                                                                                              |                                                                                                             | 54.0<br>74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Average Value Peak Value                                                                                                                                                                                                                       |  |
| Test Procedure:       | The table was highest radiated.  The EUT was antenna, which tower.  The antenna ground to det horizontal and measuremen.  For each sus and then the and the rota to maximum reas.  The test-rece Specified Bar.  If the emission limit specified the EUT would the radiated. | above 1Gs rotated tion. See that a method wertical transpected erantenna value was ading. In level of It, then tested be repowould be | SHz) at 360 de eters a ounted varied ne max polariz mission was tu turned et the Elsting crorted. (e re-tes | way from the don the top of from one medimum value of the top of t | ermin inter of a value eter to of the ante as arr ees to Dete Mode inde v oed ar ee emis ne us | t a 3 mile the properties of four mile the properties of four mile the properties of | eter chamber. Position of the e-receiving height antenna heters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the etion and dB lower than the peak values of that did not have ak, quasi-peak or |  |
| Test setup:           | Below 1GHz  EUT  Turn Table  Ground I                                                                                                                                                                                                                                        | 0.8m                                                                                                                                  | 4m                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                |  |








### Measurement Data (worst case):

#### **Below 1GHz:**

| Product Name:   | Mobile Phone   | Product Model: | A571LS                |  |
|-----------------|----------------|----------------|-----------------------|--|
| Test By:        | Yaro           | Test mode:     | Wi-Fi Tx mode         |  |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Vertical & Horizontal |  |
| Test Voltage:   | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57%   |  |



| • | Frequency↓  | MaxPeak↓    | Limit↓ | Margin ↓ | Height↓ | Pol₽       | Azimuth ↓ | Corr.↓  |
|---|-------------|-------------|--------|----------|---------|------------|-----------|---------|
|   | (MHz)∂      | (dB ¼ V/m)₽ | (dBµ   | (dB)∂    | (cm)₽   |            | (deg)∂    | (dB/m)∂ |
| • | 30.0000004  | 16.63₽      | 30.00₽ | 13.37₽   | 100.0₽  | H₽         | 230.0₽    | -17.3₽  |
| • | 38.730000₽  | 16.78₽      | 30.00₽ | 13.22₽   | 100.0₽  | <b>H</b> ₽ | 230.0₽    | -15.9₽  |
| • | 57.451000₽  | 23.96₽      | 30.00₽ | 6.04₽    | 100.0₽  | H₽         | 243.0₽    | -16.6₽  |
| • | 547.592000₽ | 21.39₽      | 36.00₽ | 14.61₽   | 100.0₽  | V₽         | 0.0₽      | -7.8₽   |
| • | 562.530000₽ | 21.78₽      | 36.00₽ | 14.22₽   | 100.0₽  | V₽         | 53.0₽     | -7.5₽   |
| • | 935.301000₽ | 26.00₽      | 36.00₽ | 10.00₽   | 100.0₽  | V₽         | 161.0₽    | -0.3∉   |

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





#### **Above 1GHz**

| Above 1GHz         |                      |            |                   |                        |                |              |  |  |  |  |
|--------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|--|--|--|
|                    |                      |            | 802.11b           |                        |                |              |  |  |  |  |
|                    |                      | Test ch    | annel: Lowest ch  | nannel                 |                |              |  |  |  |  |
|                    |                      | De         | tector: Peak Valu | ie                     |                |              |  |  |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |  |  |
| 4824.00            | 56.73                | -10.33     | 46.40             | 74.00                  | 27.60          | Vertical     |  |  |  |  |
| 4824.00            | 55.90                | -10.33     | 45.57             | 74.00                  | 28.43          | Horizontal   |  |  |  |  |
|                    |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |  |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |  |  |
| 4824.00            | 48.66                | -10.33     | 38.33             | 54.00                  | 15.67          | Vertical     |  |  |  |  |
| 4824.00            | 48.67                | -10.33     | 38.34             | 54.00                  | 15.66          | Horizontal   |  |  |  |  |
|                    |                      |            |                   |                        |                |              |  |  |  |  |
|                    |                      | Test ch    | annel: Middle ch  | nannel                 |                |              |  |  |  |  |
|                    |                      | Det        | tector: Peak Valu | ıe                     |                |              |  |  |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |  |  |
| 4874.00            | 56.16                | -10.17     | 45.99             | 74.00                  | 28.01          | Vertical     |  |  |  |  |
| 4874.00            | 55.82                | -10.17     | 45.65             | 74.00                  | 28.35          | Horizontal   |  |  |  |  |
|                    |                      | Dete       | ctor: Average Va  | alue                   |                | •            |  |  |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |  |  |
| 4874.00            | 48.71                | -10.17     | 38.54             | 54.00                  | 15.46          | Vertical     |  |  |  |  |
| 4874.00            | 48.26                | -10.17     | 38.09             | 54.00                  | 15.91          | Horizontal   |  |  |  |  |
|                    |                      |            |                   |                        |                |              |  |  |  |  |
|                    |                      | Test cha   | annel: Highest cl | hannel                 |                |              |  |  |  |  |
|                    |                      | Det        | tector: Peak Valu | ıe                     |                |              |  |  |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |  |  |
| 4924.00            | 55.98                | -10.02     | 45.96             | 74.00                  | 28.04          | Vertical     |  |  |  |  |
| 4924.00            | 55.14                | -10.02     | 45.12             | 74.00                  | 28.88          | Horizontal   |  |  |  |  |
|                    |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |  |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |  |  |
| 4924.00            | 48.23                | -10.02     | 38.21             | 54.00                  | 15.79          | Vertical     |  |  |  |  |
| 4924.00            | 48.16                | -10.02     | 38.14             | 54.00                  | 15.86          | Horizontal   |  |  |  |  |
| Remark:            |                      |            |                   |                        |                |              |  |  |  |  |

#### Remark:

<sup>1.</sup> Final Level = Receiver Read level + Factor.

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





|                              |                      |            | 802.11g           |                        |                |              |  |
|------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|
| Test channel: Lowest channel |                      |            |                   |                        |                |              |  |
| Detector: Peak Value         |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4824.00                      | 55.46                | -10.33     | 45.13             | 74.00                  | 28.87          | Vertical     |  |
| 4824.00                      | 55.91                | -10.33     | 45.58             | 74.00                  | 28.42          | Horizontal   |  |
| Detector: Average Value      |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4824.00                      | 48.15                | -10.33     | 2.46              | 54.00                  | 51.54          | Vertical     |  |
| 4824.00                      | 48.71                | -10.33     | 2.46              | 54.00                  | 51.54          | Horizontal   |  |
| 4824.00                      | 48.71                | -10.33     | 2.46              | 54.00                  | 51.54          | Horizontal   |  |

| Test channel: Middle channel |                         |            |                   |                        |                |              |  |  |
|------------------------------|-------------------------|------------|-------------------|------------------------|----------------|--------------|--|--|
| Detector: Peak Value         |                         |            |                   |                        |                |              |  |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV)    | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4874.00                      | 56.92                   | -10.17     | 46.75             | 74.00                  | 27.25          | Vertical     |  |  |
| 4874.00                      | 55.41                   | -10.17     | 45.24             | 74.00                  | 28.76          | Horizontal   |  |  |
|                              | Detector: Average Value |            |                   |                        |                |              |  |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV)    | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4874.00                      | 48.71                   | -10.17     | 38.54             | 54.00                  | 15.46          | Vertical     |  |  |
| 4874.00                      | 48.26                   | -10.17     | 38.09             | 54.00                  | 15.91          | Horizontal   |  |  |

| Test channel: Highest channel |                         |            |                   |                        |                |              |  |  |
|-------------------------------|-------------------------|------------|-------------------|------------------------|----------------|--------------|--|--|
| Detector: Peak Value          |                         |            |                   |                        |                |              |  |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV)    | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4924.00                       | 55.16                   | -10.02     | 45.14             | 74.00                  | -28.86         | Vertical     |  |  |
| 4924.00                       | 55.71                   | -10.02     | 45.69             | 74.00                  | -28.31         | Horizontal   |  |  |
|                               | Detector: Average Value |            |                   |                        |                |              |  |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV)    | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4924.00                       | 48.83                   | -10.02     | 38.81             | 54.00                  | 15.19          | Vertical     |  |  |
| 4924.00                       | 49.20                   | -10.02     | 39.18             | 54.00                  | 14.82          | Horizontal   |  |  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



Project No.: JYTSZE2105036



|                             |                      |            | 802.11n(HT20)     |                        |                |              |  |
|-----------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|
|                             |                      | Test ch    | annel: Lowest ch  | nannel                 |                |              |  |
|                             |                      | De         | tector: Peak Valu | ie                     |                |              |  |
| Frequency<br>(MHz)          | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4824.00                     | 55.94                | -10.33     | 45.61             | 74.00                  | 28.39          | Vertical     |  |
| 4824.00                     | 55.17                | -10.33     | 44.84             | 74.00                  | 29.16          | Horizontal   |  |
| Detector: Average Value     |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)          | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4824.00                     | 48.61                | -10.33     | 38.28             | 54.00                  | 15.72          | Vertical     |  |
| 4824.00                     | 48.71                | -10.33     | 38.38             | 54.00                  | 15.62          | Horizontal   |  |
|                             |                      |            |                   |                        |                |              |  |
|                             |                      | Test ch    | annel: Middle ch  | annel                  |                |              |  |
|                             |                      | De         | tector: Peak Valu | ıe                     |                |              |  |
| Frequency<br>(MHz)          | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4874.00                     | 55.97                | -10.17     | 45.80             | 74.00                  | 28.20          | Vertical     |  |
| 4874.00                     | 55.26                | -10.17     | 45.09             | 74.00                  | 28.91          | Horizontal   |  |
|                             |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)          | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4874.00                     | 48.13                | -10.17     | 37.96             | 54.00                  | 16.04          | Vertical     |  |
| 4874.00                     | 48.31                | -10.17     | 38.14             | 54.00                  | 15.86          | Horizontal   |  |
|                             |                      |            |                   |                        |                |              |  |
|                             |                      |            | annel: Highest cl |                        |                |              |  |
|                             |                      | De         | tector: Peak Valu |                        |                |              |  |
| Frequency<br>(MHz)          | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4924.00                     | 55.81                | -10.02     | 45.79             | 74.00                  | 28.21          | Vertical     |  |
| 4924.00                     | 55.06                | -10.02     | 45.04             | 74.00                  | 28.96          | Horizontal   |  |
|                             |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)          | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4924.00                     | 48.09                | -10.02     | 38.07             | 54.00                  | 15.93          | Vertical     |  |
| 4924.00                     | 47.93                | -10.02     | 37.91             | 54.00                  | 16.09          | Horizontal   |  |
| Remark:<br>1. Final Level = | Receiver Read level  | + Factor.  |                   |                        |                |              |  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 35 of 37

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.