

Report No. : EED32K00171301 Page 1 of 51

TEST REPORT

Product : Electronic Blood Pressure Monitor

Trade mark : JUMPER

Model/Type reference : JPD-HA121, JPD-HA120

Serial Number : N/A

Report Number : EED32K00171301

FCC ID : 2ADYL-JPDHA121

Date of Issue : Aug. 01, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Shenzhen Jumper Medical Equipment Co., Ltd D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested by:

Tom-chen

Tom chen (Test Project)

Reum for

Reviewed by:

Date:

Kevin yang (Reviewer)

Aug. 01, 2018

Total Hary

Max Liang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:3177491829

Page 2 of 51

2 Version

Version No.	Date		Description	·/
00	Aug. 01, 2018		Original	
	125	100	75	/15
		(4,5)		

Report No. : EED32K00171301 Page 3 of 51

3 Test Summary

165t Sullillary	(A)		
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

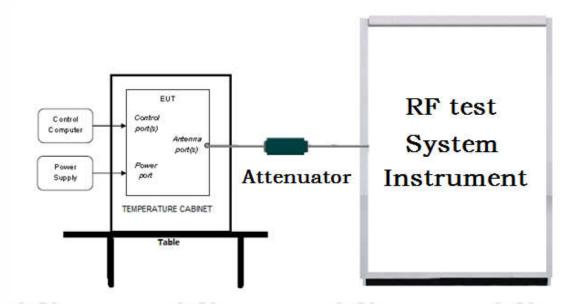
Model No.: JPD-HA121, JPD-HA120

Only the model of JPD-HA120 is tested, since their electrical circuit design, layout, components used and internal wiring are identical, only the outer decoration is different.

Report No.: EED32K00171301 Page 4 of 51

4 Content

VER PAGE				1
				I
RSION				2
ST SUMMARY			••••••	3
NTENT				4
ST REQUIREMENT			•••••	5
5.1.1 For Conducted test 5.1.2 For Radiated Emiss 5.1.3 For Conducted Emi 2 TEST ENVIRONMENT	setupions test setupssions test setup			5 6 6
NERAL INFORMATION		•••••		7
P. GENERAL DESCRIPTION OF PRODUCT SPECIFICATION OF SUPPOR TEST LOCATION	F EUT SUBJECTIVE TO THIS STANI T UNITS RDS ANDARD CONDITIONS	DARD		
UIPMENT LIST				10
DIO TECHNICAL REQUI	REMENTS SPECIFICAT	ION	•••••	12
Appendix B): Conducted Appendix C): Band-edge Appendix D): RF Conducted Appendix E): Power Spectappendix F): Antenna Re Appendix G): AC Power LAppendix H): Restricted by	Peak Output Power for RF Conducted Emissi ted Spurious Emissions ctral Density quirement ine Conducted Emission. pands around fundamenta	onsal frequency (Radiated))	
TOGRAPHS OF TEST SE	TUP			39
TOGRAPHS OF EUT CO	NSTRUCTIONAL DETAI	LS		41
	NTENT TEST SETUP 5.1.1 For Conducted test 5.1.2 For Radiated Emiss 5.1.3 For Conducted Emis TEST ENVIRONMENT TEST ENVIRONMENT TEST CONDITION CLIENT INFORMATION CLIENT INFORMATION CHENT INFORMATION RECOUNT INFORMATION INFORMATION RECOUNT INFORMATION RECOUNT INFORMATION RECOUNT INFO	NTENT	NTENT	RSION ST SUMMARY NTENT ST REQUIREMENT TEST SETUP. 5.1.1 For Conducted test setup. 5.1.2 For Radiated Emissions test setup. 5.1.3 For Conducted Emissions test setup. 5.1.3 For Conducted Emissions test setup. TEST ENVIRONMENT TEST ENVIRONMENT TEST ENVIRONMENT TEST CONDITION NERAL INFORMATION CLIENT INFORMATION CLIENT INFORMATION SUBJECTIVE TO THIS STANDARD DESCRIPTION OF SUPPORT UNITS TEST LOCATION DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITIONS OTHER INFORMATION SUBJECTIVE TO THIS STANDARD MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) UIPMENT LIST DIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 6dB Occupied Bandwidth Appendix B): Conducted Peak Output Power Appendix B): Conducted Peak Output Power Appendix C): Band-edge for RF Conducted Emissions Appendix D): RF Conducted Spurious Emissions Appendix F): Antenna Requirement Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted Emission Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I): Radiated Spurious Emissions TOGRAPHS OF EUT CONSTRUCTIONAL DETAILS



Report No. : EED32K00171301 Page 5 of 51

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

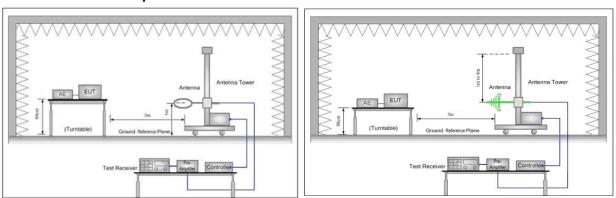
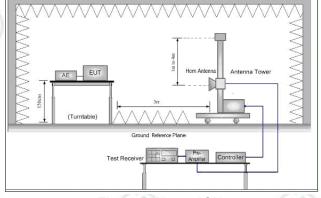
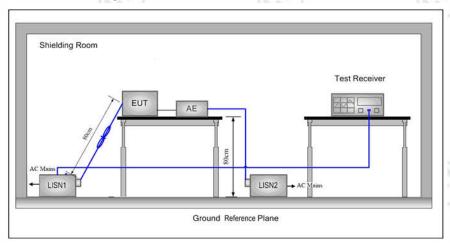


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup **Conducted Emissions setup**

5.2 Test Environment

Operating Environment:			(6)
Temperature:	27.4 °C		
Humidity:	56 % RH	106-2	
Atmospheric Pressure:	1010mbar		(II)

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel				
١	rest Mode	IX/RX	Low(L)	Middle(M)	High(H)		
l	05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40		
	GFSK	K 2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
	TX mode:	The EUT transmitted the continuous signal at the specific channel(s).					

6 General Information

6.1 Client Information

Applicant:	Shenzhen Jumper Medical Equipment Co., Ltd
Address of Applicant:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Jumper Medical Equipment Co., Ltd
Address of Manufacturer:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China
Factory:	Shenzhen Jumper Medical Equipment Co., Ltd
Address of Factory:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China

6.2 General Description of EUT

_			The second secon	
Product Name:	Electronic Blood Pressure Monitor			
Model No.(EUT):	JPD-HA121, JPD-HA120			
Test Model No.:	JPD-HA120			(3)
Trade mark:	JUMPER	(0,)		6.
EUT Supports Radios application:	BT4.0 Single Mode, 2402-2480MHz			
Power Supply:	Battery 6V(1.5V(AA)×4) Supply by USB port DC 5V			
Sample Received Date:	Jul. 02, 2018		6	
Sample tested Date:	Jul. 02, 2018 to Jul. 31, 2018			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(67)	(8)
Bluetooth Version:	4.0		
Modulation Technique:	DSSS		
Modulation Type:	GFSK		7.
Number of Channel:	40	(6	(12)
Hardware Version:	V1.3(manufacturer declare)	0	
Firmware Version:	V1.0(manufacturer declare)		
Antenna Type and Gain:	Type:PCB Antenna Gain: -5dBi		
Test Voltage:	AC 120V, 60Hz	(0.)	(6.)

Report No. : EED32K00171301 Page 8 of 51

Operation F	requency eac	h of channe	l	(2)		(2)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

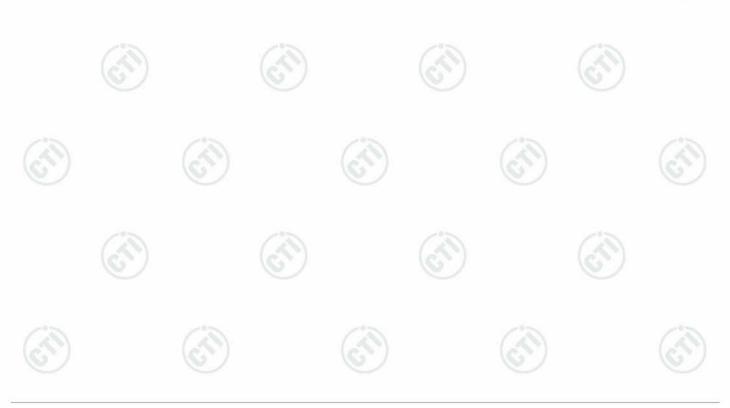
6.8 Other Information Requested by the Customer

None.

Report No. : EED32K00171301 Page 9 of 51

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE novembre de de	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
	Dedicted Courieus cosississe to at	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction assisting	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



Report No. : EED32K00171301 Page 10 of 51

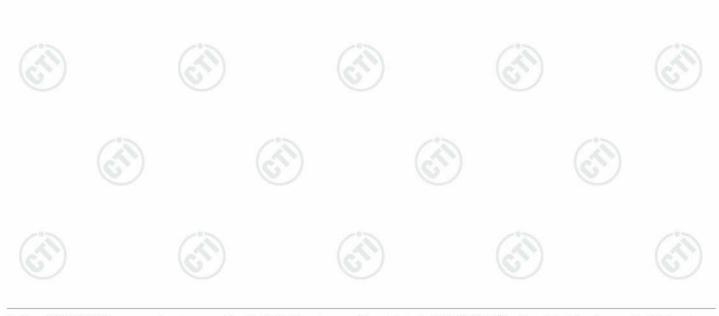
7 Equipment List

-95.155.	· · · /:	76.7	1 201		18.
		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(=)	01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54436035	03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-29-2018	03-28-2019

Conducted disturbance Test							
Equipment Manufacturer Model No. Serial Cal. date (mm-dd-yyyy) (mm-dd-yyyy)							
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019		
Temperature/ Humidity Indicator	Belida	TT-512	A19	01-24-2018	01-23-2019		
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019		

Page 11 of 51

	3M	Semi/full-anechoid	Chamber		
Equipment	Manufacturer	Manufacturer Model No.		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	/	06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-617	03-29-2018	03-28-2019
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019
Horn Antenna	ETS-LINDGREN	3117	00057407	07-12-2015 07-10-2018	07-10-2018 07-08-2021
Double Ridge Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-07-2015 06-05-2018	06-05-2018 06-03-2021
Loop Antenna	ETS	6502	00071730	06-21-2018	06-20-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	Belida	TT-512	A19	01-24-2018	01-23-2019
Communication test set	Agilent	E5515C	GB47050533	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019
High-pass filter	Sinoscite	FL3CX03WG18NM1 2-0398-002	-05	01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(i)_	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001	- (01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002	"	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001		01-10-2018	01-09-2019

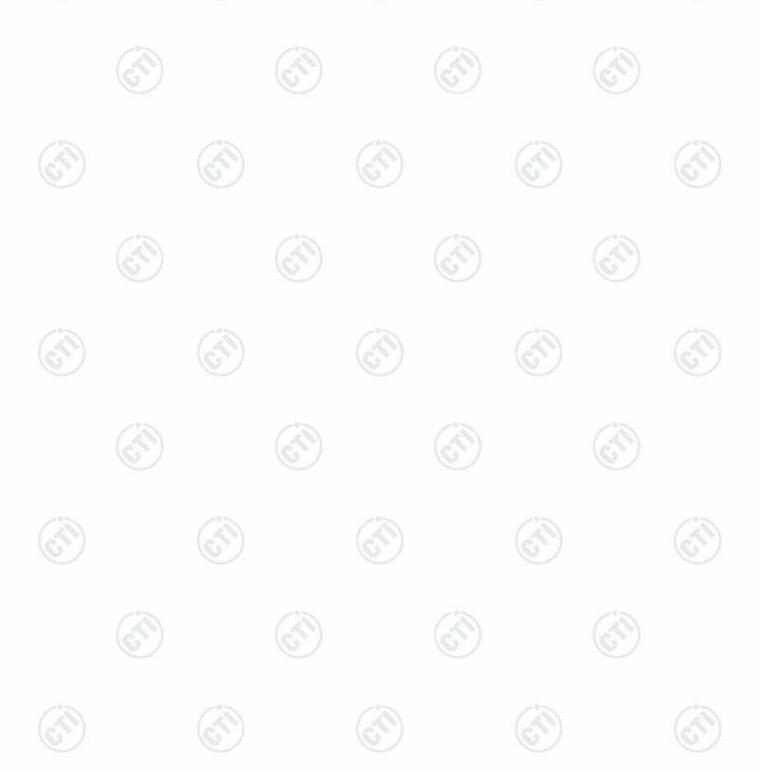

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

COL INCOURTS EIGH.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Report No.: EED32K00171301 Page 13 of 51

Appendix A): 6dB Occupied Bandwidth

Test Result

10.700					
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6891	1.0743	PASS	
BLE	MCH	0.6780	1.0682	PASS	Peak
BLE	нсн	0.6827	1.0718	PASS	detector

Test Graphs

Report No.: EED32K00171301

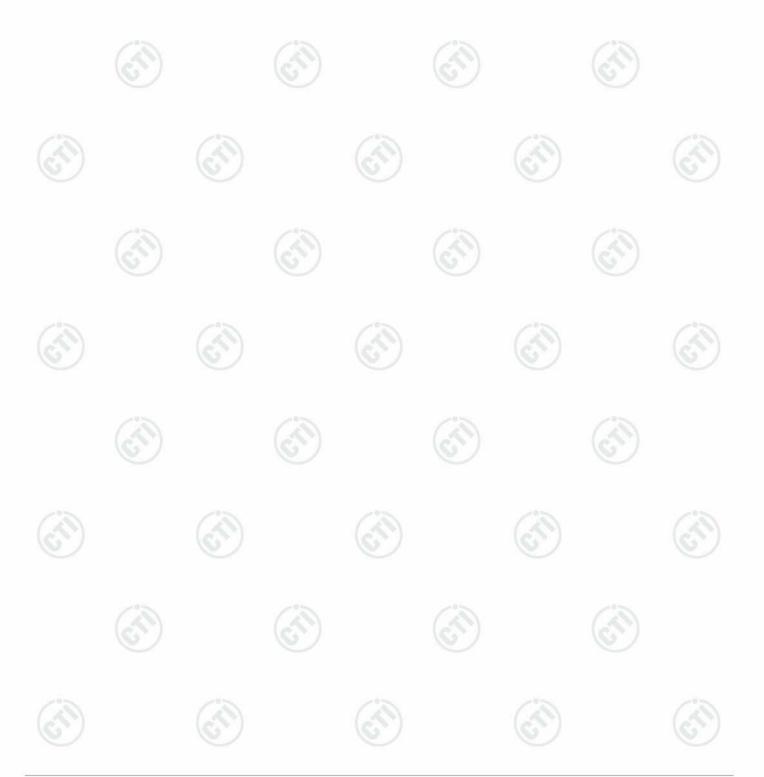
Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel Conduct Peak Power[dBm]		Verdict
BLE	LCH	-1.378	PASS
BLE	MCH	-1.981	PASS
BLE	HCH	-2.428	PASS

Test Graphs

Report No.: EED32K00171301



Report No.: EED32K00171301 Page 17 of 51

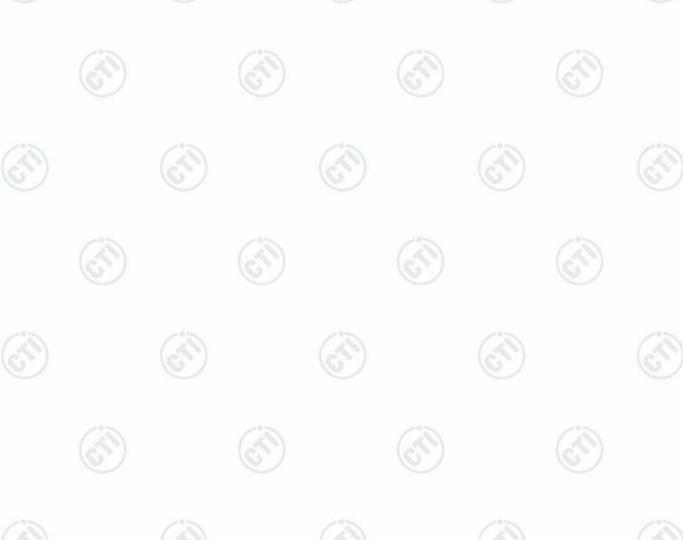
Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
0	BLE	LCH	-2.153	-34.400	-22.15	PASS
9	BLE	нсн	-2.971	-27.137	-22.97	PASS



Test Graphs

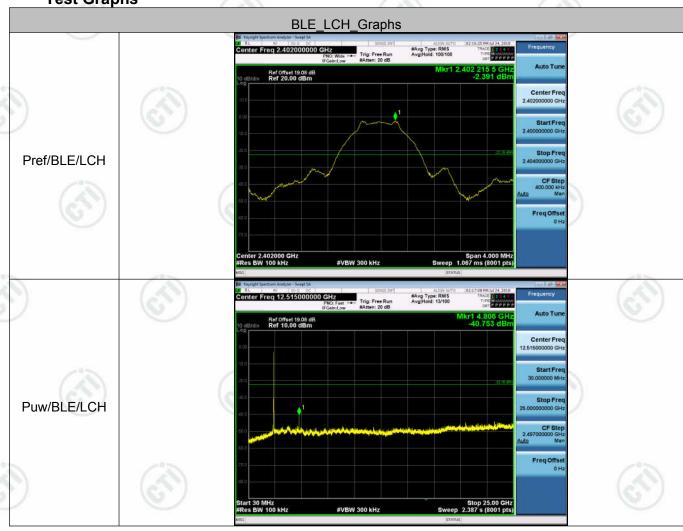


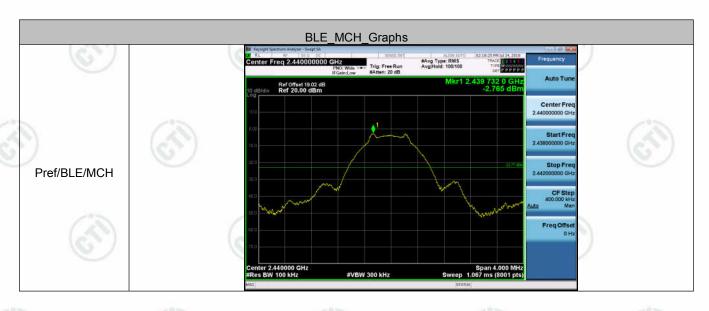
Page 19 of 51

Appendix D): RF Conducted Spurious Emissions

Result Table

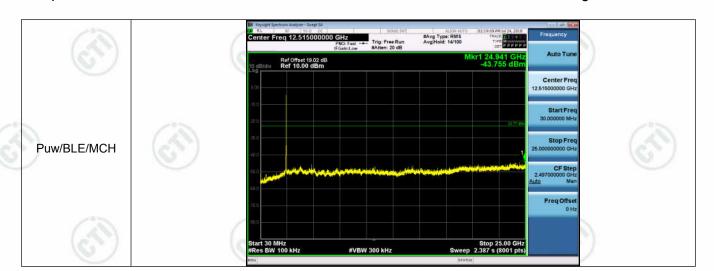
5,500				
Mode	Channel	Puw[dBm]	Verdict	
BLE	LCH	-2.391	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-2.765	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-3.148	<limit< td=""><td>PASS</td></limit<>	PASS





Report No. : EED32K00171301 Page 20 of 51

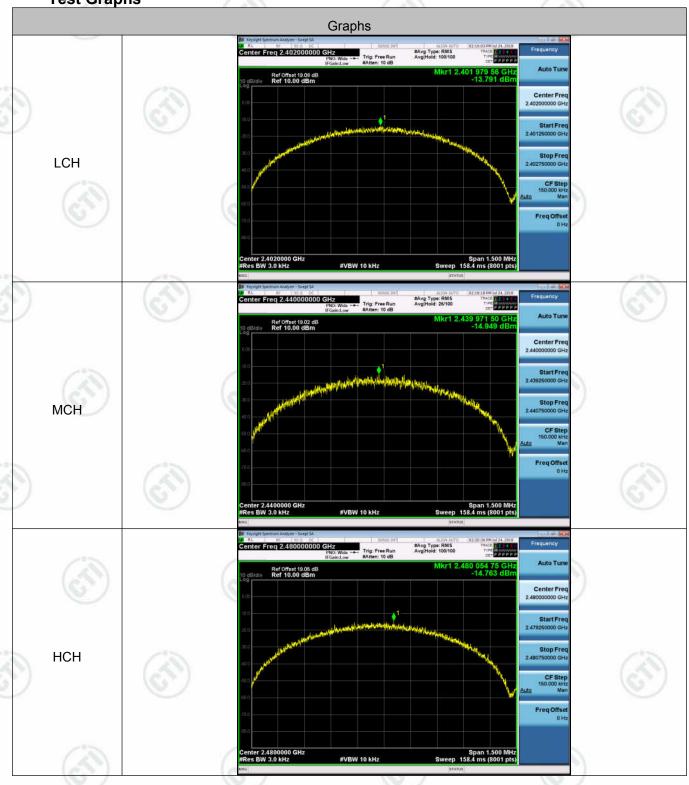
Test Graphs



Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-13.791	8	PASS
BLE	MCH	-14.949	8	PASS
BLE	НСН	-14.763	8	PASS

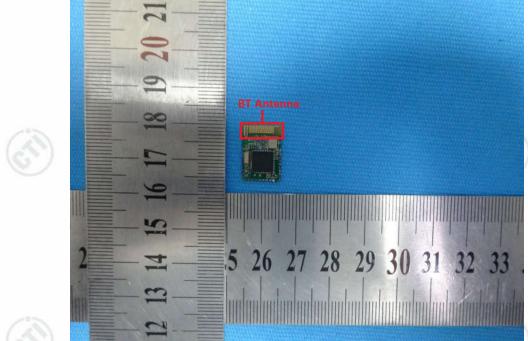


Report No.: EED32K00171301 Page 23 of 51

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB Antenna and no consideration of replacement. The best case gain of the antenna is -5dBi.

Report No.: EED32K00171301 Page 25 of 51

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test

Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

[Limit (dBµV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Measurement Data

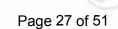
An initial pre-scan was performed on the live and neutral lines with peak detector.

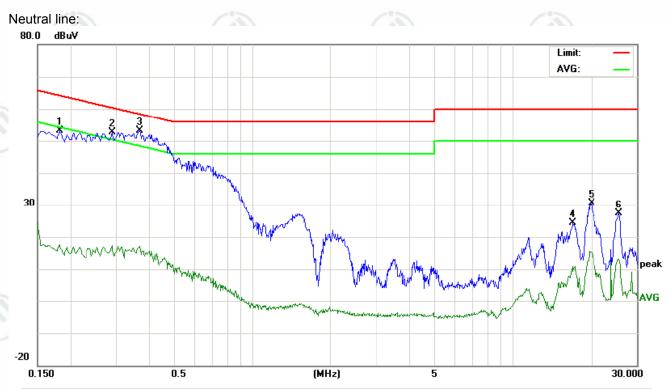
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

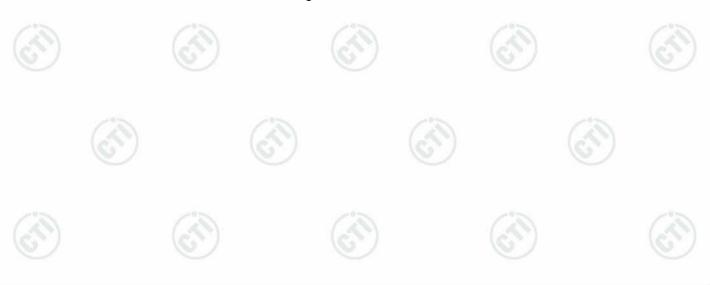
NOTE: The lower limit is applicable at the transition frequency

Page 26 of 51

20 0.150 0.5 (MHz) 5 30.000


No.	Reading_Level No. Freq. (dBuV)		Correct Factor	Measurement (dBuV)		Limit (dBuV)		Margin (dB)						
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	41.91	38.47	6.45	9.74	51.65	48.21	16.19	64.96	54.96	-16.75	-38.77	Р	
2	0.2100	41.65	38.44	6.39	9.72	51.37	48.16	16.11	63.20	53.20	-15.04	-37.09	Р	
3	0.3020	40.37	37.85	5.15	9.78	50.15	47.63	14.93	60.19	50.19	-12.56	-35.26	Р	
4	0.3500	39.74	36.59	4.55	9.76	49.50	46.35	14.31	58.96	48.96	-12.61	-34.65	Р	
5	20.1020	19.13	17.22	2.58	10.06	29.19	27.28	12.64	60.00	50.00	-32.72	-37.36	Р	
6	25.7020	18.15	16.41	3.75	10.20	28.35	26.61	13.95	60.00	50.00	-33.39	-36.05	Р	





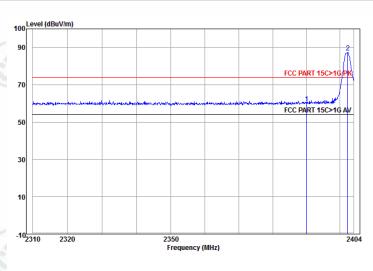
NI-	Reading_Level		Correct Measurement			nent	Limit		Margin					
NO.	Freq.	(dBuV)		Factor		(dBuV)		(dBı	ıV)	(c	dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1819	43.31	40.11	7.90	9.73	53.04	49.84	17.63	64.39	54.39	-14.55	-36.76	Р	
2	0.2900	42.95	39.28	7.48	9.77	52.72	49.05	17.25	60.52	50.52	-11.47	-33.27	Р	
3	0.3700	43.43	40.02	7.26	9.76	53.19	49.78	17.02	58.50	48.50	-8.72	-31.48	Р	
4	17.0380	14.34	11.22	0.85	10.03	24.37	21.25	10.88	60.00	50.00	-38.75	-39.12	Р	
5	20.0740	20.57	17.54	4.99	10.06	30.63	27.60	15.05	60.00	50.00	-32.40	-34.95	Р	
6	25.6900	17.10	14.58	2.86	10.20	27.30	24.78	13.06	60.00	50.00	-35.22	-36.94	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 21/2 4011-	Peak	1MHz	3MHz	Peak	105
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the toto. c. The antenna height is determine the maximular polarizations of the and d. For each suspected er the antenna was tuned was turned from 0 degree. The test-receiver systems and because it is a marker at the second service of the second se	on the top of a rotal choic camber. The of the highest rad eters away from the portion one managed of the field tenna are set to managed to heights from 1 rees to 360 degreem was set to Peaum Hold Mode.	e table wa iation. e interfere ight anter neter to fo d strength ake the m was arran meter to es to find k Detect I	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters the maxin Function a	rs above the gas of the growth	o, which
	frequency to show con bands. Save the spect for lowest and highest	npliance. Also mea rum analyzer plot.	asure any	emissions	s in the restric	
	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, be change form 1 meter and table owest channel, the ements are perforn d found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	remissions for each por com Semi- meter to 1 fer). channel Y, Z axis p ng which i	Anechoic Ch. .5 meter(Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the low. The radiation measures	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, be change form 1 meter and table owest channel, the ements are perforn d found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions for each posterior semi- meter to 1 ter). It channel Y, Z axis programming which is easured was a series of the control of the cont	Anechoic Ch. .5 meter(Abo	ambe
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the distance is high the fully Anechoic Channel 18GHz the fully Anechoic	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, nber change form 1 meter and table owest channel, the ments are perform d found the X axis ures until all frequents.	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions for each portion Semi-meter to 1 ser). I channel Y, Z axis programming which is easured ware recommended.	Anechoic Ch. 5 meter(Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal to the first the EUT in the left. The radiation measure that Transmitting mode, and jour procedure. Frequency	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, ber change form 1 meter and table bwest channel, the ments are perform d found the X axis ures until all frequents.	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	remissions for each portion Semi-meter to 1 ter). It channel Y, Z axis programming which it easured was red. Rei Quasi-per control of the co	Anechoic Ch. 5 meter (Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the fully Anechoic Channel	npliance. Also mearum analyzer plot. channel ure as below: ve is the test site, ober change form 1 meter and table owest channel, the ments are perforn d found the X axis ares until all frequents (dBµV/m 40.0)	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions or each por com Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Ch. S meter (Abo cositioning for t is worse cas as complete. mark eak Value	ambe
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is how the first the EUT in the left. The radiation measure and the Transmitting mode, and the procedure in the second second in the second	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, other change form 1 meter and table towest channel, the ments are performed found the X axis tres until all frequences. Limit (dBµV/m 40.0 43.5	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	remissions for each por each each each each each each each each	Anechoic Ch. 5 meter(Aboositioning for tis worse cases complete. mark eak Value eak Value	ambe
-imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal than 18 the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure Transmitting mode, and journal temperature of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation measure of the EUT in the left. The radiation	npliance. Also mearum analyzer plot. channel ure as below: ve is the test site, nber change form 1 meter and table owest channel, the ments are perforn d found the X axis ures until all freques Limit (dBµV/m 40.0 43.5 46.0	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	remissions for each por each por each por each por each por each por each each each each each each each each	Anechoic Ch. 5 meter (Aboversitioning for t is worse cases complete. mark eak Value eak Value	ambe

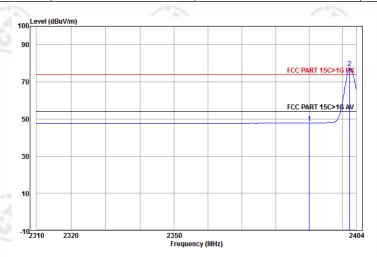


Page 29 of 51

Test plot as follows:

Worse case mode:	GFSK		
Worse dase mode.	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Ant Cable Read Limit Over
Freq Factor Loss Level Level Line Limit Pol/Phase Remark

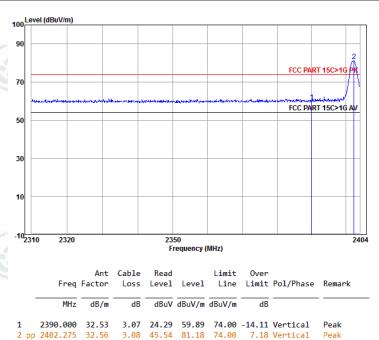

MHz dB/m dB dBuV/m dBuV/m dBuV/m dB

1 2390.000 32.53 3.07 24.49 60.09 74.00 -13.91 Horizontal Peak 2 pp 2402.275 32.56 3.08 51.77 87.41 74.00 13.41 Horizontal Peak

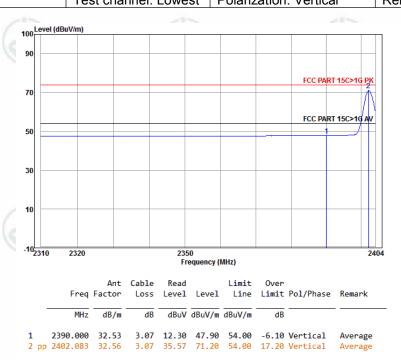
Worse case mode:

GFSK

Test channel: Lowest | Polarization: Horizontal | Remark: Average

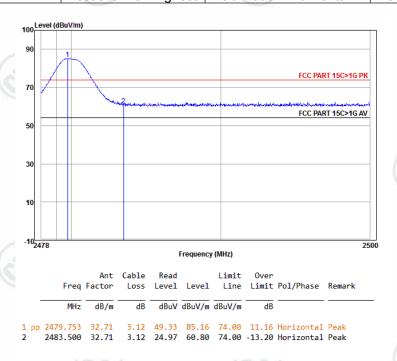

	Freq					Limit Line		Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 2 pp								Horizontal Horizontal	•

Page 30 of 51

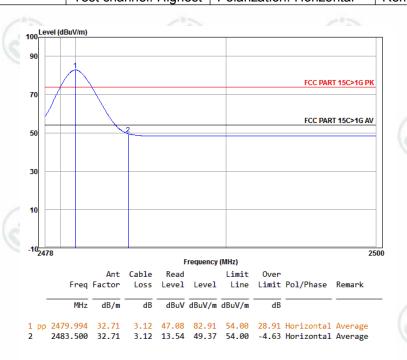


Worse case mode:

GFSK

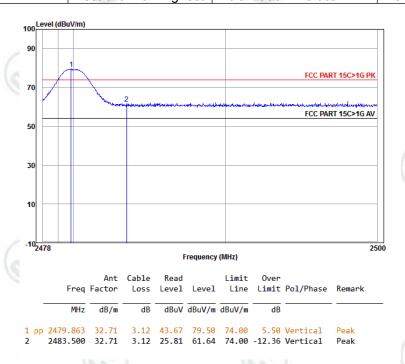

Test channel: Lowest | Polarization: Vertical | Remark: Average

Page 31 of 51

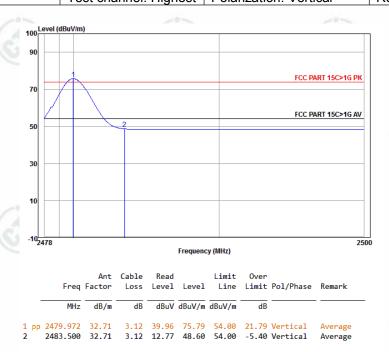

Worse case mode:	GFSK			
Worse case mode.	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:

GFSK


Test channel: Highest | Polarization: Horizontal | Remark: Average

Report No.: EED32K00171301 Page 32 of 51


Worse case mode:	GFSK	(27)		
Worse case mode.	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Worse case mode:

GFSK

Test channel: Highest | Polarization: Vertical | Remark: Average

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
(0,	Above 1GHZ	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

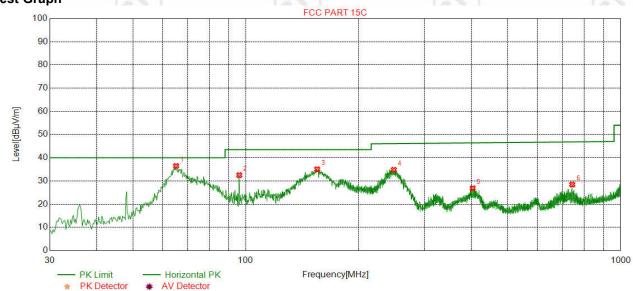
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	- 11	n	١ı	t:
ш	-11	п	ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	/05	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode:	BLE GFSK Transmitter	Channel:	
Remark:	QP		

Test Graph

Suspected List

NO	Freq. [MHz]	Correct Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	65.1210	-20.86	57.32	36.46	40.00	3.54	Pass	Horizontal
2	95.9732	-20.59	53.11	32.52	43.50	10.98	Pass	Horizontal
3	154.9610	-22.81	57.83	35.02	43.50	8.48	Pass	Horizontal
4	248.0996	-17.88	52.70	34.82	46.00	11.18	Pass	Horizontal
5	402.7486	-13.95	40.81	26.86	46.00	19.14	Pass	Horizontal
6	742.5105	-8.58	37.05	28.47	46.00	17.53	Pass	Horizontal

Mode:	BLE GFSK Transmitter	Channel:	(5.4)
Remark:	QP		

Suspected List

NO	Freq. [MHz]	Correct Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit[dB µV/m]	Magin [dB]	Result	Polarity
1	36.0152	-20.42	44.91	24.49	40.00	15.51	Pass	Vertical
2	64.9270	-20.81	55.97	35.16	40.00	4.84	Pass	Vertical
3	95.9732	-20.59	52.95	32.36	43.50	11.14	Pass	Vertical
4	153.6027	-22.87	56.85	33.98	43.50	9.52	Pass	Vertical
5	244.6069	-17.98	53.19	35.21	46.00	10.79	Pass	Vertical
6	742.5105	-8.58	36.93	28.35	46.00	17.65	Pass	Vertical

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 36 of 51

Transmitter Emission above 1GHz

Mode:	Mode: BLE GFSK Transmitter		2402
Remark:			

Suspected List

NO	Freq. [MHz]	Correct Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit[d BµV/m]	Magin [dB]	Result	Polarity
1	1796.5593	-3.14	47.68	44.54	74.00	29.46	Pass	Horizontal
2	4803.9304	2.90	41.98	44.88	74.00	29.12	Pass	Horizontal
3	7206.000	5.69	36.06	41.75	74.00	32.25	Pass	Horizontal
4	8410.8161	6.61	38.96	45.57	74.00	28.43	Pass	Horizontal
5	9608.000	7.48	36.74	44.22	74.00	29.78	Pass	Horizontal
6	12010.000	10.87	35.28	46.15	74.00	27.85	Pass	Horizontal

Mode:	BLE GFSK Transmitter	Channel:	2402
Remark:) (253)	(8)) (4

Suspected List

	otou Liot								
NO	Freq. [MHz]	Correct Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	
1	1594.5189	-4.90	48.15	43.25	74.00	30.75	Pass	Vertical	
2	4803.9304	2.90	42.00	44.90	74.00	29.10	Pass	Vertical	
3	7206.000	5.69	36.61	42.30	74.00	31.70	Pass	Vertical	
4	8492.7243	6.63	39.84	46.47	74.00	27.53	Pass	Vertical	
5	9608.000	7.48	35.98	43.46	74.00	30.54	Pass	Vertical	
6	12010.000	10.87	35.93	46.80	74.00	27.20	Pass	Vertical	

	Mode:	BLE GFSK Transmitter	Channel:	2440
1	Remark:		(A)	(30)

Suspected List

NO	Freq. [MHz]	Correct Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/ m]	Magin [dB]	Result	Polarity
1	1793.3587	-3.16	49.10	45.94	74.00	28.06	Pass	Horizontal
2	3338.3588	1.14	41.45	42.59	74.00	31.41	Pass	Horizontal
3	4879.9880	3.20	42.50	45.70	74.00	28.30	Pass	Horizontal
4	7320.000	5.89	36.47	42.36	74.00	31.64	Pass	Horizontal
5	9760.000	7.62	34.51	42.13	74.00	31.87	Pass	Horizontal
6	12200.000	11.17	35.82	46.99	74.00	27.01	Pass	Horizontal

Page 37 of 51

Mode:	Mode: BLE GFSK Transmitter		2440	
Remark:		(0)	(0.)	

Suspected List

NO	Freq. [MHz]	Correct Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit[dB µV/m]	Magin [dB]	Result	Polarity
1	1881.3763	-2.51	46.83	44.32	74.00	29.68	Pass	Vertical
2	4879.9880	3.20	41.44	44.64	74.00	29.36	Pass	Vertical
3	7320.000	5.89	36.64	42.53	74.00	31.47	Pass	Vertical
4	8986.1236	7.48	40.33	47.81	74.00	26.19	Pass	Vertical
5	9760.000	7.62	34.10	41.72	74.00	32.28	Pass	Vertical
6	12200.000	11.17	34.90	46.07	74.00	27.93	Pass	Vertical

Mode:	BLE GFSK Transmitter	Channel:	2480
Remark:			

Suspected List

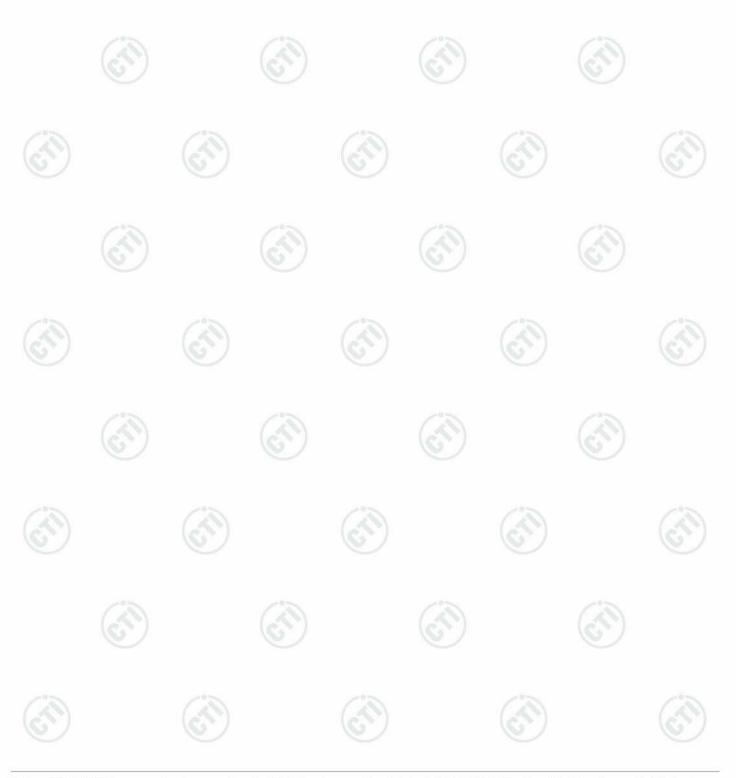
NO	Freq. [MHz]	Correct Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	1991.7984	-1.64	48.87	47.23	74.00	26.77	Pass	Horizontal
2	4958.9709	3.11	41.42	44.53	74.00	29.47	Pass	Horizontal
3	7440.000	6.05	36.82	42.87	74.00	31.13	Pass	Horizontal
4	7705.8206	6.39	40.45	46.84	74.00	27.16	Pass	Horizontal
5	9920.000	7.74	35.69	43.43	74.00	30.57	Pass	Horizontal
6	12400.000	11.22	35.83	47.05	74.00	26.95	Pass	Horizontal

Mode:	BLE GFSK Transmitter	Channel:	2480
Remark:		- 17 mg	

Suspected List

NO	Freq. [MHz]	Correct Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	1785.7572	-3.22	49.20	45.98	74.00	28.02	Pass	Vertical
2	3191.1191	1.17	44.86	46.03	74.00	27.97	Pass	Vertical
3	4959.9460	3.11	41.72	44.83	74.00	29.17	Pass	Vertical
4	7440.000	6.05	36.00	42.05	74.00	31.95	Pass	Vertical
5	9920.000	7.74	36.34	44.08	74.00	29.92	Pass	Vertical
6	12400.000	11.22	35.41	46.63	74.00	27.37	Pass	Vertical

Page 38 of 51


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

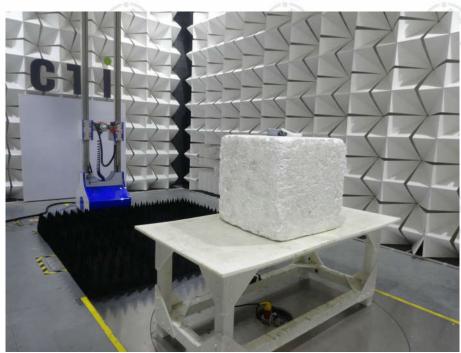
Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: JPD-HA120


Radiated spurious emission Test Setup-1(9K-30M)

Radiated spurious emission Test Setup-2(30M-1G)

Report No.: EED32K00171301 Page 40 of 51

Radiated spurious emission Test Setup-3(Above 1G)

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: JPD-HA120

View of Product-1

View of Product-2

Report No. : EED32K00171301 Page 42 of 51

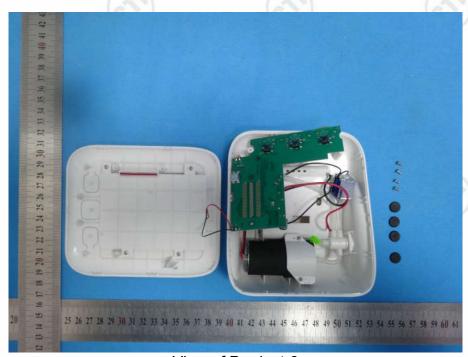
View of Product-3

View of Product-4

Report No.: EED32K00171301 Page 43 of 51

View of Product-5

View of Product-6



Report No.: EED32K00171301 Page 44 of 51

View of Product-7

View of Product-8

View of Product-9

View of Product-10

Report No. : EED32K00171301 Page 46 of 51

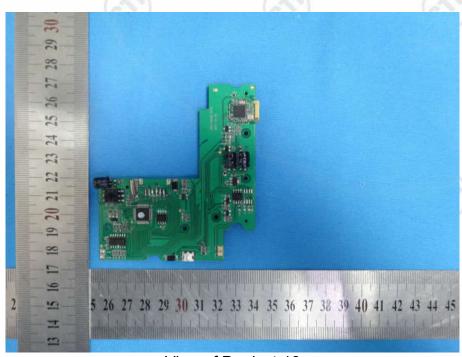
View of Product-11

View of Product-12

Page 47 of 51 Report No.: EED32K00171301

View of Product-13

View of Product-14

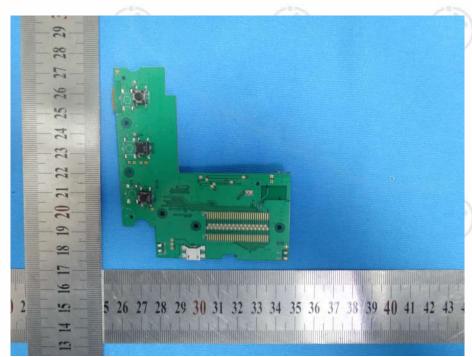


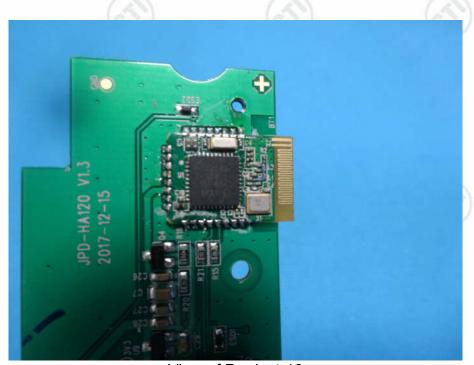
View of Product-15

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

View of Product-16

16

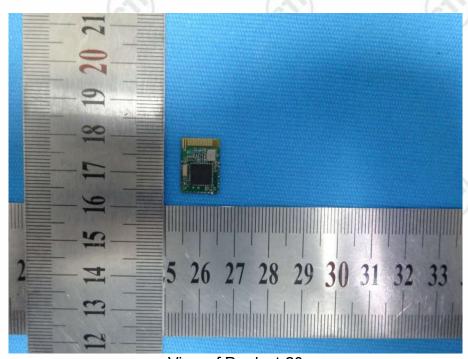



Page 48 of 51

Report No. : EED32K00171301 Page 49 of 51

View of Product-17

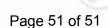
View of Product-18

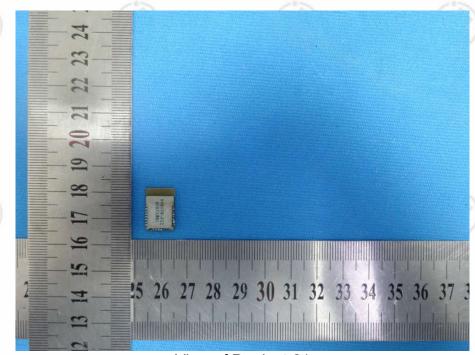


Report No.: EED32K00171301 Page 50 of 51

View of Product-19

View of Product-20





View of Product-21

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

