

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

FCC REPORT

Report Reference No......: TRE1708010801 R/C.....: 42179

FCC ID: 2ADYL-JPDFR302

IC: 23061-JPDFR302

Applicant's name: Shenzhen Jumper Medical Equipment Co.,LTD

Address...... Building D, No. 71, Xintian Road, Fuyong Street, Baoan,

Shenzhen, Guangdong, China

Manufacturer..... Shenzhen Jumper Medical Equipment Co.,LTD

Address...... Building D, No. 71, Xintian Road, Fuyong Street, Baoan,

Shenzhen, Guangdong, China

Test item description.....: Infrared thermometer

Trade Mark..... /

47 CFR Part 15 Subpart C: Radio Frequency Devices

Standard: RSS-247: Issue 2, February 2017 / RSS-GEN: Issue 4, November

2014

Date of receipt of test sample............ Nov. 09, 2015

Result...... Pass

Compiled by (position+printed name+signature):	File administrators Shayne Zhu	Shayne Zhu
Supervised by (position+printed name+signature):	Project Engineer Lion Cai	Ción Coi
Approved by (position+printed name+signature):	Manager Hans Hu	Hours Mu

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TABLE OF CONTENTS

1. GENERAL	INFORMATION		3
1.1. EUT Desc	eription		3
1.2. Test Stand	lards and Results		4
1.3. Table for	Supporting Units		5
1.4. Facilities	and Accreditations		6
2. 47 CFR PA	RT 15C REQUIREMENTS	5	7
2.1. Antenna r	equirement		7
2.2. Peak Outp	out Power		8
2.3. 6dB & 99	% Bandwidth		9
2.4. Conducted	d Band Edges and Spurious I	Emissions	13
2.5. Power spe	ectral density (PSD)		18
2.6. Radiated	Band Edge and Spurious Em	ission	21
3. LIST OF M	IEASURING EQUIPMEN	Γ	29
	Cha	nge History	
Issue	Date	Reason for change	
1.0	2017.07.14	First edition	

1. General Information

1.1. EUT Description

EUT Type	Infrared thermometer		
Hardware Version	/		
Software Version	V1.0		
EUT supports Radios application	Bluetooth V4.0LE		
Frequency Range	Bluetooth LE 4.0	2402MHz~2480MHz	
Channel Number	Bluetooth LE 4.0 40		
Bit Rate of Transmitter	Bluetooth LE 4.0	1Mbps	
Modulation Type	Bluetooth LE 4.0 GFSK		
Antenna Type	PCB Antenna		
Antenna Gain	3.0dBi		

Note 1: The EUT is a Infrared thermometer, it contain Bluetooth 4.0 LTE Module operating at 2.4GHz ISM band; the frequencies allocated for the Bluetooth 4.0 LTE is F(MHz)=2402+2*n (0<=n<=39). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 19(2440MHz) and 39 (2480MHz).

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Note 3: The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC/IC Certification:

No.	Identity	Document Title	
1	47 CFR Part 15	Radio Frequency Devices	
	Subpart C 2017	1	
2	ANSI C63.10-2013	American National Standard for Testing	
	ANSI C03.10-2013	Unlicensed Wireless Devices	
3	RSS-GEN: Issue	General Requirements and Information for the	
3	4,November 2014	Certification of Radio Apparatus	
	RSS-247: Issue 2,	Digital Transmission Systems (DTSs), Frequency	
4	,	Hopping Systems (FHSs) and Licence-Exempt	
	February 2017	Local Area Network (LE-LAN) Devices	

Test detailed items/section required by FCC/IC rules and results are as below:

No.	Stand	dard(s) Section	Description	Result	
NO.	FCC	IC	Description	Kesuit	
1	15.203	8.3	Antenna Requirement	PASS	
2	15.247(b)(3)	RSS-247 Issue2 - 5.4(4)	Peak Output Power	PASS	
3	15.247(a)(2)	RSS-247 Issue2 - 5.2(1)	Bandwidth – 6dB bandwidth	PASS	
4	/	RSS Gen clause - 4.6.1	99% Occupied Bandwidth	PASS	
5	15.247(d)	RSS-247 Issue2 - 5.5	Conducted Spurious Emission	PASS	
6	15.247(e)	RSS-247 Issue2 - 5.2(2)	Power spectral density (PSD)	PASS	
7	15.205 15.247(d)	RSS-247 Issue2 - 5.5 RSS - Gen	Band Edge	PASS	
8	15.209(a)	RSS-GEN	Spurious emissions radiated below 30MHz	PASS	
9	15.247(d) 15.109	RSS-247 Issue2 - 5.5 RSS-Gen	Spurious emissions radiated 30 MHz to 1GHz and above 1GHz	PASS	
10	15.107(a), 15.20(c)	RSS-GEN	Conducted Emission	PASS	

The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10-2013.

These RF tests were performed according to the method of measurements prescribed in KDB 558074D01 v03r03.

$40\ channels$ are provided for Bluetooth LE 4.0

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

	Test Items	Modulation	Channel
Bluetooth LE 4.0	Peak Conducted Output Power Power Spectral Density 6dB &99% Bandwidth Conducted and Spurious Emission Radiated and Spurious Emission	GFSK	0/19/39
	Band Edge	GFSK	0/39

1.3. Table for Supporting Units

No.	Equipment	Brand Name	Model Name	Manufacturer	Serial No.	Note
1	Notebook	DELL	PP11L	DELL	H5914A03	FCC DOC

1.4. Facilities and Accreditations

1.4.1. Facilities

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories

(identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 12, 2017.

IC-Registration No.: 5377B

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

1.4.2. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15°C - 35°C
Relative Humidity (%):	30% -60%
Atmospheric Pressure (kPa):	86KPa-106KPa

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

And according to FCC 47 CFR Section 15.247(c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

2.1.2. Antenna Information

Antenna Category: Internal antenna

An Internal antenna was soldered to the antenna port of EUT via an adaptor cable, can't be removed.

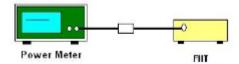
Antenna General Information:

No.	EUT	Ant. Type	Gain(dBi)
1	Infrared thermometer	PCB	3

2.1.3. Result: comply

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Peak Output Power


2.2.1. Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

2.2.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.2.3. Test Setup

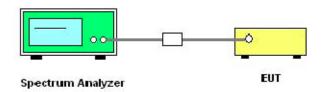
2.2.4. Test Procedures

- 1. The testing follows the Measurement Procedure of FCC KDB 558074D01 v03r03.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
 - 3. Set to the maximum power setting and enable the EUT transmit continuously.
 - 4. Measure the conducted output power and record the results in the test report.

2.2.5. Test Result

Channel	Frequency	RF Power(dBm)	Limit	Verdict
Chamiei	(MHz)	GFSK/1Mbps	(dBm)	verdict
0	2402	2.98		PASS
19	2440	2.43	30	PASS
39	2480	2.12		PASS

2.3. 6dB & 99% Bandwidth


2.3.1. Limit of 6dB & 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

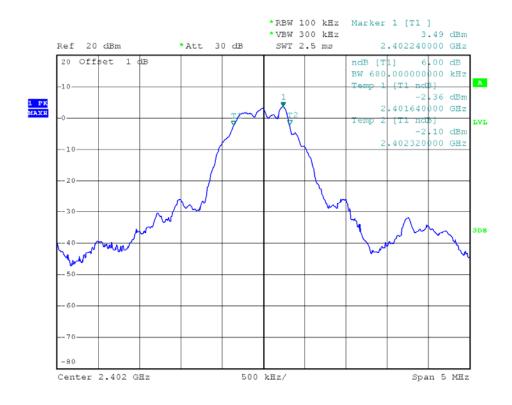
2.3.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

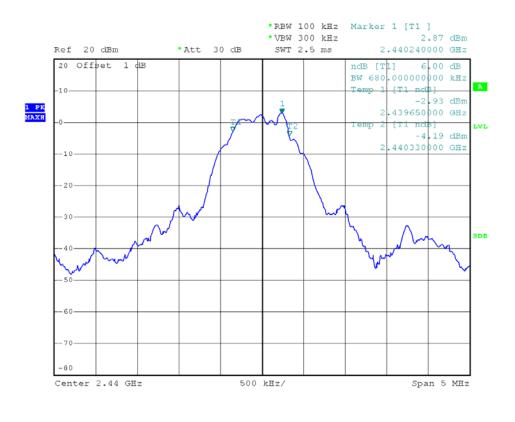
2.3.3. Test Setup

2.3.4. Test Procedures

- 1. The testing follows FCC KDB 558074D01 v03r03.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
 - 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30 kHz and set the Video bandwidth (VBW) = 100 kHz.
 - 6. Measure and record the results in the test report.

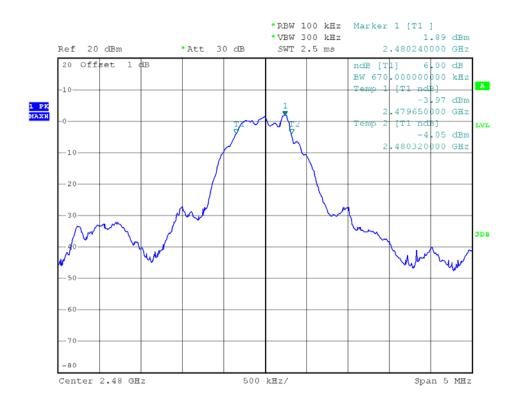

2.3.5. Test Results of 6dB Bandwidth

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limits (MHz)	Result
0	2402	0.68	1.164	≥0.5	PASS
19	2440	0.68	1.080	≥0.5	PASS
39	2480	0.67	1.080	≥0.5	PASS

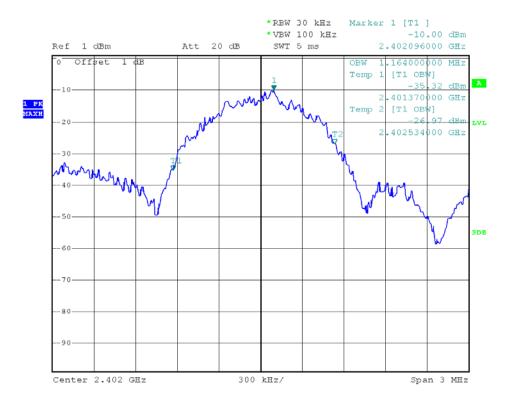


2.3.6. Test Results (plots) of 6dB & 99% Bandwidth

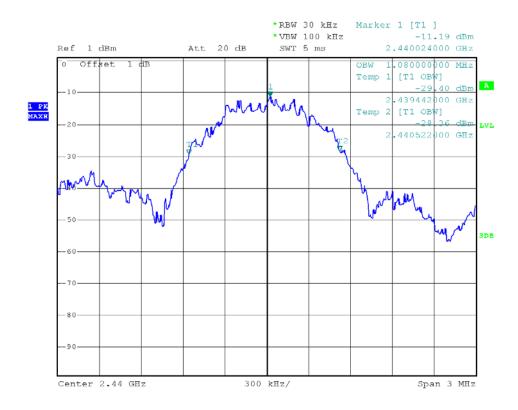
6 dB Bandwidth Plot on channel 0



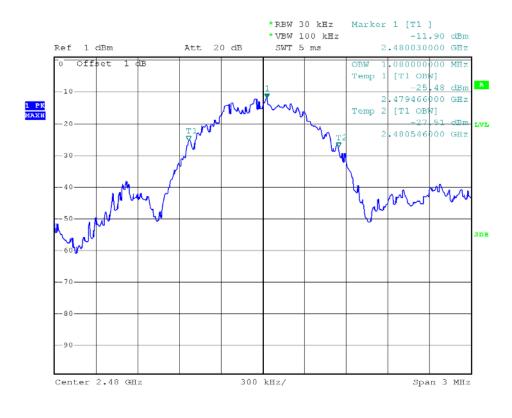
6 dB Bandwidth Plot on channel 19



6 dB Bandwidth Plot on channel 39



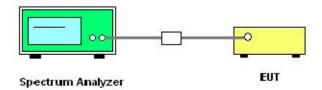
99% Bandwidth Plot on channel 0



99% Bandwidth Plot on channel 19

99% Bandwidth Plot on channel 39

2.4. Conducted Band Edges and Spurious Emissions

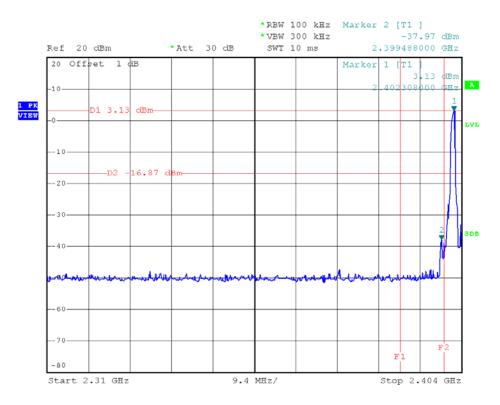

2.4.1. Limit of Conducted Band Edges and Spurious Emissions

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

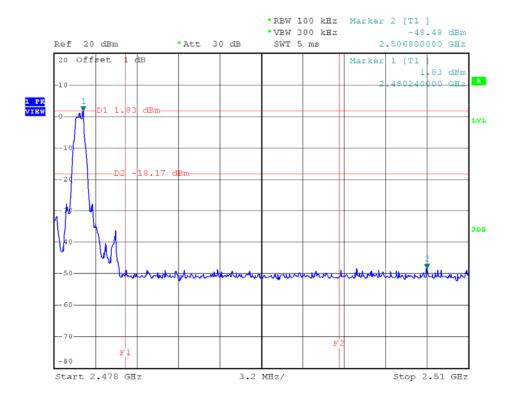
2.4.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.4.3. Test Setup

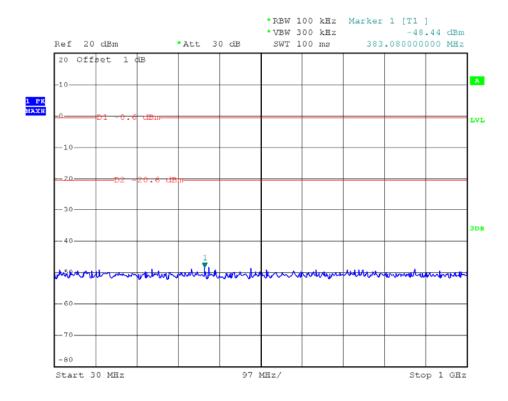

2.4.4. Test Procedure

- 1. The testing follows FCC KDB 558074D01 v03r03.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

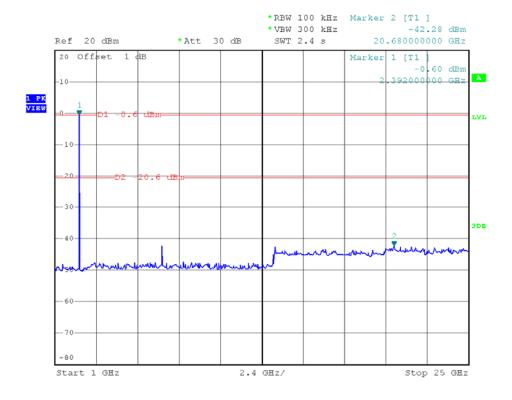

 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

2.4.5. Test Results of Conducted Band Edges

Low Band Edge Plot on Channel 0

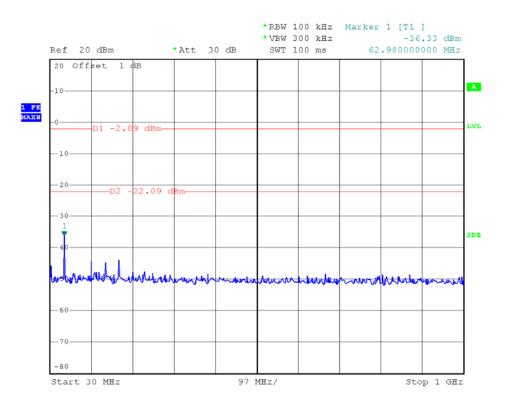


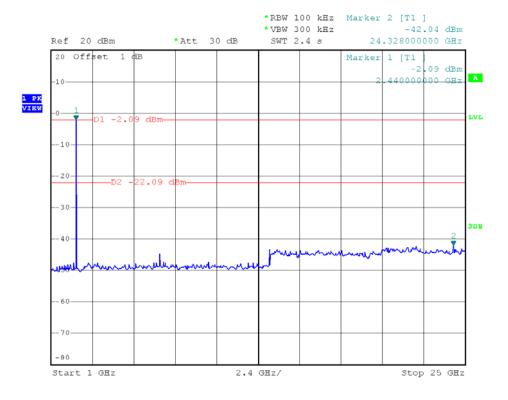
High Band Edge Plot on Channel 39



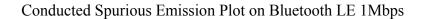
2.4.6. Test Result of Conducted Spurious Emission

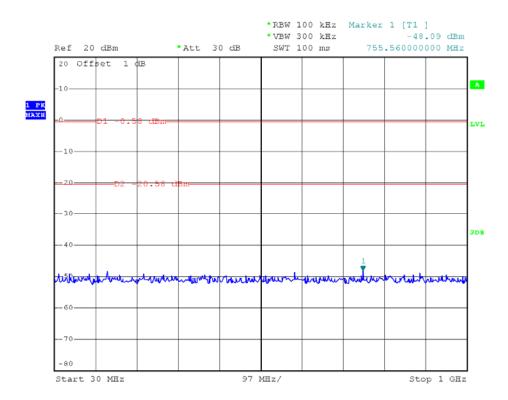
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

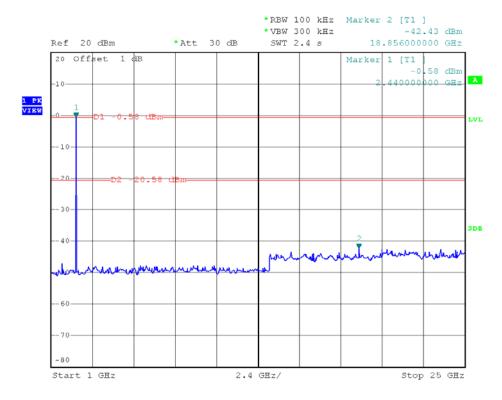

Channel = 0, 30MHz to 1GHz


Channel = 0, 1GHz to 25GHz

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps



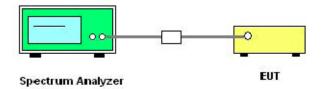

Channel = 19, 30MHz to 1GHz


Channel = 19, 1GHz to 25GHz

Channel = 39, 30MHz to 1GHz

Channel = 39, 1GHz to 25GHz

2.5. Power spectral density (PSD)


2.5.1. Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

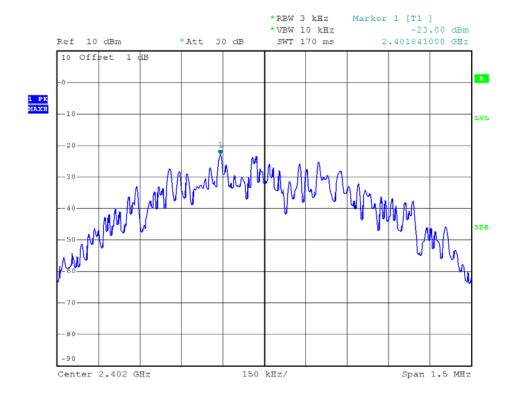
2.5.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.5.3. Test Setup

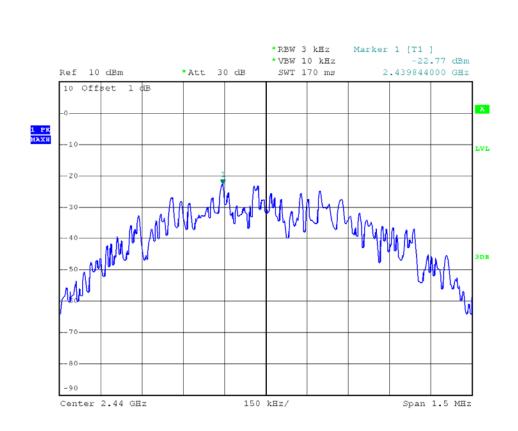
2.5.4. Test Procedures

- 1. The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB 558074D01 v03r03.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
 - 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
 - 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

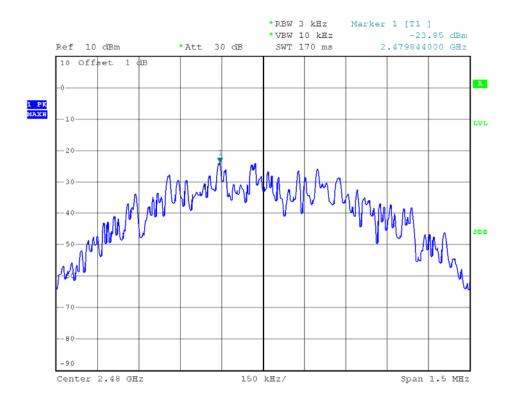

2.5.5. Test Results of Power spectral density

	Spectral power density (dBm)											
Channel	Frequency (MHz)	PSD/3kHz (dBm)	Limit (dBm/3kHz)	Verdict								
0	2402	-23.00	8	PASS								
19	2440	-22.77	8	PASS								
39	2480	-23.85	8	PASS								
Measurem	Measurement uncertainty: ±1.3dB											

Note:


1. Measured power density (dBm) has offset with cable loss.

2.5.6. Test Results (plots) of Power spectral density



PSD Plot on Channel 0

PSD Plot on Channel 19

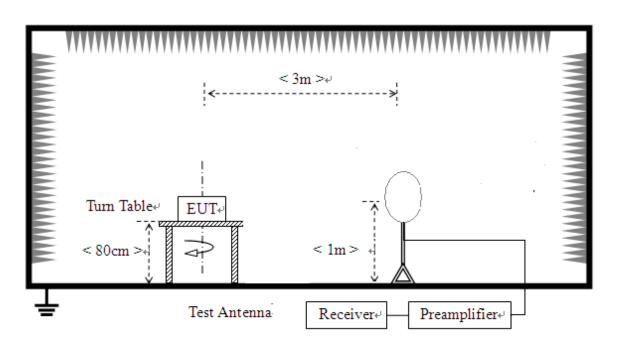
PSD Plot on Channel 39

2.6. Radiated Band Edge and Spurious Emission

2.6.1. Limit of Radiated Band Edges and Spurious Emission

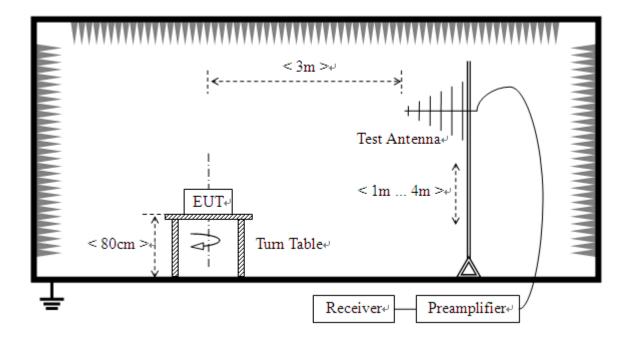
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Note: Wireless charger configuration was evaluated.

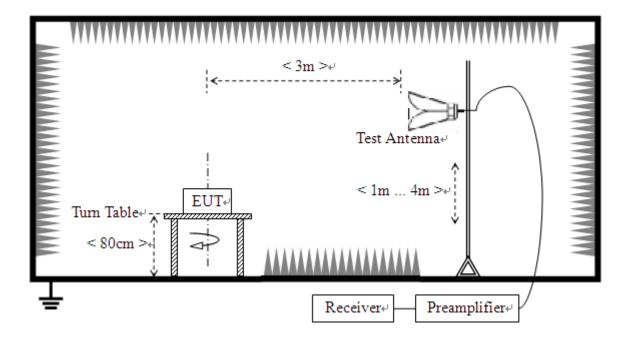

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

2.6.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.


2.6.3. Test Setup

For radiated emissions from 9kHz to 30MHz



For radiated emissions from 30MHz to 1GHz

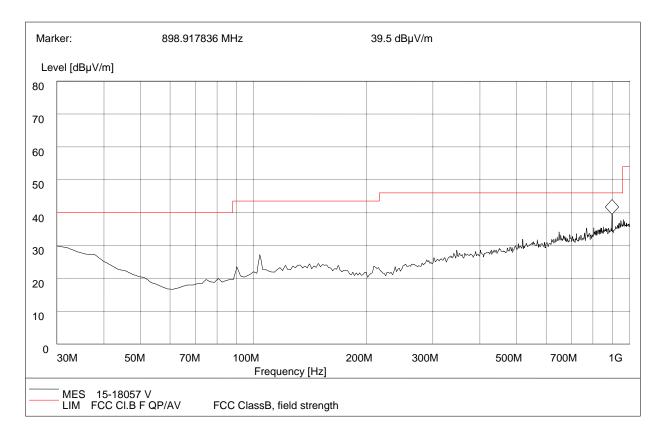
For radiated emissions above 1GHz

2.6.4. Test Procedures

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. Height of receiving antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported.
 Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

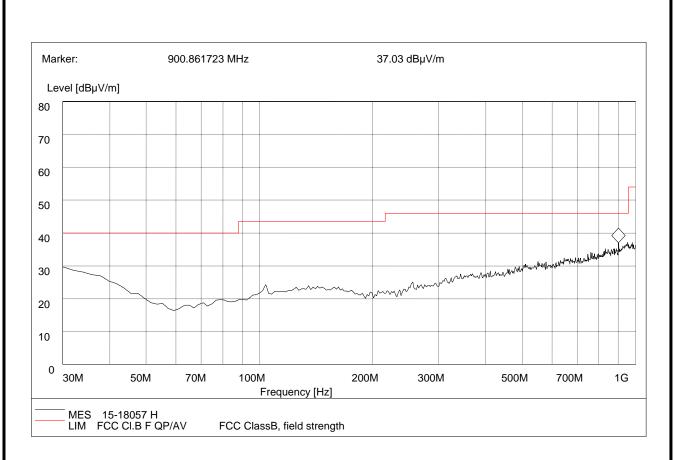
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



2.6.5. Test Results of Radiated Band Edge and Spurious Emission

For 9KHz to 30MHz

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


For 30MHz to 1000 MHz

Plot A: 30MHz to 1GHz, Antenna Vertical

Frequency (MHz)	QuasiPeak (dΒμV/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dBµV/m)	Antenna	Verdict
31.250000	27.05	120.000	100.0	40.0	Vertical	Pass
104.230000	24.33	120.000	100.0	43.5	Vertical	Pass
347.180000	26.66	120.000	100.0	46.0	Vertical	Pass
520.170000	30.08	120.000	100.0	46.0	Vertical	Pass
650.580000	32.91	120.000	100.0	46.0	Vertical	Pass
898.400000	44.55	120.000	100.0	46.0	Vertical	Pass

Plot B: 30MHz to 1GHz, Antenna Horizontal

Frequency (MHz)	QuasiPeak (dB µ V/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dB µ V/m)	Antenna	Verdict
30.580000	26.55	120.000	100.0	40.0	Horizontal	Pass
104.840000	23.54	120.000	100.0	43.5	Horizontal	Pass
491.150000	28.44	120.000	100.0	46.0	Horizontal	Pass
646.830000	30.11	120.000	100.0	46.0	Horizontal	Pass
761.490000	31.96	120.000	100.0	46.0	Horizontal	Pass
897.460000	41.47	120.000	100.0	46.0	Horizontal	Pass

For 1GHz to 25GHz

A	NTENN	A POL	ARIT	Y & TEST	Γ DISTA	NCE: HO	ORIZON	TALAT	3 M (0	OCH_24	102MH	(z)
No.	Fre. (MHz)	Emss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Cab. Loss (dB)	Ant. Factor (dB)	Pre. Amp. (dB)	Cor. Factor (dB/m)
1	2390.78	49.79	PK	74.00	-24.21	1.50 H	35	48.49	5.2	28.6	32.5	1.3
2	2390.78	37.05	AV	54.00	-16.95	1.50 H	35	35.75	5.2	28.6	32.5	1.3
3	4804.20	48.08	PK	74.00	-25.92	1.50 H	50	41.68	7.4	30.4	31.4	6.4
4	4804.20	36.35	AV	54.00	-17.65	1.50 H	50	29.95	7.4	30.4	31.4	6.4
5	11153.12	52.84	PK	74.00	-21.16	1.50 H	55	37.94	16	30.9	32	14.9
6	11153.12	40.67	AV	54.00	-13.33	1.50 H	55	25.77	16	30.9	32	14.9
	ANTEN	NA PO	LAR	TY & TE	ST DIST	ANCE: V	VERTICA	ALAT 3	M (0C	H_2402	2MHz)
No.	Frequency (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Cab. Loss (dB)	Ant. Factor (dB)	Pre. Amp. (dB)	Cor. Factor (dB/m)
1	2390.78	49.79	PK	74.00	-24.21	1.50 V	25	48.49	5.2	28.6	32.5	1.3
2	2390.78	37.05	AV	54.00	-16.95	1.50 V	25	35.75	5.2	28.6	32.5	1.3
3	4804.20	48.50	PK	74.00	-25.50	1.50 V	33	42.10	7.4	30.4	31.4	6.4
4	4804.20	36.36	AV	54.00	-17.64	1.50 V	33	29.96	7.4	30.4	31.4	6.4
5	11153.12	53.11	PK	74.00	-20.89	1.50 V	40	38.21	16	30.9	32	14.9
6	11153.12	40.92	AV	54.00	-13.08	1.50 V	40	26.02	16	30.9	32	14.9

A	NTENN	A POL	ARIT	Y & TEST	DISTAN	NCE: HC	ORIZON'	TAL AT 3	3M (1	9CH_2	440MI	Hz)
No.	Fre. (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Cab. Loss (dB)	Ant. Factor (dB)	Pre. Amp. (dB)	Cor. Factor (dB/m)
1	1196.83	45.42	PK	74.00	-28.58	1.50 H	45	46.02	1.8	29.5	31.9	-0.6
2	1196.83	34.33	AV	54.00	-19.67	1.50 H	45	34.93	1.8	29.5	31.9	-0.6
3	2252.36	46.04	PK	74.00	-27.96	1.50 H	45	45.84	3.2	28.9	31.9	0.2
4	2252.36	35.13	AV	54.00	-18.87	1.50 H	45	34.93	3.2	28.9	31.9	0.2
5	4880.01	49.34	PK	74.00	-24.66	1.50 H	50	42.94	6.7	31.2	31.5	6.4
6	4880.01	37.01	AV	54.00	-16.99	1.50 H	50	30.61	6.7	31.2	31.5	6.4
	ANTEN	NA PO	LARI	TY & TES	ST DISTA	ANCE: V	ERTICA	LAT 3 N	И (190	CH_244	0MHz	:)
No.	Frequency (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Cab. Loss (dB)	Ant. Factor (dB)	Pre. Amp. (dB)	Cor. Factor (dB/m)
1	1196.83	45.37	PK	74.00	-28.63	1.50 V	36	45.97	1.8	29.5	31.9	-0.6
2	1196.83	34.11	AV	54.00	-19.89	1.50 V	36	34.71	1.8	29.5	31.9	-0.6
3	2252.36	45.87	PK	74.00	-28.13	1.50 V	45	45.67	3.2	28.9	31.9	0.2
4	2252.36	34.56	AV	54.00	-19.44	1.50 V	45	34.36	3.2	28.9	31.9	0.2
5	4880.01	49.24	PK	74.00	-24.76	1.50 V	52	42.84	6.7	31.2	31.5	6.4
6	4880.01	37.39	AV	54.00	-16.61	1.50 V	52	30.99	6.7	31.2	31.5	6.4

AN	TENNA I	POLAF	RITY	& TEST	DISTAN	CE: HO	RIZONT	ALAT 3	M (39	OCH_24	80ME	Iz)
No.	Frequency (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Cab. Loss (dB)	Ant. Factor (dB)	Pre. Amp. (dB)	Cor. Factor
1	1003.50	45.86	PK	74.00	-28.14	1.50 H	44	46.66	1.5	29.6	31.9	-0.8
2	1003.50	34.47	AV	54.00	-19.53	1.50 H	44	35.27	1.5	29.6	31.9	-0.8
3	2483.37	49.91	PK	74.00	-24.09	1.50 H	50	47.31	5.7	28.7	31.8	2.6
4	2483.37	38.31	AV	54.00	-15.69	1.50 H	50	35.71	5.7	28.7	31.8	2.6
5	4960	49.02	PK	74.00	-24.98	1.50 H	36	42.32	7	31.2	31.5	6.7
6	4960	37.46	AV	54.00	-16.54	1.50 H	36	30.76	7	31.2	31.5	6.7
A	NTENNA	POLA	ARIT	Y & TEST	Γ DISTA	NCE: VI	ERTICA	LAT 3 M	(39C	H_2480)MHz)
No.	Frequency (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Cab. Loss (dB)	Ant. Factor (dB)	Pre. Amp. (dB)	Cor. Factor (dB/m)
1	1003.50	45.74	PK	74.00	-28.26	1.50 V	40	46.54	1.5	29.6	31.9	-0.8
2	1003.50	34.53	AV	54.00	-19.47	1.50 V	40	35.33	1.5	29.6	31.9	-0.8
3	2483.37	50.67	PK	74.00	-23.33	1.50 V	52	48.07	5.7	28.7	31.8	2.6
4	2483.37	37.86	AV	54.00	-16.14	1.50 V	52	35.26	5.7	28.7	31.8	2.6
5	4960	49.78	PK	74.00	-24.22	1.50 V	40	43.08	7	31.2	31.5	6.7
	4960	37.07	AV	54.00	-16.93	1.50 V	40	30.37	7	31.2	31.5	6.7

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

3. List of measuring equipment

	ted Emission			a	1	
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal	
1	Ultra-Broadband	ShwarzBeck	VULB9163	538	11/13/2016	
1	Antenna	Silwarzbeck	VOLD9103	338	11/13/2010	
2	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	11/13/2016	
3	EMI TEST Software	Audix	E3	N/A	N/A	
4	TURNTABLE	ETS	2088	2149	N/A	
5	ANTENNA MAST	ETS	2075	2346	N/A	
6	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A	
7	HORNANTENNA	ShwarzBeck	9120D	1011	11/13/2016	
8	Amplifer	Sonoma	310N	E009-13	11/13/2016	
9	IC1:C	Rohde&Schwarz	JS4-00101800-28	F201504	11/13/2016	
9	JS amplifer	Konde&Schwarz	-5A	Γ201304	11/13/2010	
10	High mass Citon	Compliance Direction	BSU-6	24202	11/12/2016	
10	High pass filter	systems	BSU-6	34202	11/13/2016	
11	HORNANTENNA	ShwarzBeck	9120D	1012	11/13/2016	
10	A 1:C	Compliance Direction	DA D1 4070	120	11/10/0016	
12	Amplifer	systems	PAP1-4060	120	11/13/2016	
13	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	11/13/2016	
14	TURNTABLE	MATURO	TT2.0		N/A	
15	ANTENNA MAST	MATURO	TAM-4.0-P		N/A	
16	Horn Antenna	SCHWARZBECK	BBHA9170	25841	11/13/2016	
17	ULTRA-BROADBAND	D -1, 1, 0, C -1	III 572	100015	11/12/2016	
17	ANTENNA	Rohde&Schwarz	HL562	100015	11/13/2016	

Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF Emission / Spurious RF Conducted Emission

1					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	11/13/2016
2	Spectrum Analyzer	Keysight	N9030A	ATO-67098	07/19/2016
3	Power Meter	Anritsu	ML2480B	100798	11/13/2016
4	Power Sensor	Anritsu	MA2411B	100258	11/13/2016

The calibration interval was one year.

** END OF REPORT **