

Client

TOWE

Certificate No: J2

J23Z60190

CALIBRATION CERTIFICATE Object D1750V2 - SN: 1115 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 23, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID # Cal Date (Calibrated by, Certificate No.) **Primary Standards** May-23 106276 10-May-22 (CTTL, No.J22X03103) Power Meter NRP2 10-May-22 (CTTL, No.J22X03103) May-23 Power sensor NRP6A 101369 27-Jan-23(SPEAG,No.EX3-7517_Jan23) Jan-24 **Reference Probe EX3DV4** SN 7517 Jan-24 11-Jan-23(CTTL-SPEAG, No.Z23-60034) SN 1556 DAE4 **Scheduled Calibration Secondary Standards** ID# Cal Date (Calibrated by, Certificate No.) MY49070393 17-May-23 (CTTL, No.J22X03157) May-24 Signal Generator E4438C 10-Jan-23 (CTTL, No. J23X00104) Jan-24 MY46110673 Network Analyzer E5071C

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	AN L
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	202
		Issue	ed: March 30, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn

a

a

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	and the second second
SAR measured	250 mW input power	9.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.9 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.86 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.5 W/kg ± 18.7 % (k=2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2Ω- 0.38jΩ	
Return Loss	- 41.3dB	

General Antenna Parameters and Design

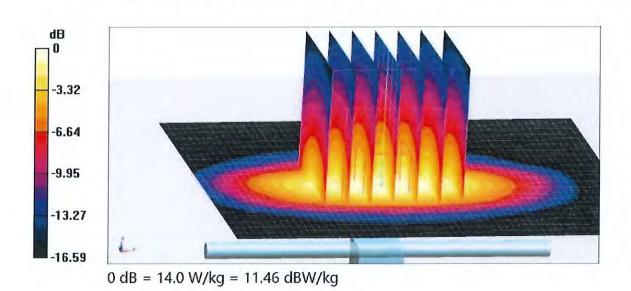
Electrical Delay (one direction)	1.128 ns
	2 44

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

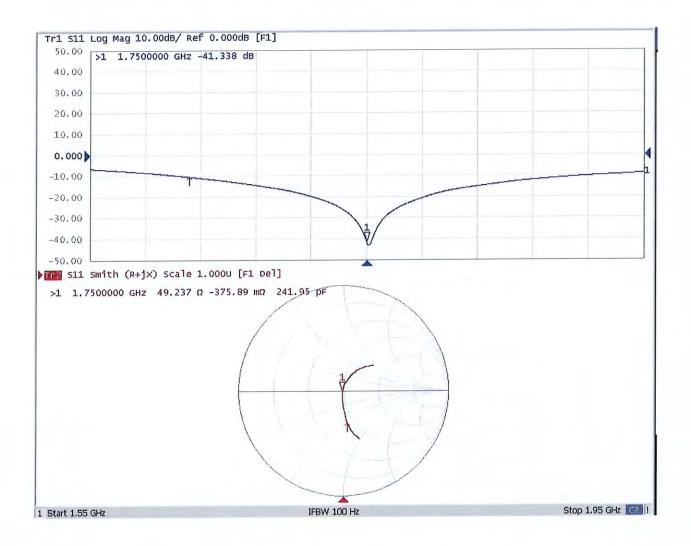
Additional EUT Data

Manufactured by	SPEAG

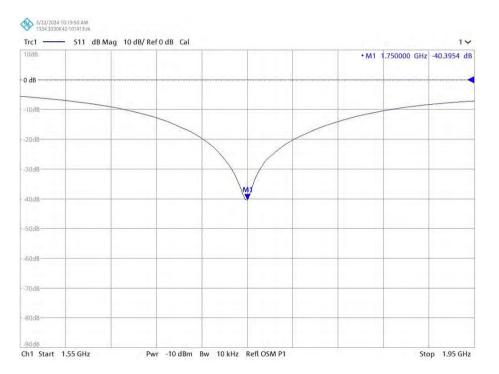


DASY5 Validation Report for Head TSLDate: 2023-03-23Test Laboratory: CTTL, Beijing, ChinaDUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1115Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1Medium parameters used: f = 1750 MHz; $\sigma = 1.359$ S/m; $\varepsilon_r = 40.51$; $\rho = 1000$ kg/m³Phantom section: Right SectionMeasurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)DASY5 Configuration:

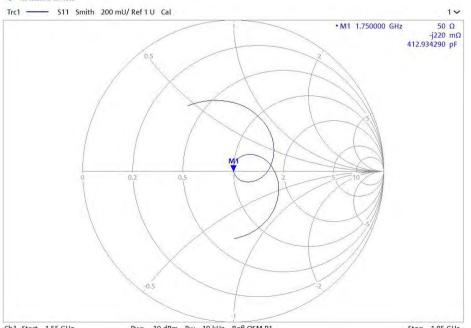
- Probe: EX3DV4 SN7517; ConvF(8.43, 7.84, 8.08) @ 1750 MHz; Calibrated: 2023-01-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.79 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.6 W/kg **SAR(1 g) = 9.15 W/kg; SAR(10 g) = 4.86 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 55.7% Maximum value of SAR (measured) = 14.0 W/kg

Impedance Measurement Plot for Head TSL


D1750V2 SN 1115 Extended Dipole Calibrations

Referring to KDB 865664, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary, and the calibration interval can be extended.


		Dipole	D1750V2 (SN 111	5)		
	1750MHz Head Liquid					
Date of Measurement	Return Loss(dB)	Δ%	Real Impedance (Ω)	ΔΩ	Imaginary Impedance (Ω)	ΔΩ
2023-03-23 (Cal. Report)	-41.338	1	49.237	1	-0.37589	/
2024-03-22 (extended)	-40.3954	-2.28	50	0.763	-0.22	0.15589

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data:

3/22/2024 10:20:56 AM 1334:3330K42-101413-la

Ch1 Start 1.55 GHz Pwr -10 dBm Bw 10 kHz Refl OSM P1

Certificate No:

J23Z60191

CALIBRATION CERTIFICATE

TOWE

Object

D1900V2 - SN: 512

March 24, 2023

Calibration Procedure(s)

Client

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	10-May-22 (CTTL, No.J22X03103)	May-23
Power sensor NRP6A	101369	10-May-22 (CTTL, No.J22X03103)	May-23
Reference Probe EX3DV4	SN 7517	27-Jan-23(SPEAG,No.EX3-7517_Jan23)	Jan-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49070393	17-May-23 (CTTL, No.J22X03157)	May-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	是急
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	-20
		Issued: Marcl	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.43 mho/m ± 6 %	
Head TSL temperature change during test	<1.0 °C		1	

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	9.96 W/kg 39.4 W/kg ± 18.8 % (k=2)	
SAR measured	250 mW input power		
SAR for nominal Head TSL parameters	normalized to 1W		
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition		
SAR measured	250 mW input power	5.16 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	20.5 W/kg ± 18.7 % (k=2)	

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.9Ω- 1.38jΩ		
Return Loss	- 29.0dB		

General Antenna Parameters and Design

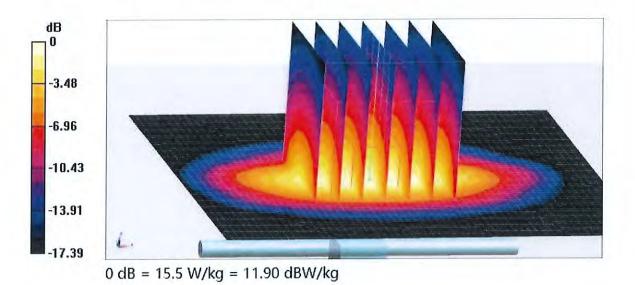
Electrical Delay (one direction)	1.073 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

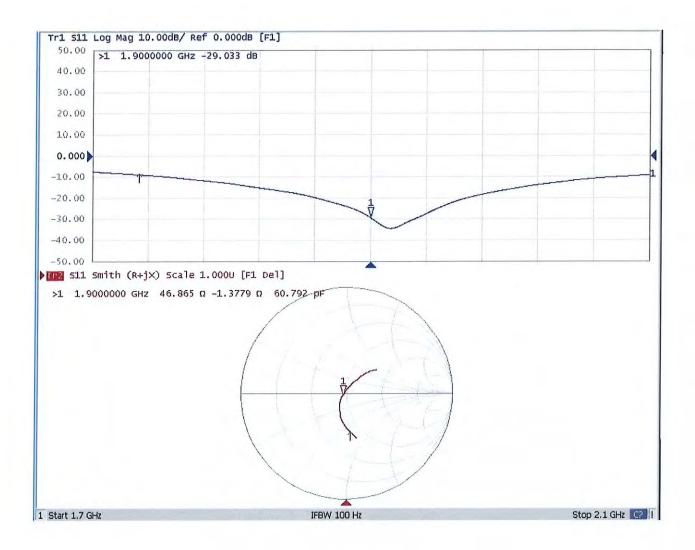
Additional EUT Data

Manufactured by	SPEAG			
manalactaroa by				



DASY5 Validation Report for Head TSLDate: 2023-03-24Test Laboratory: CTTL, Beijing, ChinaDUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 512Communication System: UID 0, CW; Frequency: 1900 MHzMedium parameters used: f = 1900 MHz; $\sigma = 1.425$ S/m; $\varepsilon_r = 40.07$; $\rho = 1000$ kg/m³Phantom section: Right SectionMeasurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)DASY5 Configuration:

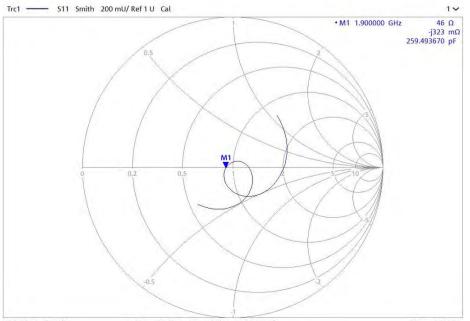
- Probe: EX3DV4 SN7517; ConvF(8.34, 7.75, 7.97) @ 1900 MHz; Calibrated: 2023-01-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.66 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.3 W/kg **SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.16 W/kg** Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.8% Maximum value of SAR (measured) = 15.5 W/kg

Impedance Measurement Plot for Head TSL

D1900V2 SN 512 Extended Dipole Calibrations

Referring to KDB 865664, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary, and the calibration interval can be extended.


Dipole D1900V2 (SN 512)						
1900MHz Head Liquid						
Date of Measurement	Return Loss(dB)	Δ%	Real Impedance (Ω)	ΔΩ	Imaginary Impedance (Ω)	ΔΩ
2023-03-24 (Cal. Report)	-29.033	/	46.865	/	-1.3779	/
2024-03-22 (extended)	-28.7185	-1.08	46	0.865	-0.323	1.0549

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data:

3/22/2024 10:24:57 AM 1334.3330K42-101413-Ja

