

Report No.: EED32K00171702 Page 1 of 39

TEST REPORT

Product Fetal Monitor

Trade mark **JUMPER** Model/Type reference JPD-300E

Serial Number N/A

: EED32K00171702 **Report Number FCC ID** 2ADYL-JPD300ETD

Date of Issue Jan. 09, 2019

Test Standards 47 CFR Part 15Subpart C

Test result PASS

Prepared for:

Shenzhen Jumper Medical Equipment Co., Ltd D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Peter

Compiled by:

Tom- cher

Reviewed by:

Max liang

Max Liang

Tom chen

Kevin yang

Relm (

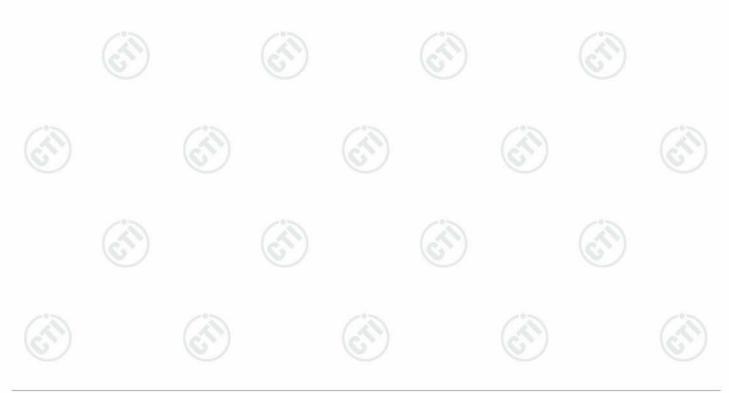
Check No.:3177469070

Date:

Jan. 09, 2019

2 Version

Version No.	Date	(6	Description	<u> </u>
00	Jan. 09, 2019		Original	
	200	100	75	/15
((4 ⁵ 2)	(642)	(6/5)


Report No.: EED32K00171702 Page 3 of 39

3 Test Summary

Test Jummary	Test Requirement	Test method	Result
rest item	rest Requirement	rest method	Resuit
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

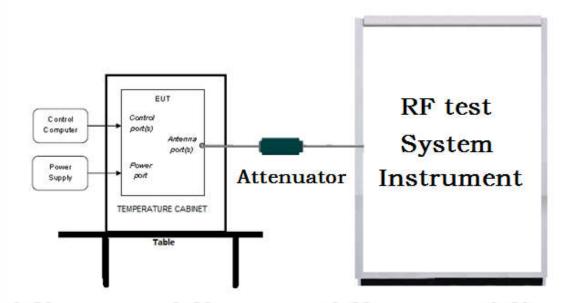
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No. : EED32K00171702 Page 4 of 39

4 Content

1 COVER PAGE	=		•••••	•••••	•••••	•••••	1
2 VERSION	•••••	•••••	•••••		•••••		2
3 TEST SUMMA							
4 CONTENT				•••••			4
5 TEST REQUIR	REMENT	•••••		•••••		•••••	5
5.1 TEST SETU	JP						5
	Conducted test	•					
	Radiated Emiss		•				
	DITION						
6 GENERAL INI	FORMATION		•••••		•••••	•••••	7
	FORMATION						
	DESCRIPTION O						
	SPECIFICATION ON OF SUPPOR						
	ATION						
6.6 DEVIATION	FROM STANDA	RDS					8
	LITIES FROM ST.						
	FORMATION REC						
7 EQUIPMENT I		100					
8 RADIO TECHI							
	A): 6dB Occupi						
	3): Conducted						
	C): Band-edge D): RF Conduc						
	E): Power Spec						
Appendix F	:): Antenna Re	quirement					23
	G): Restricted b H): Radiated Sp						
1 200							
PHOTOGRAPH					•••••	••••••	
PHOTOGRAPH	S OF EUT CO	NSTRUCTIO	NAL DETAILS	S	••••••	•••••	34



Report No.: EED32K00171702 Page 5 of 39

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

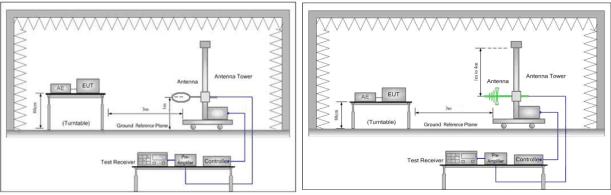


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

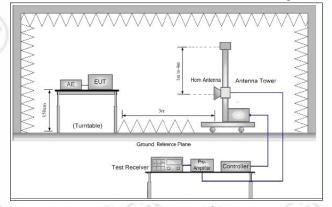
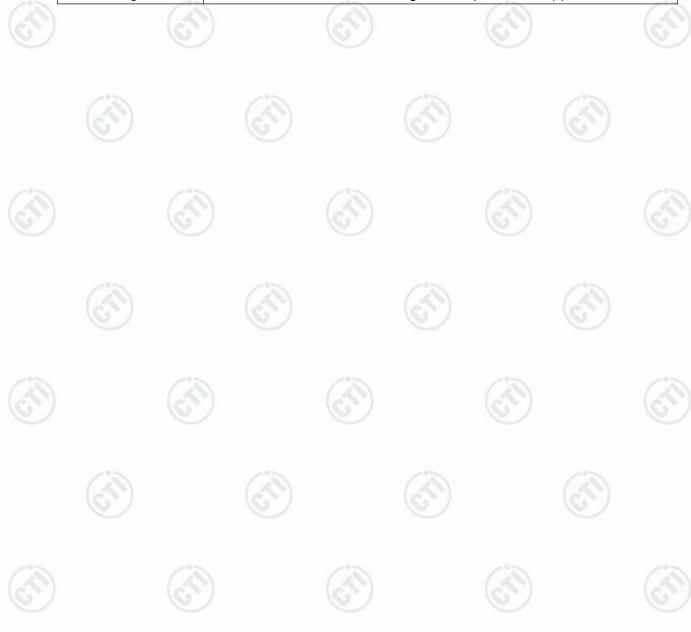


Figure 3. Above 1GHz

Report No. : EED32K00171702 Page 6 of 39


5.2 Test Environment

Operating Environment (RF):	
Temperature:	24°C	
Humidity:	57 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Toot Mode	Tx/Rx	RF Channel				
Test Mode	TX/RX	Low(L)	Middle(M)			
GFSK	0.000.00					
	2402MHz ~2480 MHz					
Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).					

Report No. : EED32K00171702 Page 7 of 39

6 General Information

6.1 Client Information

Applicant:	Shenzhen Jumper Medical Equipment Co., Ltd
Address of Applicant:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Jumper Medical Equipment Co., Ltd
Address of Manufacturer:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China
Factory:	Shenzhen Jumper Medical Equipment Co., Ltd
Address of Factory:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China

6.2 General Description of EUT

Product Name:	Fetal Monitor	
Model No.(EUT):	JPD-300E	13
Trade mark:	JUMPER	(6,5)
EUT Supports Radios application:	BT 4.1 Single mode, 2402MHz-2480MHz	
Power Supply:	Battery: 2*1.5V(AAA)=3.0V	
Firmware version of the sample:	M1_V1.0(manufacturer declare)	
Hardware version of the sample:	3001R0(manufacturer declare)	
Sample Received Date:	Jul. 02, 2018	~0~
Sample tested Date:	Aug. 13, 2018 to Jan. 08, 2019	(25)

6.3 Product Specification subjective to this standard

Operation F	requency:	2402MH	z~2480MHz				
Bluetooth V	/ersion:	4.1		(3)	7	(38)	\ \
Modulation	Technique:	DSSS)	(0))	(0))
Modulation	Туре:	GFSK					
Number of	Channel:	40					
Sample Typ	pe:	Portable	production		/3		/12
Test power	grade:	N/A					(25)
Test softwa	are of EUT:	nRFgo Studio.exe(manufacturer declare)					6
Antenna Ty	/ре:	PCB Ant	enna				
Antenna G	ain:	0dBi				200	
Test Voltag	e:	Battery: 2	2*1.5V(AAA)=	3.0V		(65)	-
Operation F	requency eac	h of channe	l	6		6	
Channel	Frequency	Channel Frequency Channel Frequency Channel					Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz

Report No. : EED32K00171702 Page 8 of 39

4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2 RF power conducted		0.46dB (30MHz-1GHz)		
	RF power, conducted	0.55dB (1GHz-18GHz)		
3	Rediated Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
4	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-13-2017	10-12-2018
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

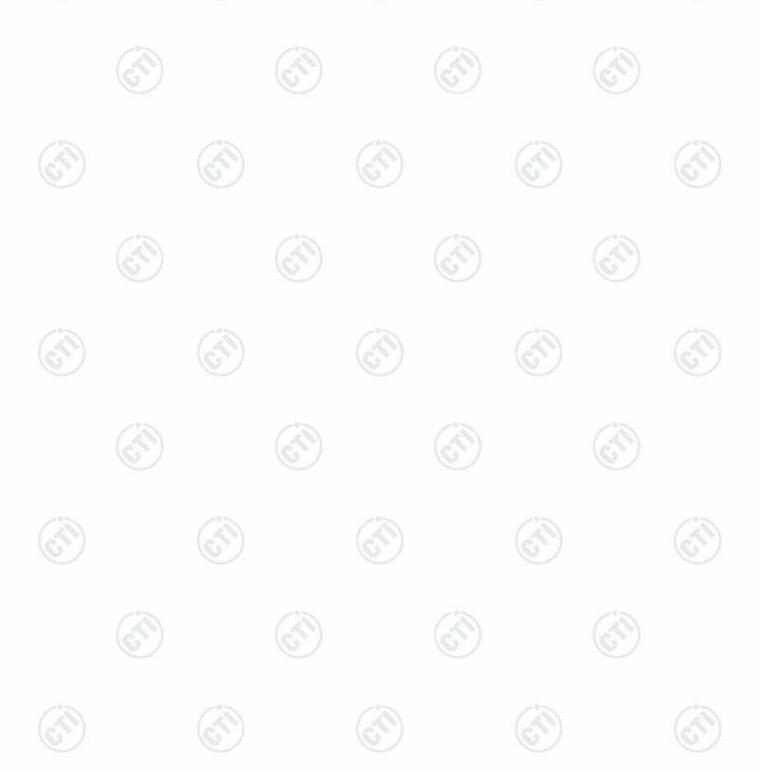
			hoic Chamber Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-22-2017	12-21-2018
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A02425	08-22-2017	08-21-2018
Microwave Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC05184 5SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840- 60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Multi device Controller	maturo	NCD/070/1 0711112		01-10-2018	01-09-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-13-2017	10-12-2018
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	104466	02-05-2018	02-04-2019
High-pass filter	Sinoscite	FL3CX03W G18NM12- 0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01C A09CL12- 0395-001	(3)	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01C A08CL12- 0393-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02C A04CL12- 0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02C A03CL12- 0394-001		01-10-2018	01-09-2019

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
est R	esults List:	Devices

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)



Appendix A): 6dB Occupied Bandwidth

Test Result

				1.10.00	
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6553	1.2721	PASS	
BLE	MCH	0.6734	1.3317	PASS	Peak
BLE	нсн	0.6719	1.3428	PASS	detector

Test Graphs

Report No.: EED32K00171702

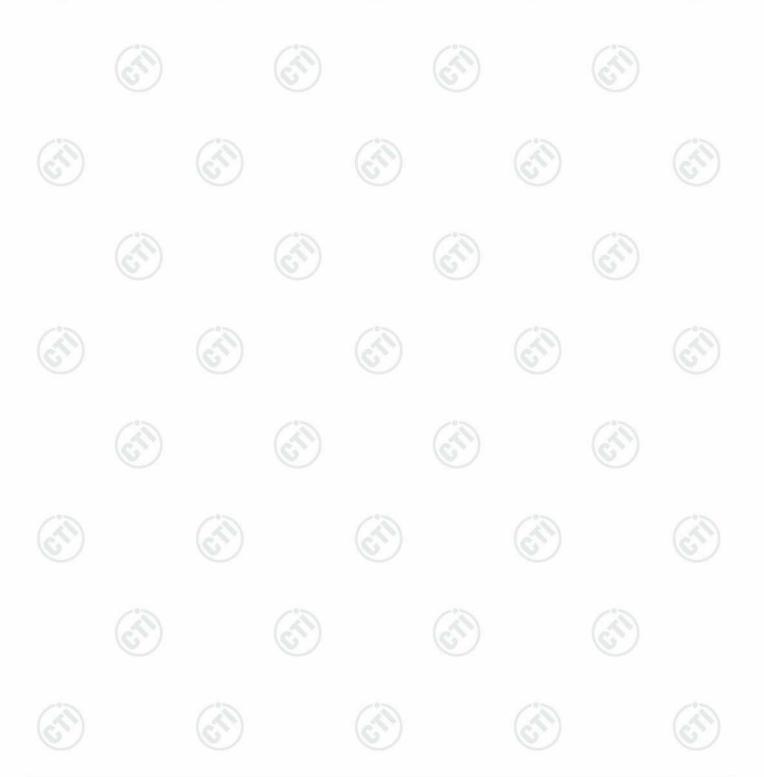
Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-3.103	PASS
BLE	MCH	-2.749	PASS
BLE	HCH	-3.474	PASS

Test Graphs

Report No.: EED32K00171702

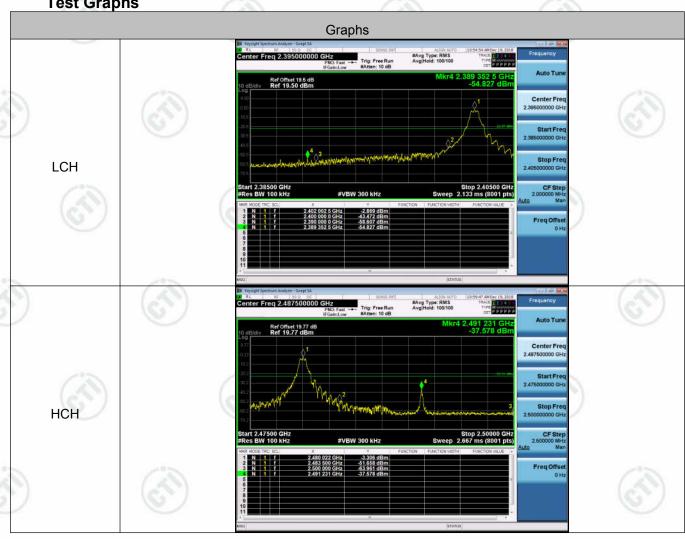


Report No. : EED32K00171702 Page 16 of 39

Appendix C): Band-edge for RF Conducted Emissions

Result Table

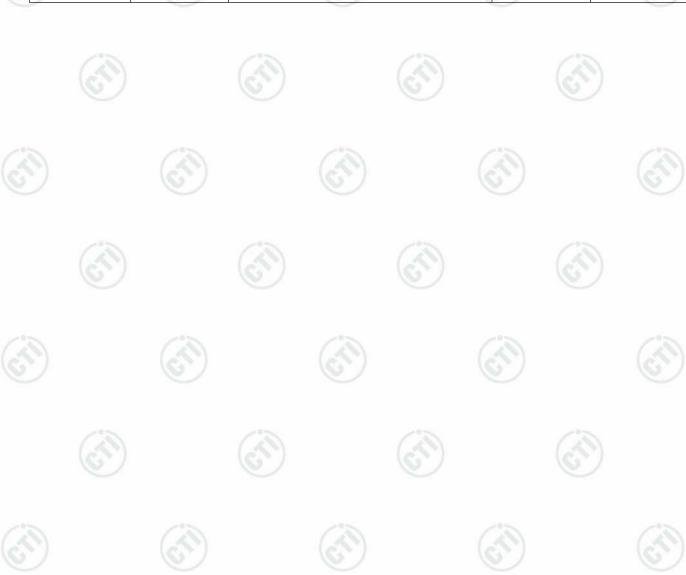
	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
0	BLE	LCH	-2.869	-54.827	-22.87	PASS
9	BLE	нсн	-3.306	-37.578	-23.31	PASS





Test Graphs

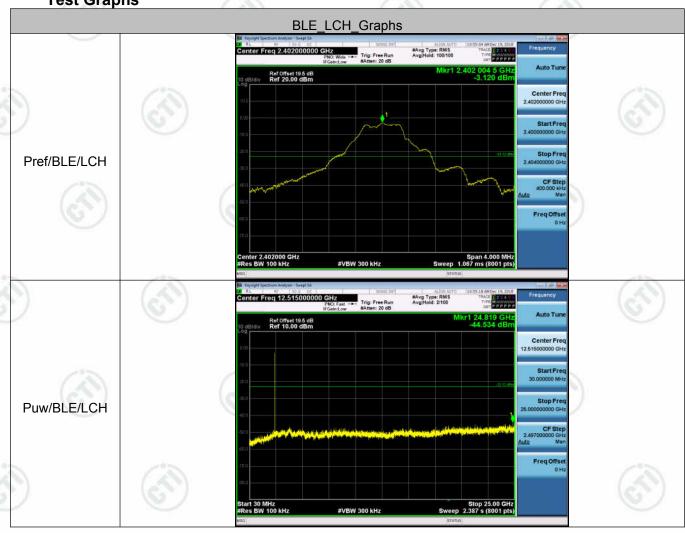
Report No.: EED32K00171702



Appendix D): RF Conducted Spurious Emissions

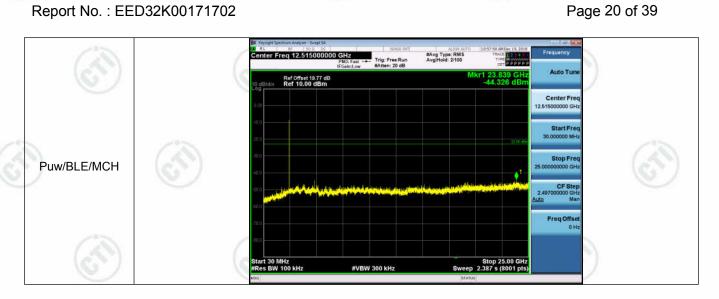
Result Table

5,500		1.70.0		
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.12	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-2.899	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-3.635	<limit< td=""><td>PASS</td></limit<>	PASS



Report No.: EED32K00171702 Page 19 of 39

Test Graphs





Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD[dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-18.075	8	PASS
BLE	MCH	-16.929	8	PASS
BLE	нсн	-18.328	8	PASS

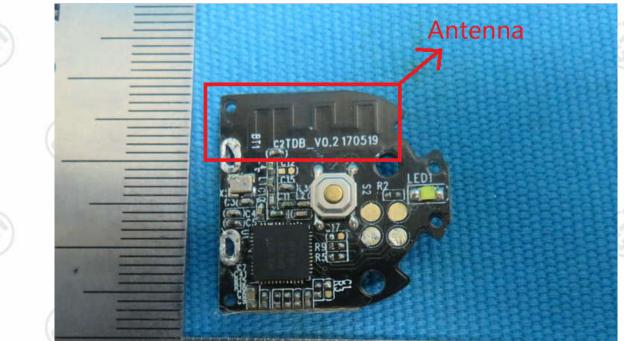

Page 21 of 39

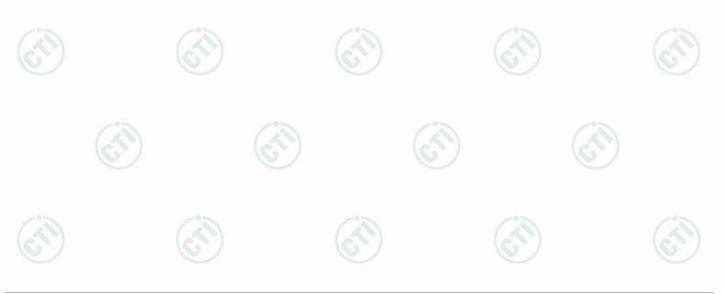
Test Graphs

Report No.: EED32K00171702 Page 23 of 39

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

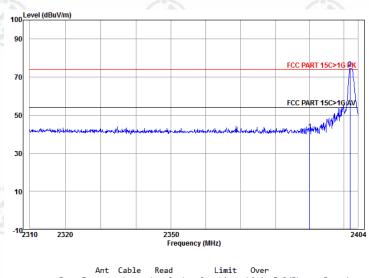
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Appendix G): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 21/2 4011-	Peak	1MHz	3MHz	Peak	105
	Above 1GHz	Peak	1MHz	10Hz	Average	(2)
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the tot. c. The antenna height is determine the maximular polarizations of the anite of the antenna was tuned was turned from 0 deg. e. The test-receiver systems and before a marker at the second state of the second seco	on the top of a rotal choic camber. The of the highest radieters away from the op of a variable-heil varied from one man value of the field tenna are set to manission, the EUT will to heights from 1 rees to 360 degreem was set to Peal um Hold Mode.	table wa iation. e interfere ight anter eter to fo d strength ake the n was arran meter to es to find k Detect I	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters the maxin Function a	rs above the gas of the growth	o, which
	bands. Save the spect for lowest and highest			emissions	s in the restric	
	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and	rum analyzer plot. channel ure as below: ve is the test site, on the change form to the second table owest channel, the ements are performed found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X,	remissions for each por com Semi- meter to 1 fer). channel Y, Z axis p ng which i	Anechoic Ch. 5 meter(Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and j. Repeat above procedure.	rum analyzer plot. channel ure as below: ve is the test site, on the change form to the second table owest channel, the ements are performed found the X axis tres until all frequents.	change fr table 0.8 is 1.5 met e Highest ned in X, positioni	emissions for each posterior semi- meter to 1 ter). It channel Y, Z axis programming which is easured was a series of the control of the cont	Anechoic Ch. 5 meter(Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and	rum analyzer plot. channel ure as below: ve is the test site, on the change form to the second table owest channel, the ements are performed found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, positioni	emissions for each portion Semi-meter to 1 ter). In channel Y, Z axis programming which is easured water to the control of the	Anechoic Ch. 5 meter(Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal to the fully Anechoic Channel 18GHz the distance is horizontal the full in the left in the radiation measured that Transmitting mode, and journal than the full in the radiation measured that the full interest is the full interest that the full interest is the full interest in the full interest in the full interest interest in the full interest interest in the full interest in	rum analyzer plot. channel ure as below: we is the test site, on the change form to the second table owest channel, the ements are performed found the X axis ares until all freque Limit (dBµV/m	change fr table 0.8 is 1.5 met e Highest ned in X, positioni	remissions for each portion Semi-meter to 1 ter). The channel Y, Z axis programming which is easured was red w	Anechoic Ch. 5 meter (Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is how the fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the distance is here. The fully Anechoic Channel 18GHz the fully Anechoic Channel	rum analyzer plot. channel ure as below: we is the test site, on the change form to the powest channel, the ements are performed found the X axis tres until all freque to the control of the X axis tres until all freque to the X axis tres until all freque tres until all freque to the X axis tres until all freque to the X axis tres until all freque tres until a	change fr table 0.8 is 1.5 met e Highest ned in X, positioni	emissions or each por com Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Ch. S meter (About the substitution of the substitution	ambe
-imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is horizontal the first the EUT in the left. The radiation measure and the Transmitting mode, and in the procedure of t	rum analyzer plot. channel ure as below: ve is the test site, on the change form to the second table owest channel, the ments are performed found the X axis are until all freques Limit (dBµV/m 40.0 43.5	change fr table 0.8 is 1.5 met e Highest ned in X, positioni	remissions for each por each each each each each each each each	Anechoic Ch. 5 meter(Aboositioning for tis worse cases complete. mark eak Value eak Value	ambe
_imit:	bands. Save the spect for lowest and highest Above 1GHz test proceding. Different between above to fully Anechoic Channel 18GHz the distance is how the function of the funct	rum analyzer plot. channel ure as below: we is the test site, on the change form to the change form to the control of the channel of the cha	change fr table 0.8 is 1.5 met e Highest ned in X, positioni	remissions for each por each por each por each por each por each por each each each each each each each each	Anechoic Ch. 5 meter (Above Consitioning for t is worse cases complete. mark eak Value eak Value eak Value	ambe

Page 25 of 39

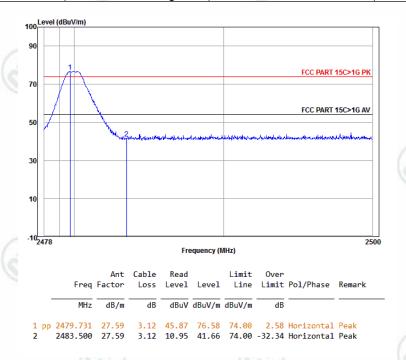
Test plot as follows:

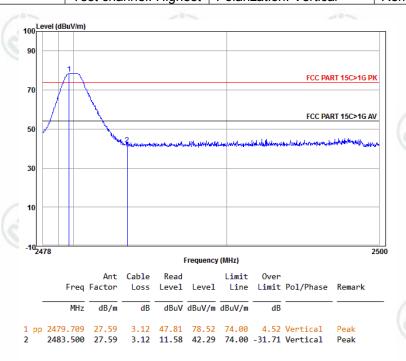

Worse case mode:	GFSK			
Words dade mode.	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:

GFSK

Test channel: Lowest | Polarization: Vertical | Remark: Peak


Freq		Loss					Pol/Phase	Remark
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 2390.000	27.64	3.07	11.07	41.78	74.00	-32.22	Vertical	Peak
2 pp 2401.700	27.62	3.07	43.94	74.63	74.00	0.63	Vertical	Peak



Report No. : EED32K00171702 Page 26 of 39

Worse case mode:	GFSK				
Worse case mode.	Test channel: Highest	Polarization: Horizontal	Remark: Peak		

Worse case mode:	GFSK					
Worse case mode.	Test channel: Highest	Polarization: Vertical	Remark: Peak			


Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Report No.: EED32K00171702 Page 27 of 39

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

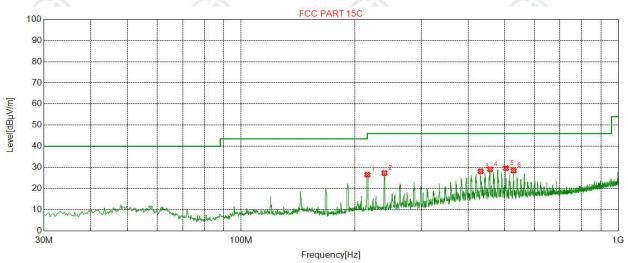
	- 11	Υ	۱11	ľ
ш	-11		ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	2°5	30
1.705MHz-30MHz	30	-	(4.5)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32K00171702 Page 28 of 39

Radiated Spurious Emissions test Data:

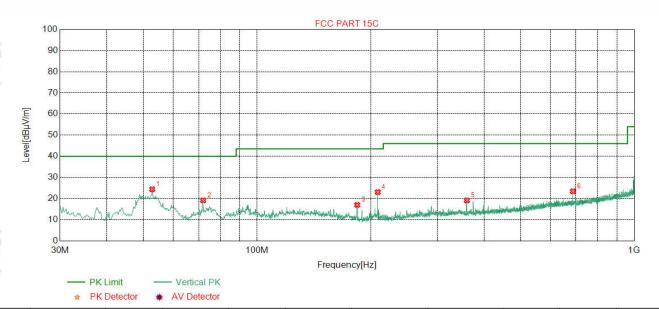

Product : Fetal Monitor Model/Type reference : ______

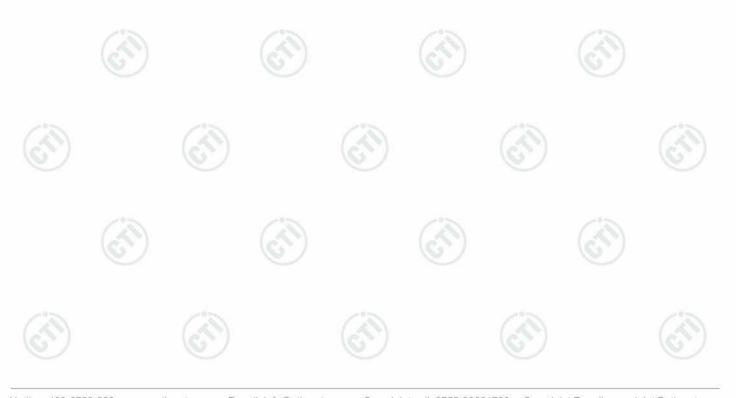
(Fetal movement pen)

Temperature : 21° **Humidity** : 57%

Radiated Emission below 1GHz

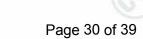
Mode:	GFSK Transmitting	Channel:	2440
Remark:	QP		


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	216.0832	11.32	1.75	-31.95	45.42	26.54	46.00	19.46	Pass	Horizontal
2	239.9500	11.94	1.84	-31.90	45.46	27.34	46.00	18.66	Pass	Horizontal
3	432.0484	15.91	2.46	-31.83	41.60	28.14	46.00	17.86	Pass	Horizontal
4	457.6615	16.32	2.55	-31.84	42.06	29.09	46.00	16.91	Pass	Horizontal
5	504.0368	17.08	2.68	-31.92	41.77	29.61	46.00	16.39	Pass	Horizontal
6	527.9036	17.56	2.75	-31.91	40.06	28.46	46.00	17.54	Pass	Horizontal



Report No. : EED32K00171702 Page 29 of 39

Mode:	GFSK Transmitting	Channel:	2440
Remark:	QP		



	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	52.7025	12.77	0.82	-32.10	42.88	24.37	40.00	15.63	Pass	Vertical
	2	71.9124	8.64	0.97	-32.05	41.57	19.13	40.00	20.87	Pass	Vertical
	3	184.2609	9.40	1.59	-31.97	37.96	16.98	43.50	26.52	Pass	Vertical
e l	4	208.9038	11.13	1.71	-31.94	42.13	23.03	43.50	20.47	Pass	Vertical
9	5	360.0600	14.52	2.27	-31.84	34.17	19.12	46.00	26.88	Pass	Vertical
	6	687.5975	19.70	3.14	-32.06	32.63	23.41	46.00	22.59	Pass	Vertical

Transmitter Emission above 1GHz

Report No.: EED32K00171702

Mode	e:	BLE GFSK Transmitting			Channel:				2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	2199.3199	31.98	3.65	-42.52	54.73	47.84	74.00	26.16	Pass	Н	Peak
2	3105.3070	33.24	4.70	-42.05	50.50	46.39	74.00	27.61	Pass	Н	Peak
3	4804.0000	34.50	4.55	-40.66	51.97	50.36	74.00	23.64	Pass	Н	Peak
4	6474.4816	35.89	5.50	-41.18	47.97	48.18	74.00	25.82	Pass	Н	Peak
5	7206.0000	36.31	5.81	-41.02	46.76	47.86	74.00	26.14	Pass	Н	Peak
6	9608.0000	37.64	6.63	-40.76	45.60	49.11	74.00	24.89	Pass	Н	Peak
7	1597.8598	29.05	3.07	-42.90	57.26	46.48	74.00	27.52	Pass	V	Peak
8	3569.4380	33.46	4.40	-41.68	49.25	45.43	74.00	28.57	Pass	V	Peak
9	4804.0000	34.50	4.55	-40.66	49.66	48.05	74.00	25.95	Pass	V	Peak
10	5975.8984	35.76	5.33	-41.07	48.44	48.46	74.00	25.54	Pass	V	Peak
11	7206.0000	36.31	5.81	-41.02	46.05	47.15	74.00	26.85	Pass	V	Peak
12	9608.0000	37.64	6.63	-40.76	44.72	48.23	74.00	25.77	Pass	V	Peak

Mode	e:	BLE GFSK Transmitting			Channel:				2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1393.6394	28.29	2.89	-42.68	52.30	40.80	74.00	33.20	Pass	Н	Peak
2	4880.0000	34.50	4.80	-40.60	50.70	49.40	74.00	24.60	Pass	Н	Peak
3	6331.4721	35.87	5.46	-41.16	47.05	47.22	74.00	26.78	Pass	Н	Peak
4	7320.0000	36.42	5.85	-40.92	46.33	47.68	74.00	26.32	Pass	Н	Peak
5	8370.0080	36.55	6.23	-40.67	47.78	49.89	74.00	24.11	Pass	Н	Peak
6	9760.0000	37.70	6.73	-40.62	44.42	48.23	74.00	25.77	Pass	Н	Peak
7	2034.9035	31.75	3.53	-42.59	51.08	43.77	74.00	30.23	Pass	V	Peak
8	3179.4120	33.27	4.62	-42.01	50.36	46.24	74.00	27.76	Pass	V	Peak
9	4880.0000	34.50	4.80	-40.60	48.34	47.04	74.00	26.96	Pass	V	Peak
10	6109.1573	35.82	5.26	-41.11	48.01	47.98	74.00	26.02	Pass	V	Peak
11	7320.0000	36.42	5.85	-40.92	45.39	46.74	74.00	27.26	Pass	V	Peak
12	9760.0000	37.70	6.73	-40.62	43.91	47.72	74.00	26.28	Pass	V	Peak

	_10				20%				21%		
Mode	e:	BLE GFSK Transmitting			Channel:				2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1597.0597	29.04	3.07	-42.89	52.27	41.49	74.00	32.51	Pass	Н	Peak
2	3180.7120	33.27	4.62	-42.01	50.16	46.04	74.00	27.96	Pass	Н	Peak
3	4960.0000	34.50	4.82	-40.53	48.59	47.38	74.00	26.62	Pass	Н	Peak
4	6449.1299	35.89	5.52	-41.18	47.58	47.81	74.00	26.19	Pass	Н	Peak
5	7440.0000	36.54	5.85	-40.82	46.13	47.70	74.00	26.30	Pass	Н	Peak
6	9920.0000	37.77	6.79	-40.48	44.24	48.32	74.00	25.68	Pass	Н	Peak
7	1398.6399	28.30	2.90	-42.68	55.35	43.87	74.00	30.13	Pass	V	Peak
8	3027.3018	33.21	4.88	-42.11	50.23	46.21	74.00	27.79	Pass	V	Peak
9	4960.0000	34.50	4.82	-40.53	47.45	46.24	74.00	27.76	Pass	V	Peak
10	6354.2236	35.87	5.45	-41.16	47.42	47.58	74.00	26.42	Pass	V	Peak
11	7440.0000	36.54	5.85	-40.82	47.15	48.72	74.00	25.28	Pass	V	Peak
12	9920.0000	37.77	6.79	-40.48	44.27	48.35	74.00	25.65	Pass	V	Peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

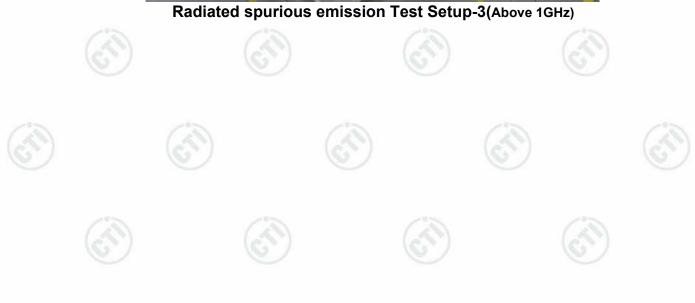
2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: JPD-300E

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)



PHOTOGRAPHS OF EUT Constructional Details

Test model No.: JPD-300E

Fetal movement pen

View of Product-1

View of Product-2

View of Product-3

View of Product-4

Page 35 of 39

Report No.: EED32K00171702 Page 36 of 39

View of Product-5

View of Product-6

Report No.: EED32K00171702 Page 37 of 39

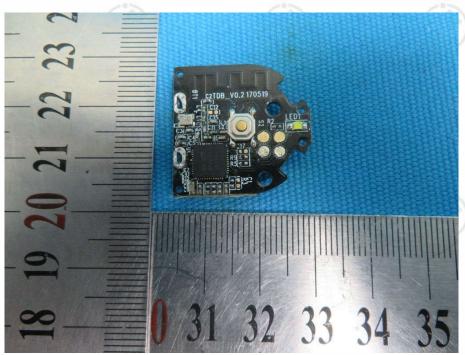
View of Product-7

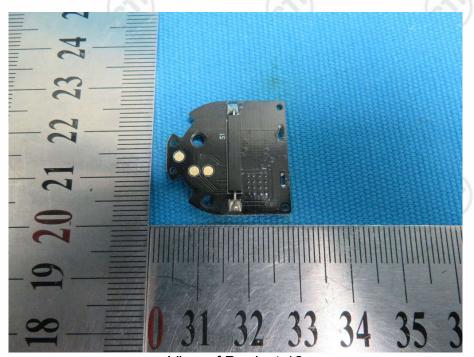
View of Product-8

Report No. : EED32K00171702 Page 38 of 39

View of Product-9

View of Product-10





Report No. : EED32K00171702 Page 39 of 39

View of Product-11

View of Product-12

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.