

Page 1 of 44


TEST REPORT

	Product	: Fetal Monitor	
	Trade mark	: JUMPER	
	Model/Type reference	ce : JPD-300E	
	Serial Number	: N/A	
	Report Number	: EED32K00171704	
	FCC ID	: 2ADYL-JPD300EGS	
	Date of Issue	: Jan. 10, 2019	
	Test Standards	: 47 CFR Part 15Subp	art C
	Test result	: PASS	
		Prepared for:	
	Shenzhen Jump	er Medical Equipment C	o., Ltd
DE	Building, No. 71, Xi	intian Road, Fuyong Str	eet, Baoan,
		en, Guangdong, China	
		Prepared by:	
	Centre Testing	International Group Co.	, Ltd.
	Hongwei Indus	trial Zone, Bao'an 70 Di	strict,
		en, Guangdong, China +86-755-3368 3668	
	FAX:	+86-755-3368 3385	
	Ð		Tour I
Tested by:	Peter	Compiled by:	Tom-chen
	Peter	NTERNATION	Tom chen
Reviewed by:	Max liang	Approved by:	ke in Tom
	Max Liang	- a rie	Kevin yang
			rtevin yang
Date:	Jan. 10, 2019	13	Check No.:3177469070
		Report Seal	

2 Version

Version No.	Date		Description	
00	Jan. 10, 2019		Original	
	2°	12	13	10
	(S)	(dS)		

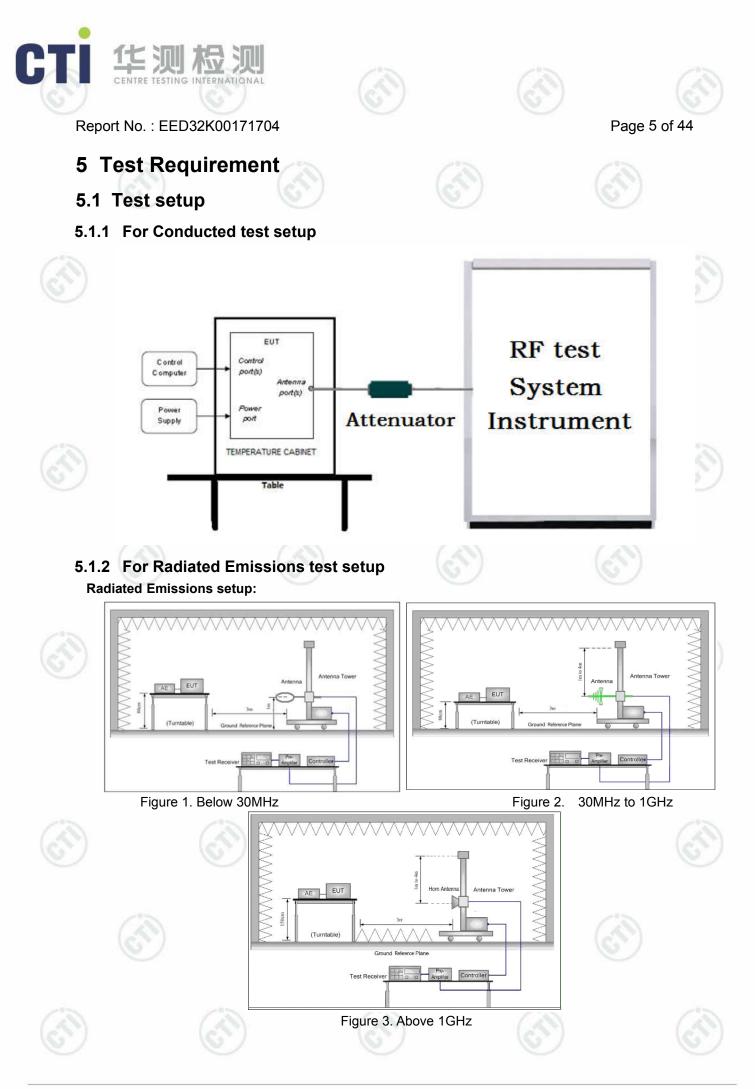
10

Page 3 of 44

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.



1 COVER PAGE	 1
2 VERSION	
3 TEST SUMMARY	
4 CONTENT	
5 TEST REQUIREMENT	
5.1 TEST SETUP 5.1.1 For Conducted test setup	
5.1.2 For Radiated Emissions test setup	
5.2 TEST ENVIRONMENT.	
5.3 TEST CONDITION.	
6 GENERAL INFORMATION	
6.1 CLIENT INFORMATION	
6.2 GENERAL DESCRIPTION OF EUT	
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
6.4 DESCRIPTION OF SUPPORT UNITS	
6.6 DEVIATION FROM STANDARDS	
6.7 ABNORMALITIES FROM STANDARD CONDITIONS	
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER.	
6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
7 EQUIPMENT LIST	
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A): 6dB Occupied Bandwidth Appendix B): Conducted Peak Output Power	 12 1 /
Appendix B). Conducted Peak Output Power Appendix C): Band-edge for RF Conducted Emissions	
Appendix C): Band-edge for RF Conducted Emissions	
Appendix E): Power Spectral Density	
Appendix E): Antenna Requirement	
Appendix G): Restricted bands around fundamental frequency (Radiated)	
Appendix H): Radiated Spurious Emissions	
PHOTOGRAPHS OF TEST SETUP	24
PHOTOGRAPHS OF TEST SETUP	

Page 6 of 44

Operating Environment	(RF):	
Temperature:	24°C	
Humidity:	57% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Ty/Dy	RF Channel			
TX/RX	Low(L)	Middle(M)	High(H)	
	Channel 1	Channel 20	Channel 40	
2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
The EUT transmitted the continuous	signal at the specif	c channel(s).	200	
	((A)	(A	
	Tx/Rx 2402MHz ~2480 MHz The EUT transmitted the continuous	Low(L) 2402MHz ~2480 MHz Channel 1 2402MHz ~2480 MHz 2402MHz	Tx/Rx Low(L) Middle(M) 2402MHz ~2480 MHz Channel 1 Channel 20	

General Information 6

6.1 Client Information

Applicant:	Shenzhen Jumper Medical Equipment Co., Ltd	
Address of Applicant:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China	~
Manufacturer:	Shenzhen Jumper Medical Equipment Co., Ltd	(\land)
Address of Manufacturer:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China	
Factory:	Shenzhen Jumper Medical Equipment Co., Ltd	
Address of Factory:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China	

6.2 General Description of EUT

Product Name:	Fetal Monitor	
Model No.(EUT):	JPD-300E	12
Trade mark:	JUMPER	6
EUT Supports Radios application:	BT 4.1 Single mode, 2402MHz-2480MHz	U
Power Supply:	Battery: 3.7V 190mAh	
Firmware version of the sample:	M1_V1.0(manufacturer declare)	
Hardware version of the sample:	3000R0(manufacturer declare)	
Sample Received Date:	Jul. 02, 2018	-1-
Sample tested Date:	Aug. 13, 2018 to Jan. 08, 2019	(1)
		0

6.3 Product Specification subjective to this standard

Operation F	- requency:	2402MH	z~2480MHz					
Bluetooth V	/ersion:	4.1		13		13	×	
Modulation	Technique:	DSSS)	6)	6)	
Modulation	Туре:	GFSK		C		C		
Number of Channel:		40						
Sample Type:		Portable	production		205		107	
Test power	grade:	N/A	(2)				(8	
Test softwa	re of EUT:	nRFgo Studio.exe(manufacturer declare)						
Antenna Type:		PCB Antenna						
Antenna Ga	ain:	0dBi						
Test Voltag	e:	Battery: 3	3.7V 190mAh	(1)	1	(1))	
Operation F	- requency eac	h of channe	1	Č		N.		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz	

Page 7 of 44

(de)

Report No. : EED32K00171704

Page 8 of 44

			1		1		
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently ...

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Sourious omission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
······	all the second sec	

7 Equipment List

Page 9 of 44

RF test system												
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)							
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019							
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019							
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019							
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002	(\underline{C})	01-10-2018	01-09-2019							
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018	01-09-2019							
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019							
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019							
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019							
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019							
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019							
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019							
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019							
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-13-2017	10-12-2018							
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019							

Page 10 of 44

		Semi/full-anecl	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-22-2017	12-21-2018
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A02425	08-22-2017	08-21-2018
Microwave Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC05184 5SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840- 60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Multi device Controller	maturo	NCD/070/1 0711112	(U)	01-10-2018	01-09-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-13-2017	10-12-2018
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	104466	02-05-2018	02-04-2019
High-pass filter	Sinoscite	FL3CX03W G18NM12- 0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01C A09CL12- 0395-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01C A08CL12- 0393-001	0	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02C A04CL12- 0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02C A03CL12- 0394-001		01-10-2018	01-09-2019

Page 11 of 44

Report No. : EED32K00171704

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	lde	entity	Document Title						
1	FCC I	Part15C	Subpar	rt C-Intentional Radiators					
2	ANSI C6	3.10-2013	Americ Device	an National Standard for Testing Ui s	nlicesed W	/ireless			
est I	Results List:	I I				Q			
Tes	t Requirement	Test method ANSI C63.10 ANSI C63.10		Test item	Verdict	Note			
	rt15C Section 5.247 (a)(2)			6dB Occupied Bandwidth	PASS	Appendix A)			
	rt15C Section 5.247 (b)(3)			Conducted Peak Output Power	PASS	Appendix E			
	rt15C Section 15.247(d)	ANSI C6	3.10	Band-edge for RF Conducted Emissions	PASS	Appendix C			
	rt15C Section 15.247(d)	ANSI C6	3.10	RF Conducted Spurious Emissions	PASS	Appendix D			
	rt15C Section 15.247 (e)	ANSI C6	3.10	Power Spectral Density	PASS	Appendix E			
	rt15C Section 203/15.247 (c)	ANSI C6	3.10	Antenna Requirement	PASS	Appendix F			
Par	rt15C Section 15.207	ANSI C6	3.10	AC Power Line Conducted Emission	N/A	N/A			
	rt15C Section 5.205/15.209	ANSI C63.10 ANSI C63.10		Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G			
	rt15C Section 5.205/15.209			Radiated Spurious Emissions	PASS	Appendix H			

Page 12 of 44

Report No. : EED32K00171704

Appendix A): 6dB Occupied Bandwidth

Test Resu	lt	(S) (
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark		
BLE	LCH	0.6673	1.2682	PASS			
BLE	MCH	0.6823	1.4599	PASS	Peak		
BLE	НСН	0.6763	1.3840	PASS	detector		

Page 13 of 44

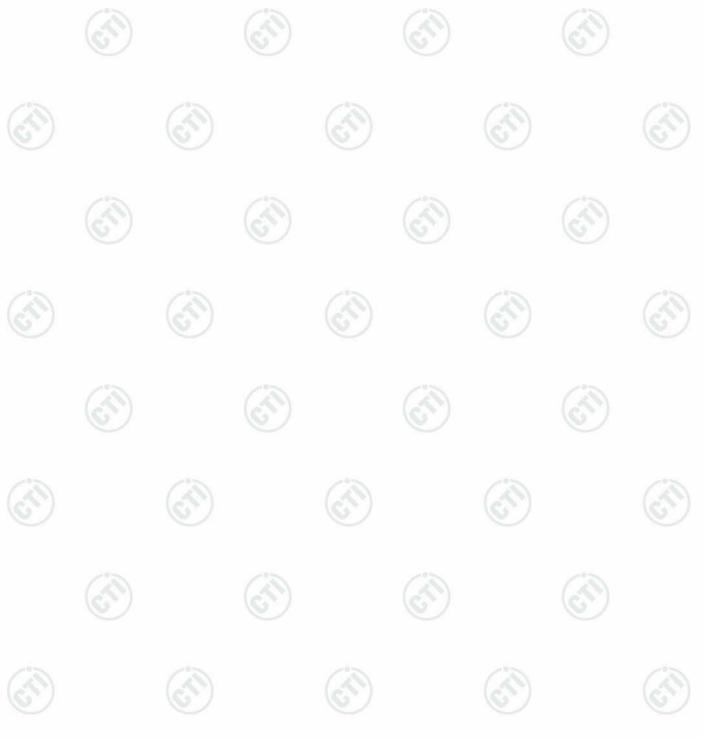


Page 14 of 44

Appendix B): Conducted Peak Output Power

	Test Resul	t <u>(6</u>)	(d) (d)	S)
	Mode	Channel	Conduct Peak Power[dBm]	Verdict
	BLE	LCH	-3.298	PASS
2	BLE	МСН	-3.564	PASS
57	BLE	нсн	-4.418	PASS

Page 15 of 44



Appendix C): Band-edge for RF Conducted Emissions

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdic
BLE	LCH	-3.223	-55.056	-23.22	PASS
BLE	нсн 🕥	-4.298	-41.209	-24.3	PASS

Page 17 of 44

Page 18 of 44

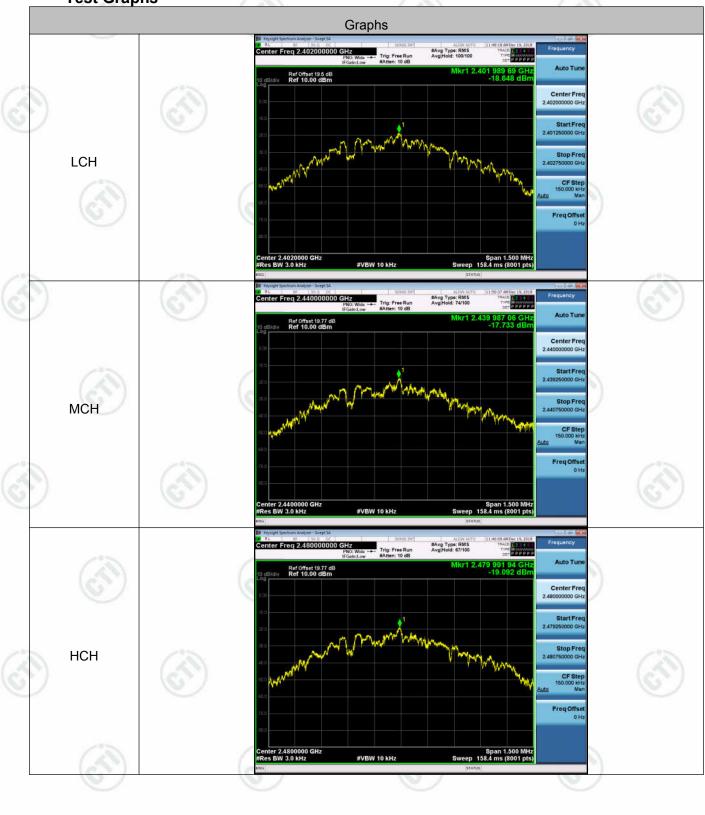
Appendix D): RF Conducted Spurious Emissions


Result	lable 💦	S) (SS)	<u>(6</u>)	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.434	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	МСН	-3.762	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-4.631	<limit< td=""><td>PASS</td></limit<>	PASS

Page 19 of 44

Page 20 of 44

Page 21 of 44

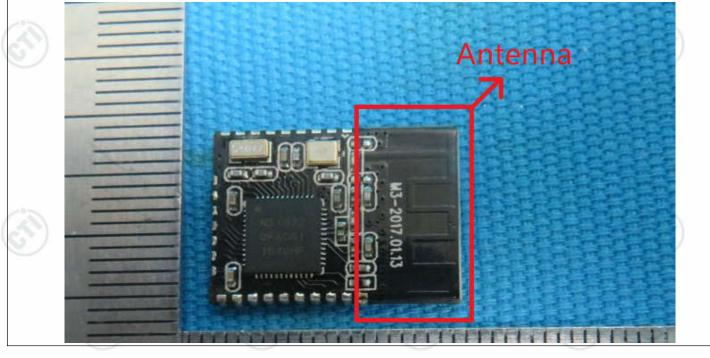

	Result Tal	Chann	el	PSD[dBm)/3kHz]	Limit [dBm/3kl		Verdict
A	BLE	LCH		-18.6		8		PASS
4	BLE	MCH HCH		-17.7 -19.0		8		PASS PASS
	(F)		(A)		(ST)		(A)	

Page 22 of 44

Page 23 of 44

Appendix F): Antenna Requirement

15.203 requirement:

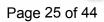

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

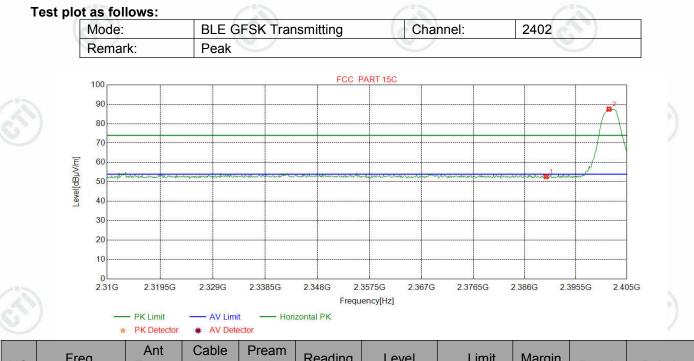
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

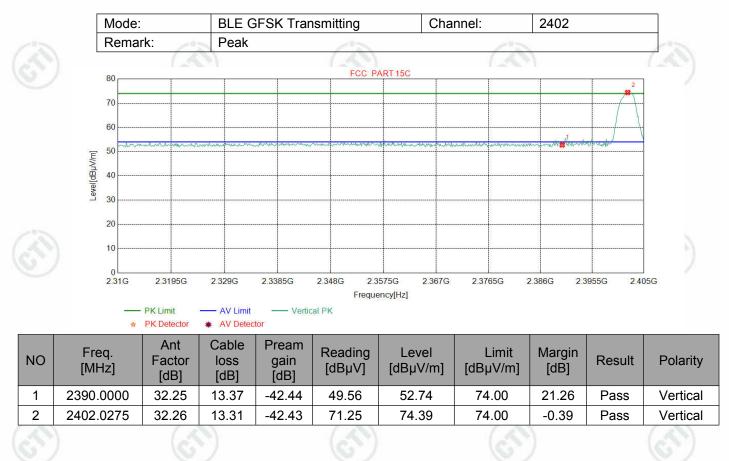
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

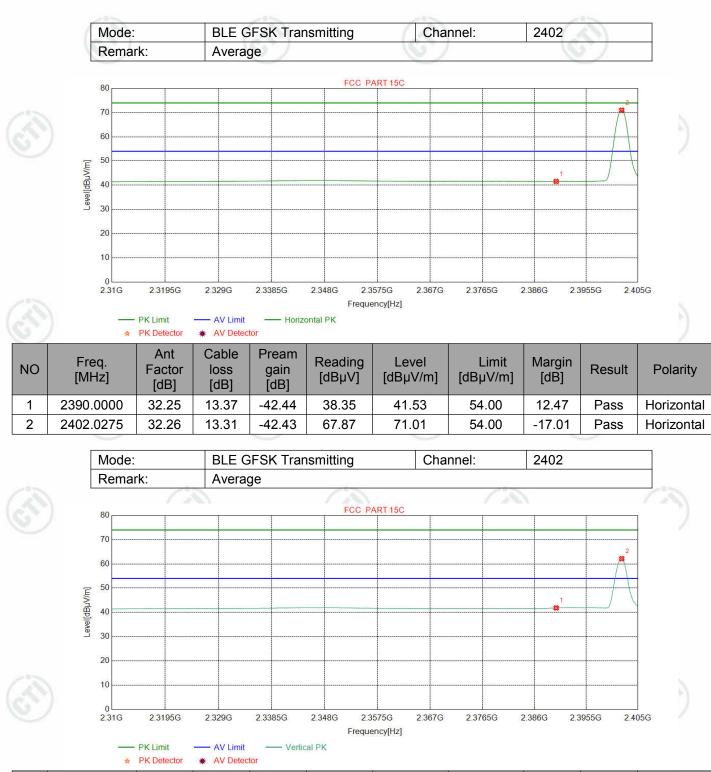




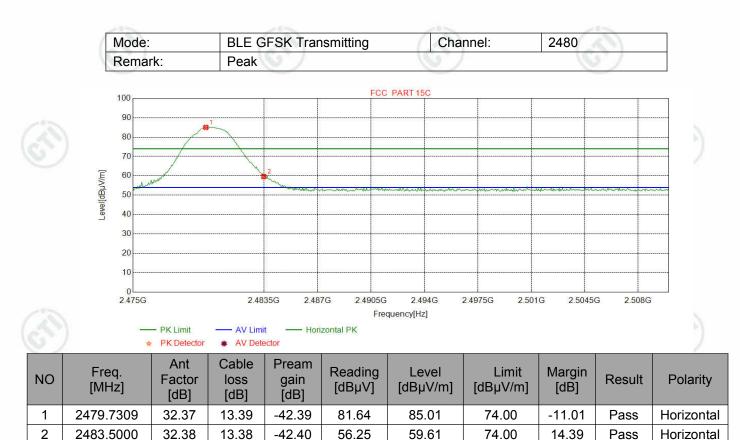
Appendix G): Restricted bands around fundamental frequency (Radiated)


Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	ĸ
		Peak	1MHz	3MHz	Peak	1
	Above 1GHz	Peak	1MHz	10Hz	Average	(4
Test Procedure:	Below 1GHz test procedu	Iro as bolow:	6		1	Y
	 a. The EUT was placed of at a 3 meter semi-aner determine the position b. The EUT was set 3 meter semi-aner was mounted on the to c. The antenna height is determine the maximu polarizations of the and d. For each suspected er the antenna was tuned was turned from 0 deg e. The test-receiver system Bandwidth with Maxim 	on the top of a ro choic camber. Th of the highest ra eters away from op of a variable-h varied from one m value of the fin tenna are set to mission, the EUT d to heights from rees to 360 degreen was set to Pe	ne table wa adiation. the interfer neight anter meter to fo eld strength make the n was arran 1 meter to rees to find	ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters a the maxin	360 degrees iving antenna above the gr rizontal and v ent. worst case a and the rotat num reading.	to a, wh round vertic nd th able
	f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest	end of the restric npliance. Also m rum analyzer plo	easure any	emission:	s in the restri	
	 f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abort to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the loging in the radiation measure Transmitting mode, and its in the frequency of the standard strength in the standard strength	end of the restrict npliance. Also m rum analyzer plot channel ure as below: ve is the test site ober change form 1 meter and tabl powest channel, to ments are perford d found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis positioni	emissions for each po rom Semi- meter to 1 ter). c channel Y, Z axis p ng which i	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca	dulat namb ove r
Limit:	 f. Place a marker at the frequency to show combands. Save the spect for lowest and highest Above 1GHz test proceder g. Different between about to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the logitation measurement. 	end of the restrict npliance. Also m rum analyzer plot channel ure as below: ve is the test site ober change form 1 meter and tabl powest channel, to ments are perford d found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis positioni uencies me	emissions for each po rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca	dulat namb ove r
Limit:	 f. Place a marker at the frequency to show combands. Save the spect for lowest and highest Above 1GHz test proceder g. Different between abort to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the loging in the radiation measure Transmitting mode, an j. Repeat above proceder 	end of the restrict npliance. Also m rum analyzer plot channel ure as below: ve is the test site nber change form 1 meter and tabl pwest channel , f ements are perfor d found the X ax ures until all freque	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca as complete.	dulat namb ove r
Limit:	 f. Place a marker at the frequency to show combands. Save the spect for lowest and highest Above 1GHz test proceder g. Different between above to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lowest is i. The radiation measures Transmitting mode, and j. Repeat above proceder 	end of the restrict npliance. Also m rum analyzer plot channel ure as below: we is the test site ober change form 1 meter and tabl powest channel , the ements are perfo- d found the X ax ures until all frequencies Limit (dBµV/	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Ren Quasi-pe	s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca as complete. mark	dulat namb ove r
Limit:	 f. Place a marker at the frequency to show combands. Save the spect for lowest and highest Above 1GHz test proceder g. Different between abort to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, an j. Repeat above proceder Frequency 30MHz-88MHz 	end of the restrict npliance. Also m rum analyzer plot channel ure as below: ve is the test site nber change form 1 meter and tabl powest channel , t ements are perfo d found the X ax ures until all frequency Limit (dBµV) 40.0	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 cor ach po meter to 1 ter). channel Y, Z axis p ng which i casured wa Rei Quasi-pe	s in the restri ower and mo Anechoic Cf .5 meter(Ab cositioning fo t is worse ca as complete. mark eak Value	dulat namb ove r
Limit:	 f. Place a marker at the frequency to show combands. Save the spect for lowest and highest Above 1GHz test proceder g. Different between above to fully Anechoic Channa 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, and in Repeat above proceded Frequency 30MHz-88MHz 88MHz-216MHz 	end of the restrict npliance. Also m rum analyzer plot channel ure as below: ve is the test site ther change form 1 meter and tabl powest channel , for ements are perford found the X ax ures until all frequency Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe	s in the restri ower and mo Anechoic Cr .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value	dulat namb ove r
Limit:	 f. Place a marker at the frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedung. Different between about to fully Anechoic Channel 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, and j. Repeat above procedung Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 	end of the restrict npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo d found the X ax ures until all frequence Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	s in the restri ower and mo Anechoic Cf .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value	dulat namb ove r

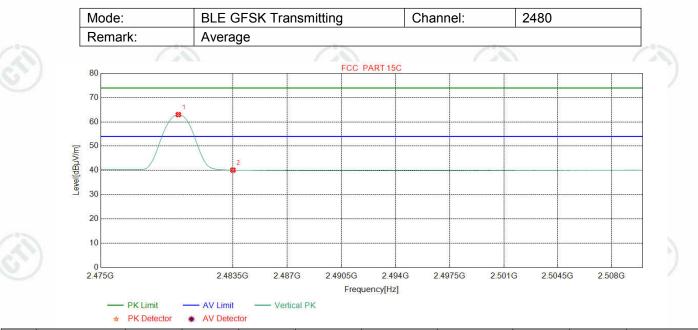
NO	Freq. [MHz]	Factor [dB]	loss [dB]	gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.55	52.73	74.00	21.27	Pass	Horizontal
2	2401.6708	32.26	13.31	-42.43	84.38	87.52	74.00	-13.52	Pass	Horizontal



Page 26 of 44


	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	38.65	41.83	54.00	12.17	Pass	Vertical
	2	2402.0275	32.26	13.31	-42.43	59.02	62.16	54.00	-8.16	Pass	Vertical
_	and \$10 manual					and the first of		- 10 m			

Page 27 of 44



Page 28 of 44

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.9937	32.37	13.39	-42.39	59.63	63.00	54.00	-9.00	Pass	Vertical
Ī	2	2483.5000	32.38	13.38	-42.40	36.74	40.10	54.00	13.90	Pass	Vertical
	N	loto:	2010	Contract of Contra				~ 0 ~			- 0 m

Note

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor Correct Factor = Preamplifier Factor – Antenna Factor–Cable Factor

Page 29 of 44

Report No. : EED32K00171704

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
6	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

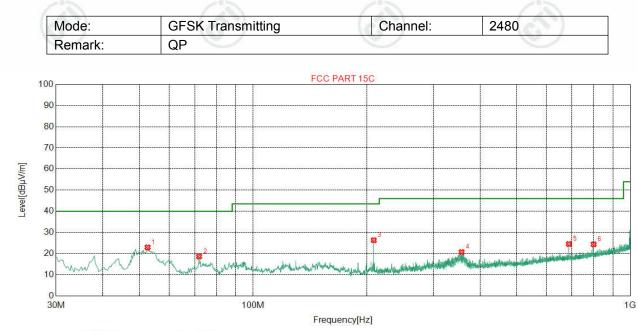
Limit:

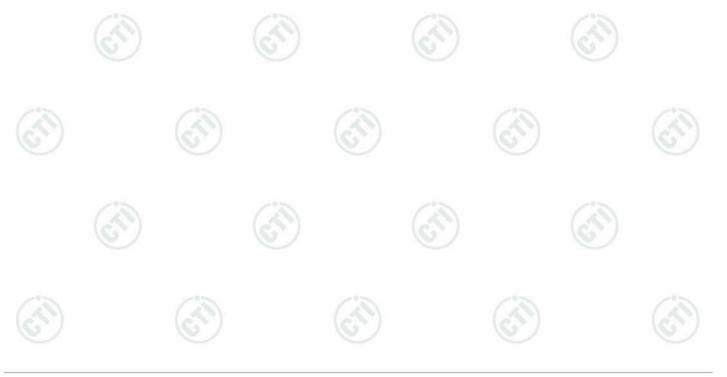
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.


Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)					
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300					
0.490MHz-1.705MHz	24000/F(kHz)	-	20-	30	107				
1.705MHz-30MHz	30	-		30					
30MHz-88MHz	100	40.0	Quasi-peak	3					
88MHz-216MHz	150	43.5	Quasi-peak	3					
216MHz-960MHz	200	46.0	Quasi-peak	3					
960MHz-1GHz	500	54.0	Quasi-peak	3					
Above 1GHz	500	54.0	Average	3					
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.									



Page 31 of 44

→ PK Limit → Vertical PK ★ PK Detector ★ AV Detector

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	52.5085	12.80	0.82	-32.10	41.38	22.90	40.00	17.10	Pass	Vertical
	2	71.9124	8.64	0.97	-32.05	41.07	18.63	40.00	21.37	Pass	Vertical
	3	208.9038	11.13	1.71	-31.94	45.40	26.30	43.50	17.20	Pass	Vertical
2	4	357.1494	14.46	2.26	-31.85	35.82	20.69	46.00	25.31	Pass	Vertical
6	5	687.5975	19.70	3.14	-32.06	33.72	24.50	46.00	21.50	Pass	Vertical
	6	799.7520	20.90	3.39	-32.03	32.10	24.36	46.00	21.64	Pass	Vertical

Page 32 of 44

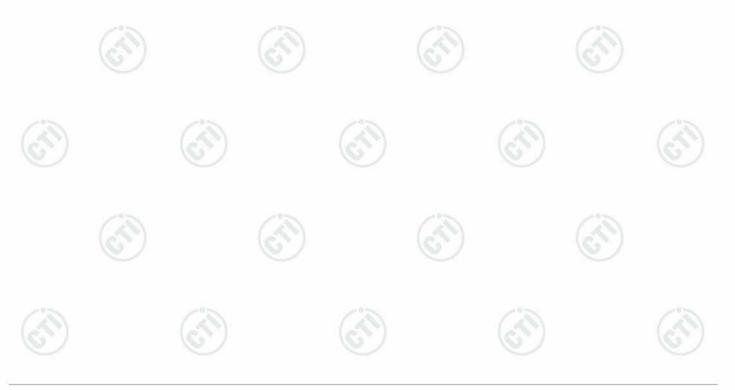
Transmitter Emission above 1GHz

Mode	Mode: BLE GFSK Transmitting			Channel:				2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1997.4998	31.68	3.47	-42.61	56.87	49.41	74.00	24.59	Pass	Н	Peak
2	3186.5624	33.27	4.63	-42.00	50.17	46.07	74.00	27.93	Pass	Н	Peak
3	4804.0000	34.50	4.55	-40.66	54.16	52.55	74.00	21.45	Pass	Н	Peak
4	4804.0000	34.50	4.55	-40.66	46.31	44.70	54.00	9.30	Pass	Н	Average
5	5539.0693	35.06	5.16	-40.67	48.91	48.46	74.00	25.54	Pass	Н	Peak
6	7206.0000	36.31	5.81	-41.02	57.27	58.37	74.00	15.63	Pass	Н	Peak
7	7206.0000	36.31	5.82	-41.02	47.61	48.72	54.00	5.28	Pass	Н	Average
8	9608.0000	37.64	6.63	-40.76	44.81	48.32	74.00	25.68	Pass	Н	Peak
9	1399.0399	28.30	2.90	-42.68	54.45	42.97	74.00	31.03	Pass	V	Peak
10	3880.8087	33.70	4.35	-41.03	48.24	45.26	74.00	28.74	Pass	V	Peak
11	4804.0000	34.50	4.55	-40.66	56.53	54.92	74.00	19.08	Pass	V	Peak
12	4804.0000	34.50	4.55	-40.66	47.79	46.18	54.00	7.82	Pass	V	Average
13	6354.8737	35.87	5.45	-41.16	47.86	48.02	74.00	25.98	Pass	V	Peak
14	7206.0000	36.31	5.81	-41.02	55.93	57.03	74.00	16.97	Pass	V	Peak
15	7206.0000	36.31	5.82	-41.02	46.73	47.84	54.00	6.16	Pass	V	Average
16	9608.0000	37.64	6.63	-40.76	45.09	48.60	74.00	25.40	Pass	V	Peak

Mode	Mode: BLE GFSK Transmitting			Channel:				2440			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1397.2397	28.30	2.90	-42.69	50.77	39.28	74.00	34.72	Pass	Н	Peak
2	3446.5798	33.38	4.44	-41.85	49.09	45.06	74.00	28.94	Pass	Н	Peak
3	4880.0000	34.50	4.80	-40.60	52.27	50.97	74.00	23.03	Pass	Н	Peak
4	6085.7557	35.82	5.25	-41.11	47.11	47.07	74.00	26.93	Pass	Н	Peak
5	7320.0000	36.42	5.85	-40.92	52.36	53.71	74.00	20.29	Pass	Н	Peak
6	7320.0000	36.42	5.85	-40.92	44.19	45.54	54.00	8.46	Pass	Н	Average
7	9760.0000	37.70	6.73	-40.62	42.72	46.53	74.00	27.47	Pass	Н	Peak
8	1597.0597	29.04	3.07	-42.89	55.56	44.78	74.00	29.22	Pass	V	Peak
9	4104.4236	33.95	4.34	-40.81	48.96	46.44	74.00	27.56	Pass	V	Peak
10	4880.0000	34.50	4.80	-40.60	55.20	53.90	74.00	20.10	Pass	V	Peak
11	4880.0000	34.50	4.80	-40.60	46.55	45.25	54.00	8.75	Pass	V	Average
12	6085.7557	35.82	5.25	-41.11	47.11	47.07	74.00	26.93	Pass	V	Peak
13	7320.0000	36.42	5.85	-40.92	52.36	53.71	74.00	20.29	Pass	V	Peak
14	7320.0000	36.42	5.85	-40.92	44.19	45.54	54.00	8.46	Pass	V	Average
15	9760.0000	37.70	6.73	-40.62	42.72	46.53	74.00	27.47	Pass	V	Peak

Page 33 of 44

				100				20				
Mode	Mode: BLE GFSK Transmitting				Channel:				2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark	
1	1395.2395	28.30	2.89	-42.69	52.74	41.24	74.00	32.76	Pass	Н	Peak	
2	3191.7628	33.28	4.64	-42.01	49.61	45.52	74.00	28.48	Pass	Н	Peak	
3	4960.0000	34.50	4.82	-40.53	51.03	49.82	74.00	24.18	Pass	Н	Peak	
4	6266.4678	35.85	5.39	-41.14	47.59	47.69	74.00	26.31	Pass	Н	Peak	
5	7440.0000	36.54	5.85	-40.82	50.89	52.46	74.00	21.54	Pass	Н	Peak	
6	7440.0000	36.54	5.85	-40.82	42.56	44.13	54.00	9.87	Pass	Н	Average	
7	9920.0000	37.77	6.79	-40.48	43.70	47.78	74.00	26.22	Pass	Н	Peak	
8	1393.6394	28.29	2.89	-42.68	56.46	44.96	74.00	29.04	Pass	V	Peak	
9	3143.0095	33.26	4.59	-42.04	50.45	46.26	74.00	27.74	Pass	V	Peak	
10	4960.0000	34.50	4.82	-40.53	55.49	54.28	74.00	19.72	Pass	V	Peak	
11	4960.0000	34.50	4.82	-40.53	44.78	43.57	54.00	10.43	Pass	V	Average	
12	6323.0215	35.86	5.46	-41.15	47.72	47.89	74.00	26.11	Pass	V	Peak	
13	7440.0000	36.54	5.85	-40.82	49.02	50.59	74.00	23.41	Pass	V	Peak	
14	9920.0000	37.77	6.79	-40.48	44.17	48.25	74.00	25.75	Pass	V	Peak	


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



Page 34 of 44

Radiated spurious emission Test Setup-2(Below 1GHz)

Page 35 of 44

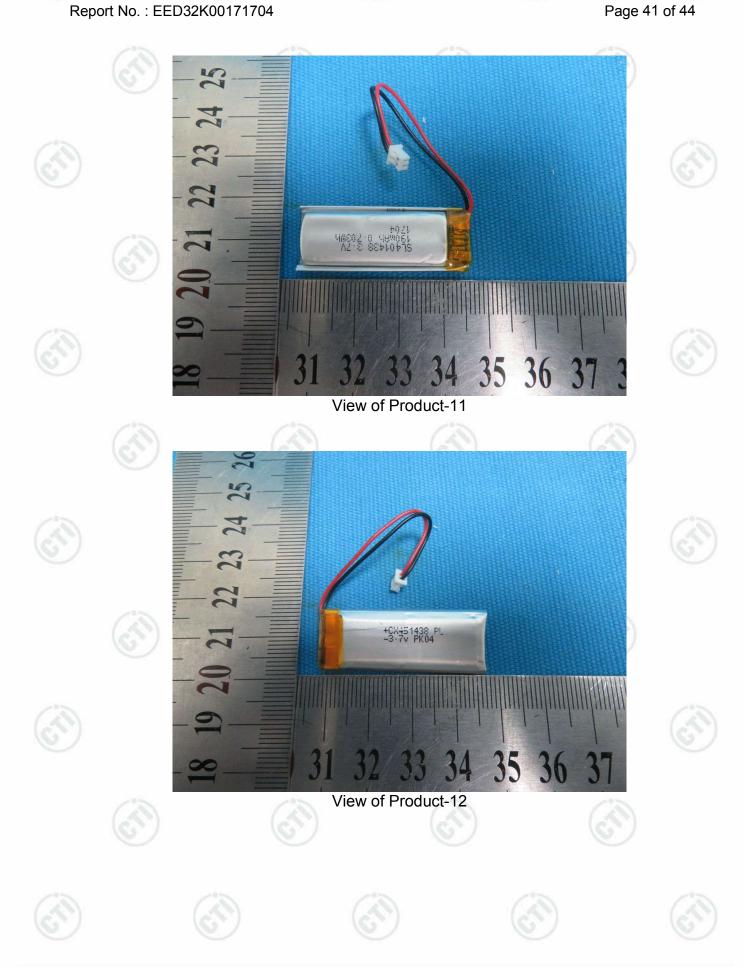
Page 36 of 44

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: JPD-300E

Uterine contraction probe

Page 40 of 44



Page 42 of 44

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

