

Report No. : EED32K00171701 Page 1 of 54

TEST REPORT

Product : Fetal Monitor

Trade mark : JUMPER

Model/Type reference : JPD-300E

Serial Number : N/A

Report Number : EED32K00171701 FCC ID : 2ADYL-JPD300E

Date of Issue : Feb. 19, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Shenzhen Jumper Medical Equipment Co., Ltd D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Peter

Compiled by:

Tom-cher

Reviewed by:

Max liang

Max Liang

max Elaing

Tom chen

Kevin yang

Date:

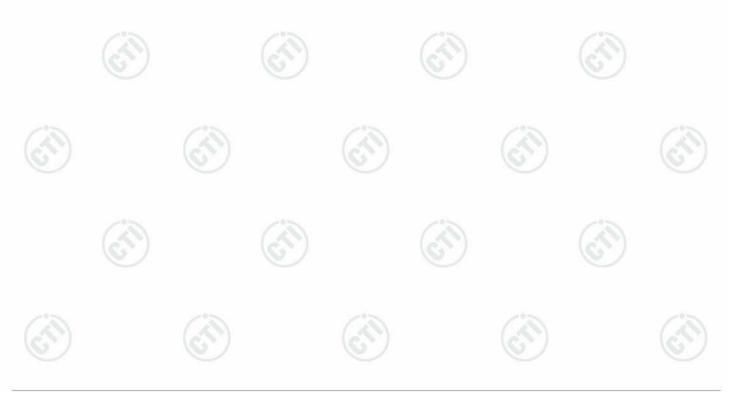
Feb. 19, 2019

Check No.:3177469070

Report No. : EED32K00171701

2 Version

Version No.	Date	(6	Description)
00	Feb. 19, 2019		Original	
		100	75	/15
()		(25)	(8.50)	(6,7)


Report No.: EED32K00171701 Page 3 of 54

3 Test Summary

o rest Summary			_	
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

4 Content

· Contone					
1 COVER PAGE					1
2 VERSION			•••••	•••••	2
TEST SUMMARY		•••••	•••••		3
4 CONTENT				•••••	4
5 TEST REQUIREMENT				•••••	5
5.1.2 For Radiated En	est setup nissions test setup Emissions test setup				
GENERAL INFORMATIO	N	•••••	•••••	•••••	7
6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTIO 6.3 PRODUCT SPECIFICAT 6.4 DESCRIPTION OF SUPI 6.5 TEST LOCATION 6.6 DEVIATION FROM STAI 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION 6.9 MEASUREMENT UNCE	N OF EUT ION SUBJECTIVE TO THIS SPORT UNITS NDARDS STANDARD CONDITIONS REQUESTED BY THE CUST	TANDARD			7 8 8 8 8
7 EQUIPMENT LIST	•••••		•••••	•••••	10
RADIO TECHNICAL REG	QUIREMENTS SPECIFIC	CATION	•••••	•••••	13
Appendix B): Conduct Appendix C): Band-ed Appendix D): RF Cond Appendix E): Power S Appendix F): Antenna Appendix G): AC Pow Appendix H): Restricted	cupied Bandwidthed Peak Output Power Ige for RF Conducted Erducted Spurious Emission pectral Density Requirement er Line Conducted Emised bands around fundam Spurious Emissions	nissionssionssionsionental frequency (Rac	diated)		
PHOTOGRAPHS OF TEST	SETUP		•••••	•••••	39
PHOTOGRAPHS OF EUT	CONSTRUCTIONAL DE	TAILS		••••••	41



Report No.: EED32K00171701 Page 5 of 54

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

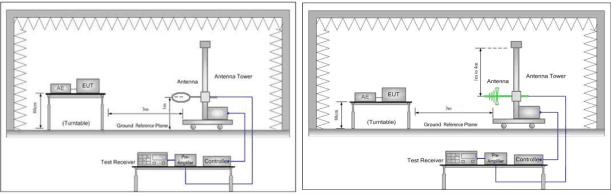


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

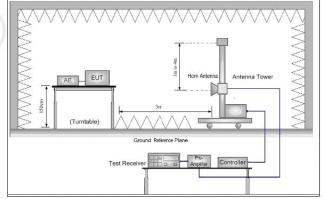
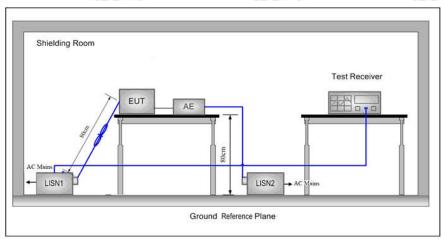
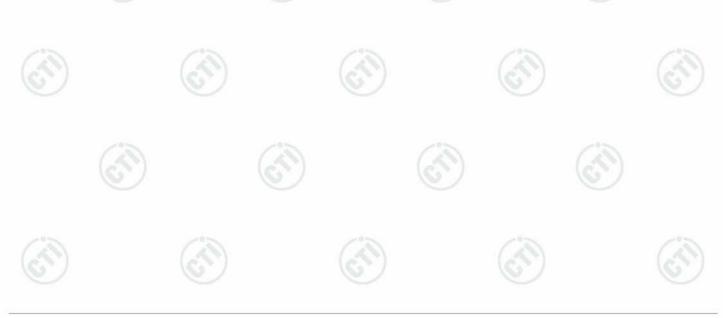



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment	(RF):		(0)
Temperature:	24°C		
Humidity:	57 % RH	-115	
Atmospheric Pressure:	1010mbar		\

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest wode	TX/RX	Low(L)	Middle(M)	High(H)	
0504	0.400.411	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).				

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Report No. : EED32K00171701 Page 7 of 54

6 General Information

6.1 Client Information

Applicant:	Shenzhen Jumper Medical Equipment Co., Ltd	
Address of Applicant:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China	-0-
Manufacturer:	Shenzhen Jumper Medical Equipment Co., Ltd	
Address of Manufacturer:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China	
Factory:	Shenzhen Jumper Medical Equipment Co., Ltd	
Address of Factory:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China	

6.2 General Description of EUT

Product Name:	Fetal Monitor	
Model No.(EUT):	JPD-300E	
Trade mark:	JUMPER	
EUT Supports Radios application:	BT 4.1 Single	mode, 2402MHz-2480MHz
Power Supply:	Medical Adapter	Model:LXCP12-012100DEH, Input:100-240V~50/60Hz,0.5A, Output:12.0V 1.0A
	Battery: 3.7V	3000mAh
Firmware version of the sample:	M1_V1.0(man	nufacturer declare)
Hardware version of the sample:	3000R0(manu	ufacturer declare)
Sample Received Date:	Jul. 02, 2018	
Sample tested Date:	Aug. 13, 2018	3 to Fed. 19, 2019

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(57)
Bluetooth Version:	4.1	
Modulation Technique:	DSSS	
Modulation Type:	GFSK	-0-
Number of Channel:	40	
Sample Type:	Portable production	
Test power grade:	N/A	
Test software of EUT:	nRFgo Studio.exe(manufacturer declare)	
Antenna Type:	PCB Antenna	(1)
Antenna Gain:	0dBi	
Test Voltage:	AC 120V, 60Hz, DC 3.7V by Battery	

Report No. : EED32K00171701 Page 8 of 54

Operation F	requency eac	h of channe	1	10.	/	(6.	/
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

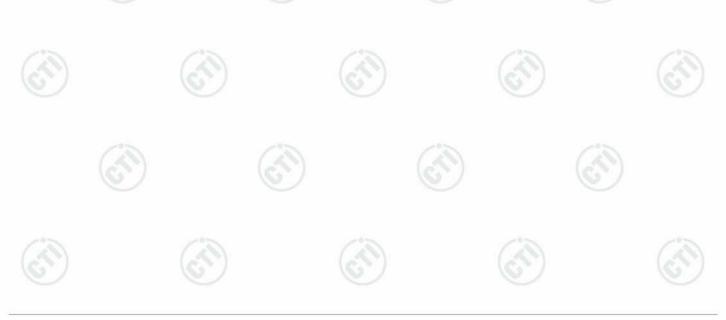
6.8 Other Information Requested by the Customer

None.

Report No. : EED32K00171701 Page 9 of 54

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nover conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	



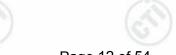
7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-10-2018 01-09-2019	01-09-2019 01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018 01-09-2019	01-09-2019 01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-13-2017 10-12-2018	10-12-2018 10-11-2019

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$

Report No.: EED32K00171701

	Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019			
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019			
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019			
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019			
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019			
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019			
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020			
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019			
ISN	TESEQ	ISN T800	30297	02-06-2018 02-05-2019	02-05-2019 02-04-2020			
Barometer	changchun	DYM3	1188	07-02-2018	07-01-2019			



Report No. : EED32K00171701 Page 12 of 54

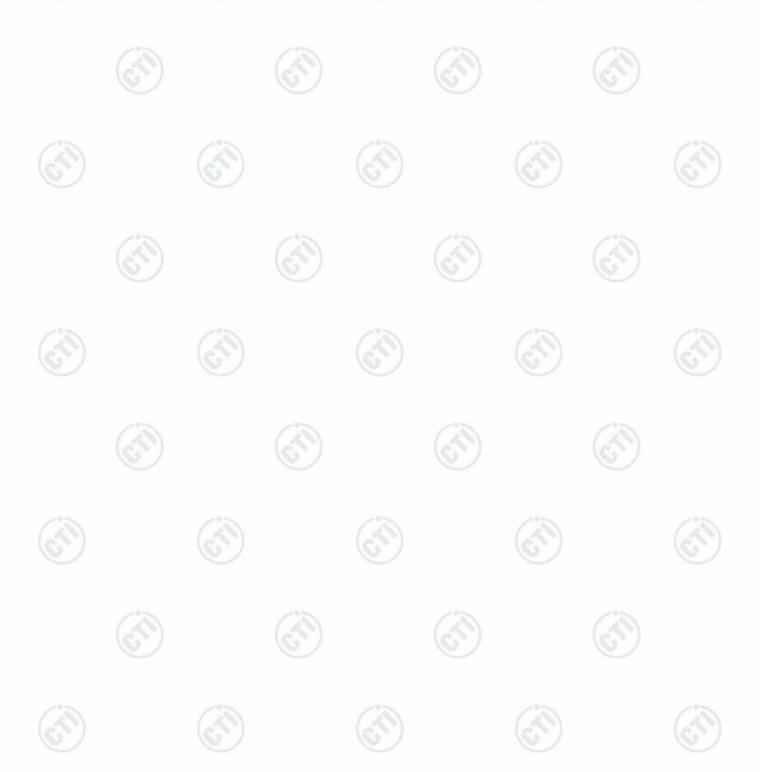
100	100		hoic Chamber		
Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date
			Number	(mm-dd-yyyy)	(mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-22-2017 12-21-2018	12-21-2018 12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A02425	08-22-2017 08-21-2018	08-21-2018 08-20-2019
Microwave Preamplifier	Tonscend	EMC05184 5SE	980380	01-19-2018 01-18-2019	01-18-2019 01-17-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840- 60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Multi device		NCD/070/1	.00100	01-10-2018	01-09-2019
Controller	maturo	0711112		01-09-2019	01-03-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-13-2017 10-12-2018	10-12-2018 10-11-2019
Communication test set	Agilent	E5515C	GB47050534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Communication test set	R&S	CMW500	104466	02-05-2018 02-04-2019	02-04-2019 02-03-2020
High-pass filter	Sinoscite	FL3CX03W G18NM12- 0398-002		01-10-2018 01-09-2019	01-09-2019 01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX01C A09CL12- 0395-001		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX01C A08CL12- 0393-001	(C.)	01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX02C A04CL12- 0396-002		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX02C A03CL12- 0394-001		01-10-2018 01-09-2019	01-09-2019 01-08-2020

8 Radio Technical Requirements Specification

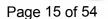
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
est R	esults List:	(0)

Test method	Test item	Verdict	Note
ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
ANSI C63.10	Power Spectral Density	PASS	Appendix E)
ANSI C63.10	Antenna Requirement	PASS	Appendix F)
ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)
	ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10	ANSI C63.10 GdB Occupied Bandwidth Conducted Peak Output Power ANSI C63.10 Band-edge for RF Conducted Emissions ANSI C63.10 RF Conducted Spurious Emissions ANSI C63.10 Power Spectral Density ANSI C63.10 Antenna Requirement ANSI C63.10 AC Power Line Conducted Emission Restricted bands around fundamental frequency (Radiated Emission)	ANSI C63.10 Conducted Peak Output Power ANSI C63.10 Band-edge for RF Conducted Emissions ANSI C63.10 RF Conducted Spurious Emissions ANSI C63.10 Power Spectral Density ANSI C63.10 ANSI C63.10 Antenna Requirement ANSI C63.10 AC Power Line Conducted Emission ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) PASS



Appendix A): 6dB Occupied Bandwidth


Test Result

10.700	7.74.7				
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6868	1.5014	PASS	
BLE	MCH	0.6718	1.3122	PASS	Peak
BLE	HCH	0.6862	1.2635	PASS	detector

Test Graphs

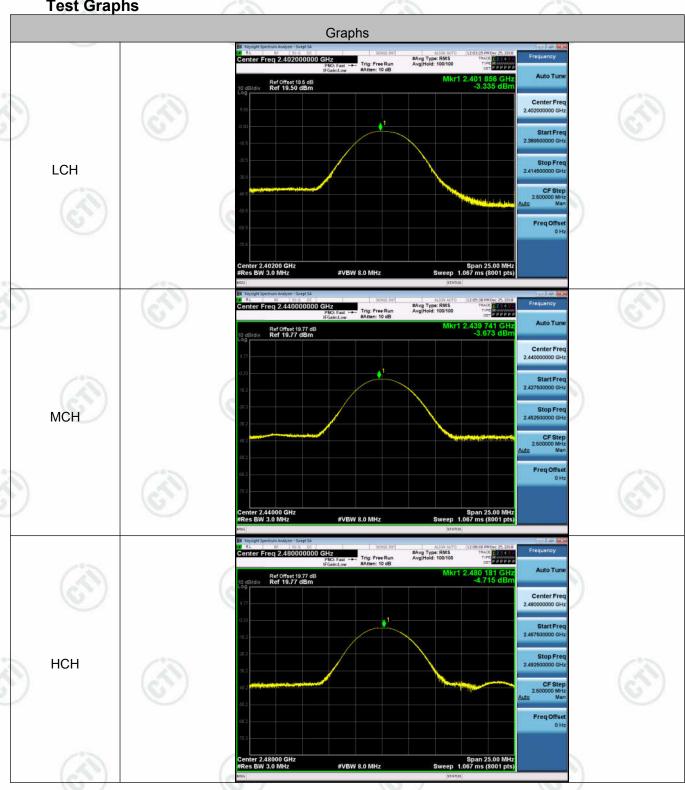
Report No.: EED32K00171701

Report No.: EED32K00171701

Appendix B): Conducted Peak Output Power

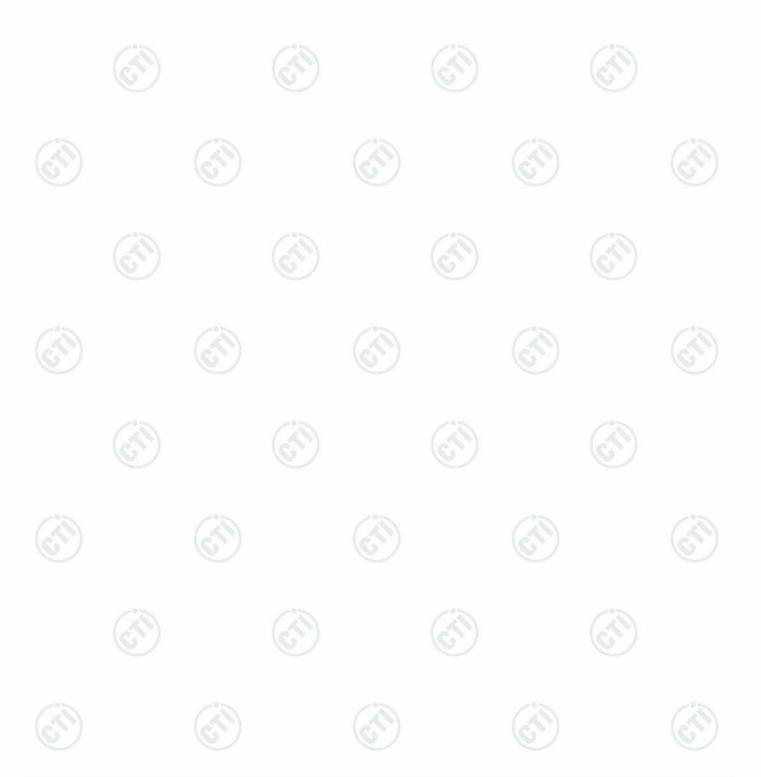
Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-3.335	PASS
BLE	MCH	-3.673	PASS
BLE	HCH	-4.715	PASS



Test Graphs

Report No.: EED32K00171701



Report No. : EED32K00171701 Page 18 of 54

Appendix C): Band-edge for RF Conducted Emissions

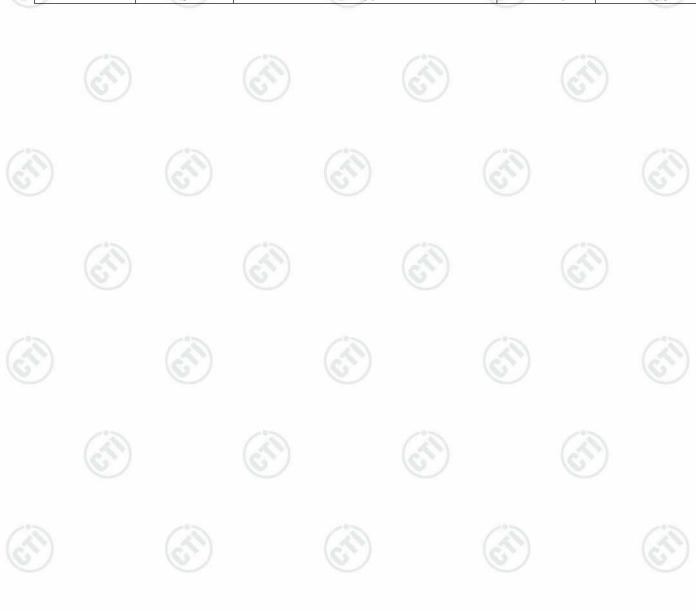
Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
0	BLE	LCH	-3.281	-56.270	-23.28	PASS
3	BLE	HCH	-4.580	-41.402	-24.58	PASS

Test Graphs

Report No.: EED32K00171701

<u>cii</u>

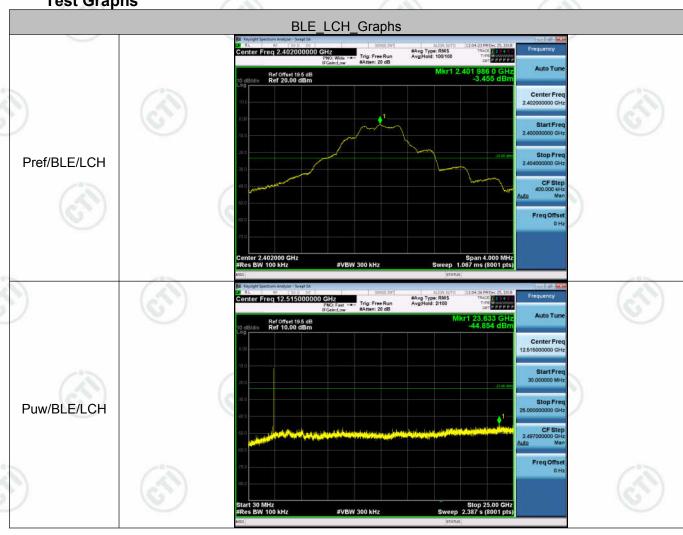


Report No. : EED32K00171701 Page 20 of 54

Appendix D): RF Conducted Spurious Emissions

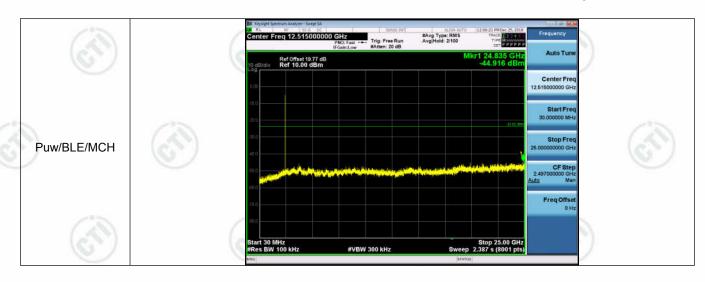
Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-3.455	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-3.818	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-4.862	<limit< td=""><td>PASS</td></limit<>	PASS



Report No.: EED32K00171701 Page 21 of 54

Test Graphs



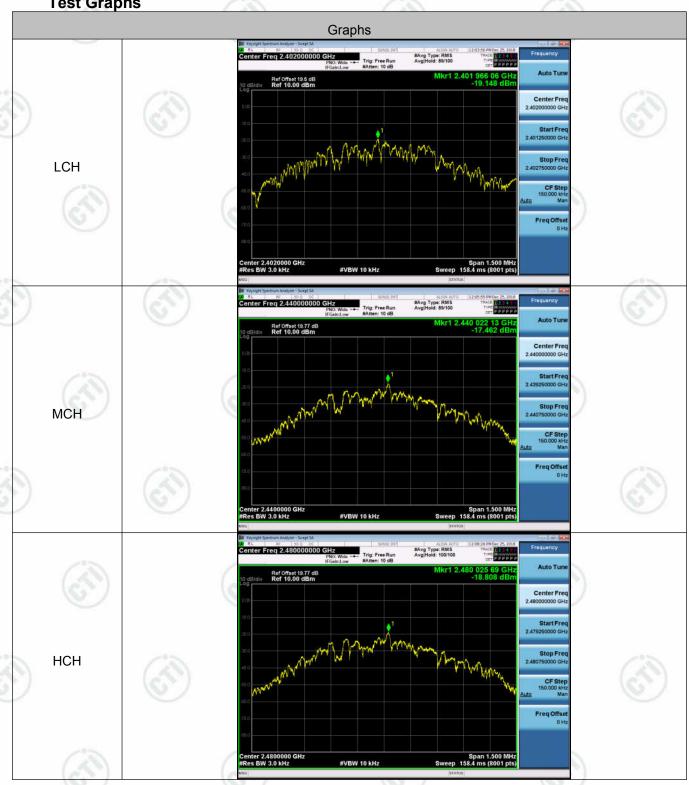
Report No. : EED32K00171701 Page 22 of 54

Report No.: EED32K00171701

Appendix E): Power Spectral Density

Result Table

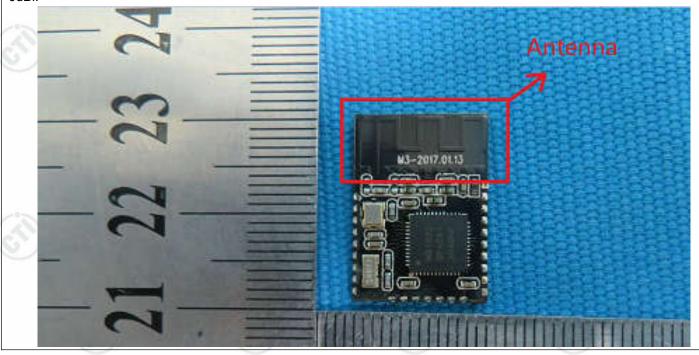
Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-19.148	8	PASS
BLE	MCH	-17.462	8	PASS
BLE	нсн	-18.808	8	PASS



Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No. : EED32K00171701 Page 26 of 54

Appendix G): AC Power Line Conducted Emission

Test Procedure: Te

Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

	Limit (dBµV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

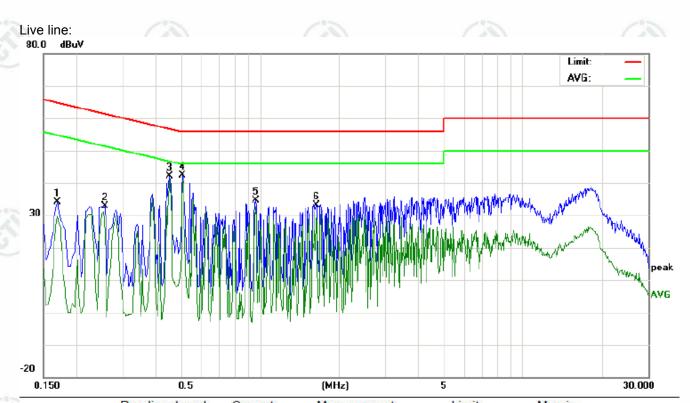
^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

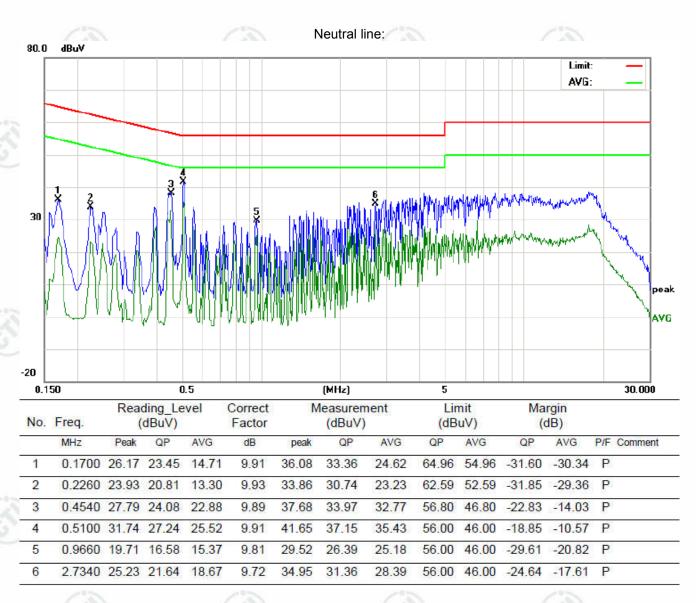


Report No.: EED32K00171701 Page 27 of 54

Product : Fetal Monitor Model/Type reference : JPD-300E (The host)

Temperature : 23° **Humidity** : 55%

N	lo.	Freq.		ding_Le dBuV)	vel	Correct	N	(dBuV)			nit uV)		rgin dB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1700	24.14	21.32	19.83	9.91	34.05	31.23	29.74	64.96	54.96	-33.73	-25.22	Р	
	2	0.2540	22.40	19.37	21.07	9.96	32.36	29.33	31.03	61.62	51.62	-32.29	-20.59	Р	
	3	0.4540	32.35	28.34	31.00	9.89	42.24	38.23	40.89	56.80	46.80	-18.57	-5.91	P	
	4	0.5100	32.52	29.24	31.06	9.91	42.43	39.15	40.97	56.00	46.00	-16.85	-5.03	P	
	5	0.9660	24.78	21.54	22.75	9.81	34.59	31.35	32.56	56.00	46.00	-24.65	-13.44	P	
	6	1.6180	23.36	20.27	21.63	9.75	33.11	30.02	31.38	56.00	46.00	-25.98	-14.62	Р	



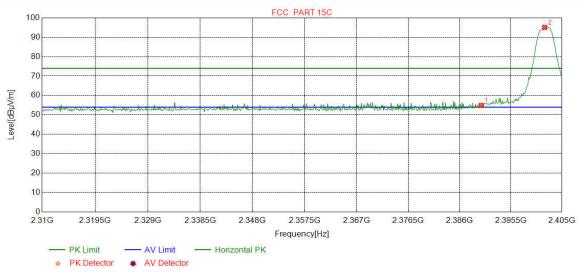
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

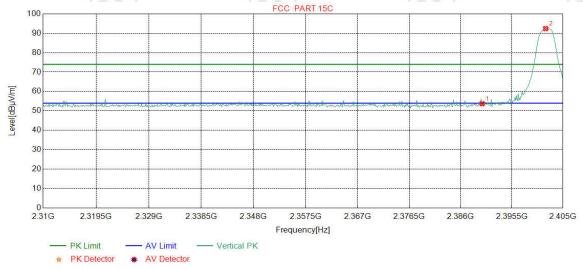
Report No. : EED32K00171701 Page 29 of 54

Appendix H): Restricted bands around fundamental frequency (Radiated)

Radiated)	(6)	(C)	/	1	GT/	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	K
	AL 4011	Peak	1MHz	3MHz	Peak	-0
	Above 1GHz	Peak	1MHz	10Hz	Average	(63
Test Procedure:	Below 1GHz test procedu	re as below:	6	/		16
	 a. The EUT was placed of at a 3 meter semi-anect determine the position b. The EUT was set 3 meter was mounted on the totoo. c. The antenna height is well determine the maximum polarizations of the antenna was turned was turned from 0 degree. 	n the top of a rot hoic camber. The of the highest raters away from the proof of a variable-horal are set to remain the EUT to heights from	te table wa diation. he interfere eight anter meter to fo eld strength make the m was arran 1 meter to ees to find	ence-receinna tower. ur meters n. Both horneasuremeged to its value meters at the maxim	of the grade of th	to a, where councies wertice able
	e. The test-receiver syste Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of	um Hold Mode. end of the restric apliance. Also me um analyzer plo	ted band c easure any	losest to the	ne transmit s in the restri	icted
	f. Place a marker at the e frequency to show com bands. Save the spectr	um Hold Mode. and of the restrict apliance. Also me aum analyzer plo channel are as below: are is the test site ber change form and table abovest channel, the ments are perfor d found the X ax	ted band c easure any t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, ' is positioni	losest to the emissions or each posterior or Semi-meter to 1 ter). channel Y, Z axis programs which it	ne transmit in the restri ower and mo Anechoic Ch .5 meter(Ab	icted dulat namb ove
_imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of lowest and highest of the spectra for lowest and highest of lowest and highest of fully Anechoic Chammand 18GHz the distance is h. Test the EUT in the lowest in the radiation measured fransmitting mode, and	um Hold Mode. and of the restrict apliance. Also me aum analyzer plo channel are as below: are is the test site ber change form and table abovest channel, the ments are perfor d found the X ax	ted band c easure any t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni	losest to the emissions for each posterior semi- meter to 1 meter to 1 meter). channel Y, Z axis programming which it easured was	ne transmit in the restri ower and mo Anechoic Ch .5 meter(Ab	icted dulat namb ove
imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of the spectra for lowest fill the	um Hold Mode. end of the restrict apliance. Also me um analyzer plo channel are as below: the is the test site ber change form 1 meter and table west channel, the ments are perfor d found the X ax ares until all frequence	ted band c easure any t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni lencies me m @3m)	losest to the emissions or each posterior om Semi-meter to 1 ter). channel Y, Z axis peng which it easured was recorded.	ne transmit in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca as complete.	icted dulat namb ove
imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of lowest and highest of the standard for the following spectrum from the lowest spectr	um Hold Mode. end of the restrict pliance. Also me rum analyzer plo channel are as below: re is the test site ber change form 1 meter and table west channel , the ments are perfor d found the X ax res until all frequ Limit (dBµV/r)	ted band c easure any t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, ' is positioni iencies me m @3m)	losest to the emissions or each posterior or each posterior to 1 er). channel Y, Z axis programment was a great was red was r	ne transmit in the restri ower and mo Anechoic Ch .5 meter(Ab cositioning fo t is worse ca as complete.	icted dulat namb ove
imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamand 18GHz the distance is h. Test the EUT in the lowest in the radiation measured that the spectra for lowest lowes	um Hold Mode. end of the restrict apliance. Also me um analyzer plo channel are as below: the is the test site ber change form 1 meter and table west channel, the ments are perfor d found the X ax res until all frequ Limit (dBµV// 40.0	ted band c easure any t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni uencies me m @3m)	losest to the emissions or each posterior om Semi-meter to 1 ter). channel Y, Z axis programming which in asured was reduration of the emission of the emissi	Anechoic Ch.5 meter(Ab	icted dulat namb ove
imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the lowest and highest of the lowest and highest of the lowest and highest of lowest and highest of lowest and highest of lowest and highest of the lowest and lowe	um Hold Mode. end of the restrict pliance. Also me um analyzer plo channel are as below: re is the test site ber change form 1 meter and table west channel, the ments are perfor d found the X ax res until all freque Limit (dBµV// 40.0 43.5	ted band c easure any t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni uencies me m @3m)	losest to the emissions or each posterior or eac	Anechoic Cr. 5 meter(Abecositioning for tis worse cases complete.	icted dulat namb ove
imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the lowest of the low	um Hold Mode. end of the restrict upliance. Also me um analyzer plo channel ure as below: re is the test site ber change form 1 meter and table west channel, the ments are perfor d found the X ax res until all freque Limit (dBµV// 40.0 43.5 46.0	ted band c easure any t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni uencies me m @3m)	losest to the emissions or each posterior on Semi-meter to 1 ter). channel Y, Z axis programment was a Rerect Companies which it as a companies where the companies was a companies where the companies was a companies with the companies was a companies which it is a companies where the companies was a companies where the companies where the companies was a companies which was a companies where the companies was a companies where the companies was a companies where the companies was a companies	Anechoic Ch.5 meter(Abecositioning for is worse cast complete. mark eak Value eak Value	icted dulat namb ove

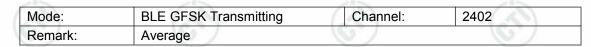


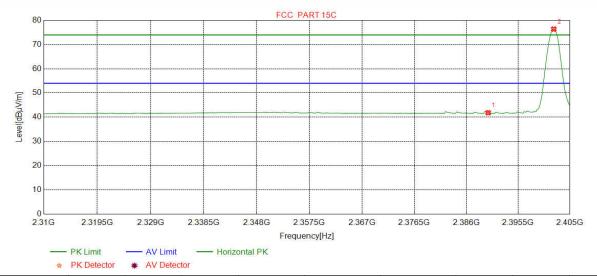
Report No. : EED32K00171701 Page 30 of 54


Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak		

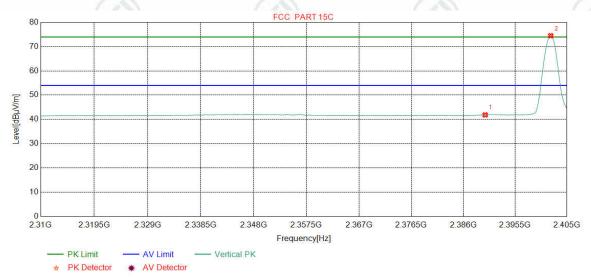
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.68	54.86	74.00	19.14	Pass	Horizontal
2	2401.7897	32.26	13.31	-42.43	91.94	95.08	74.00	-21.08	Pass	Horizontal


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak	/15	



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.51	53.69	74.00	20.31	Pass	Vertical
2	2401.7897	32.26	13.31	-42.43	89.29	92.43	74.00	-18.43	Pass	Vertical

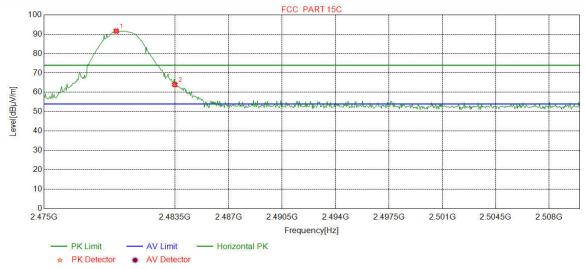
Report No. : EED32K00171701 Page 31 of 54



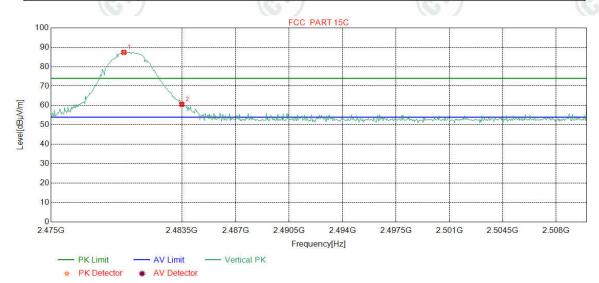
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	38.64	41.82	54.00	12.18	Pass	Horizontal
Ī	2	2402.0275	32.26	13.31	-42.43	73.26	76.40	54.00	-22.40	Pass	Horizontal

Mode: BLE GFSK Transmitting Channel: 2402

Remark: Average

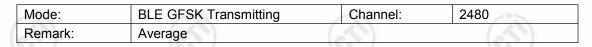


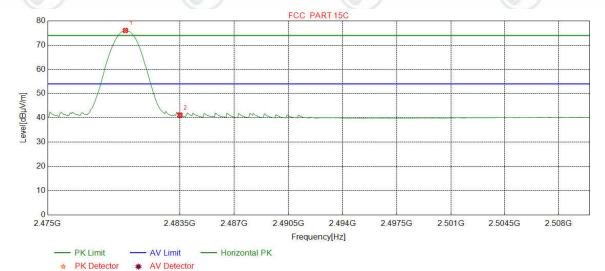
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.66	41.84	54.00	12.16	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	71.37	74.51	54.00	-20.51	Pass	Vertical


Report No. : EED32K00171701 Page 32 of 54

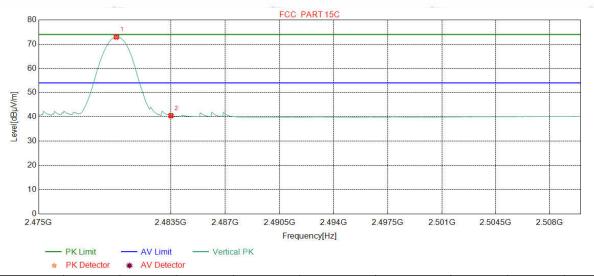
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak	·	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6871	32.37	13.39	-42.39	88.27	91.64	74.00	-17.64	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	60.66	64.02	74.00	9.98	Pass	Horizontal


Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak		



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7309	32.37	13.39	-42.39	84.02	87.39	74.00	-13.39	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	57.27	60.63	74.00	13.37	Pass	Vertical


Report No.: EED32K00171701 Page 33 of 54

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	72.68	76.05	54.00	-22.05	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.78	41.14	54.00	12.86	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Average		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	69.57	72.94	54.00	-18.94	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	37.15	40.51	54.00	13.49	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

_ (-4.7)	(10 11	f -	6.79		1.63	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 10Uz	Peak	1MHz	3MHz	Peak	
(0,	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

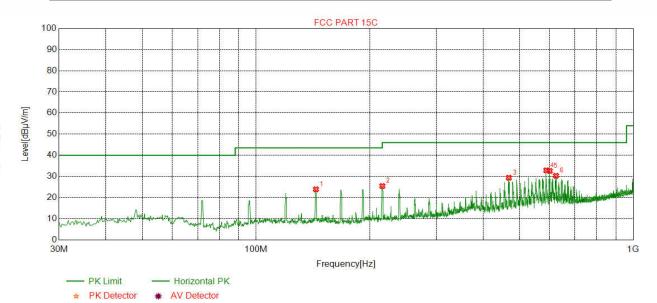
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

			• •	
	- 11	m	IIT	•
ш	-11	ш	ш	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	70-	30
1.705MHz-30MHz	30	-	(34)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32K00171701 Page 35 of 54

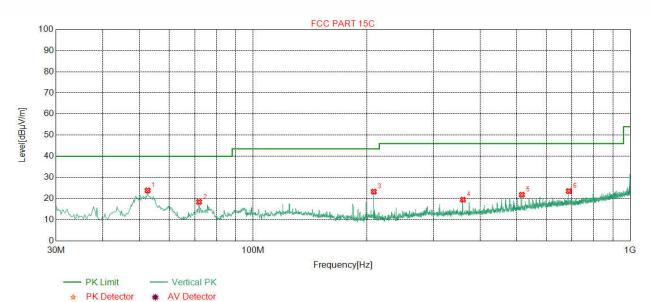

Radiated Spurious Emissions test Data:

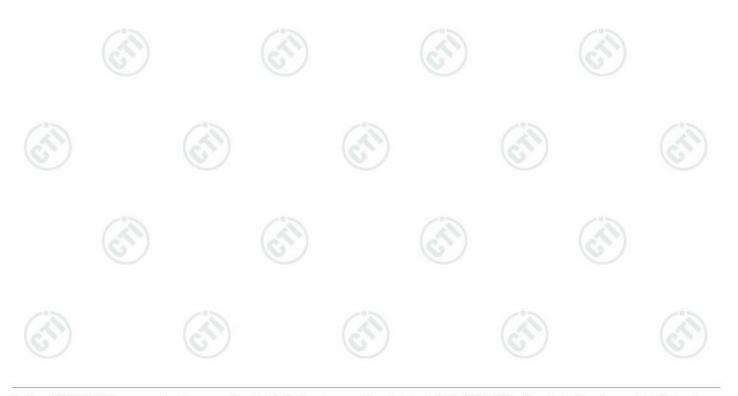
Product : Fetal Monitor Model/Type reference : JPD-300E (The host)

Temperature : 21° Humidity : 57%

Radiated Emission below 1GHz

Mode:	GFSK Transmitting	Channel:	2480
Remark:	QP		


8	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	144.0948	7.34	1.41	-31.99	47.14	23.90	43.50	19.60	Pass	Horizontal
	2	216.0832	11.32	1.75	-31.95	44.31	25.43	46.00	20.57	Pass	Horizontal
	3	467.9456	16.49	2.58	-31.87	42.17	29.37	46.00	16.63	Pass	Horizontal
	4	588.2497	18.76	2.90	-31.93	43.14	32.87	46.00	13.13	Pass	Horizontal
	5	600.6681	19.01	2.96	-32.00	42.62	32.59	46.00	13.41	Pass	Horizontal
	6	623.9528	19.19	2.97	-31.98	40.12	30.30	46.00	15.70	Pass	Horizontal



Report No. : EED32K00171701 Page 36 of 54

Mode:	GFSK Transmitting	Channel:	2480
Remark:	QP		

N	Ю	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	52.5085	12.80	0.82	-32.10	42.29	23.81	40.00	16.19	Pass	Vertical
	2	71.9124	8.64	0.97	-32.05	40.83	18.39	40.00	21.61	Pass	Vertical
	3	208.9038	11.13	1.71	-31.94	42.33	23.23	43.50	20.27	Pass	Vertical
Š.	4	360.0600	14.52	2.27	-31.84	34.49	19.44	46.00	26.56	Pass	Vertical
	5	516.0672	17.32	2.71	-31.93	33.67	21.77	46.00	24.23	Pass	Vertical
	6	687.5975	19.70	3.14	-32.06	32.72	23.50	46.00	22.50	Pass	Vertical

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$

Transmitter Emission above 1GHz

Mode:		BLE GFSK Transmitting			Channel:			2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1439.8440	28.34	2.94	-42.68	51.95	40.55	74.00	33.45	Pass	Н	Peak
2	3079.9553	33.23	4.76	-42.07	49.97	45.89	74.00	28.11	Pass	Н	Peak
3	4804.0000	34.50	4.55	-40.66	49.66	48.05	74.00	25.95	Pass	Н	Peak
4	6066.9045	35.81	5.23	-41.10	47.36	47.30	74.00	26.70	Pass	Н	Peak
5	7206.0000	36.31	5.81	-41.02	56.61	57.71	74.00	16.29	Pass	Н	Peak
6	7206.0000	36.31	5.82	-41.02	47.15	48.26	54.00	5.74	Pass	Н	Average
7	9608.0000	37.64	6.63	-40.76	43.95	47.46	74.00	26.54	Pass	Н	Peak
8	1390.8391	28.29	2.89	-42.69	55.73	44.22	74.00	29.78	Pass	V	Peak
9	3256.1171	33.30	4.47	-41.97	50.63	46.43	74.00	27.57	Pass	V	Peak
10	4804.0000	34.50	4.55	-40.66	51.33	49.72	74.00	24.28	Pass	V	Peak
11	6469.9313	35.89	5.50	-41.18	47.44	47.65	74.00	26.35	Pass	V	Peak
12	7206.0000	36.31	5.81	-41.02	55.71	56.81	74.00	17.19	Pass	V	Peak
13	7206.0000	36.31	5.82	-41.02	46.82	47.93	54.00	6.07	Pass	V	Average
14	9608.0000	37.64	6.63	-40.76	44.20	47.71	74.00	26.29	Pass	V	Peak

[2,0]								1.67%			
Mode:		BLE GFSK Transmitting			Channel:				2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1798.0798	30.37	3.32	-42.72	58.88	49.85	74.00	24.15	Pass	Н	Peak
2	3438.7793	33.38	4.46	-41.86	50.39	46.37	74.00	27.63	Pass	Н	Peak
3	4880.0000	34.50	4.80	-40.60	49.22	47.92	74.00	26.08	Pass	Н	Peak
4	6402.3268	35.88	5.32	-41.17	47.93	47.96	74.00	26.04	Pass	Н	Peak
5	7320.0000	36.42	5.85	-40.92	53.19	54.54	74.00	19.46	Pass	Н	Peak
6	7320.0000	36.42	5.85	-40.92	44.68	46.03	54.00	7.97	Pass	Н	Average
7	9760.0000	37.70	6.73	-40.62	44.20	48.01	74.00	25.99	Pass	Н	Peak
8	1934.8935	31.27	3.42	-42.64	51.70	43.75	74.00	30.25	Pass	V	Peak
9	3193.7129	33.28	4.64	-42.01	50.45	46.36	74.00	27.64	Pass	V	Peak
10	4880.0000	34.50	4.80	-40.60	50.19	48.89	74.00	25.11	Pass	V	Peak
11	6339.9227	35.87	5.46	-41.16	47.31	47.48	74.00	26.52	Pass	V	Peak
12	7320.0000	36.42	5.85	-40.92	51.92	53.27	74.00	20.73	Pass	V	Peak
13	7320.0000	36.42	5.85	-40.92	42.67	44.02	54.00	9.98	Pass	V	Average
14	9760.0000	37.70	6.73	-40.62	44.59	48.40	74.00	25.60	Pass	V	Peak

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32K00171701 Page 38 of 54

J-174			70%		25%			>0~			
Mode:		BLE GFSK Transmitting			Channel:			2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1394.0394	28.29	2.89	-42.68	52.96	41.46	74.00	32.54	Pass	Н	Peak
2	3215.8144	33.29	4.59	-42.00	50.35	46.23	74.00	27.77	Pass	Н	Peak
3	4960.0000	34.50	4.82	-40.53	48.72	47.51	74.00	26.49	Pass	Н	Peak
4	6311.9708	35.86	5.46	-41.15	47.55	47.72	74.00	26.28	Pass	Н	Peak
5	7440.0000	36.54	5.85	-40.82	52.96	54.53	74.00	19.47	Pass	Н	Peak
6	7440.0000	36.54	5.85	-40.82	44.35	45.92	54.00	8.08	Pass	Н	Average
7	9920.0000	37.77	6.79	-40.48	43.65	47.73	74.00	26.27	Pass	Н	Peak
8	1395.4395	28.30	2.89	-42.69	53.82	42.32	74.00	31.68	Pass	V	Peak
9	4172.0281	34.04	4.50	-40.83	46.25	43.96	74.00	30.04	Pass	V	Peak
10	4960.0000	34.50	4.82	-40.53	48.51	47.30	74.00	26.70	Pass	V	Peak
11	6830.0553	36.03	5.55	-41.18	46.13	46.53	74.00	27.47	Pass	V	Peak
12	7440.0000	36.54	5.85	-40.82	49.10	50.67	74.00	23.33	Pass	V	Peak
13	9920.0000	37.77	6.79	-40.48	41.72	45.80	74.00	28.20	Pass	V	Peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32K00171701 Page 39 of 54

PHOTOGRAPHS OF TEST SETUP

Test model No.: JPD-300E

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

Report No. : EED32K00171701 Page 40 of 54

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No. : EED32K00171701 Page 41 of 54

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: JPD-300E

View of Product-1

The host

View of Product-2

View of Product-3

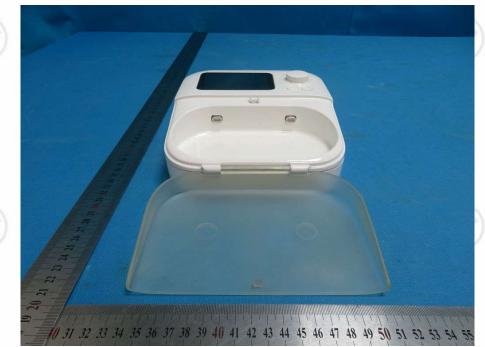
View of Product-4

View of Product-5

View of Product-6

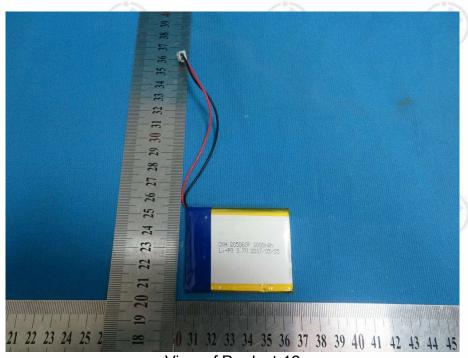
View of Product-7

View of Product-8



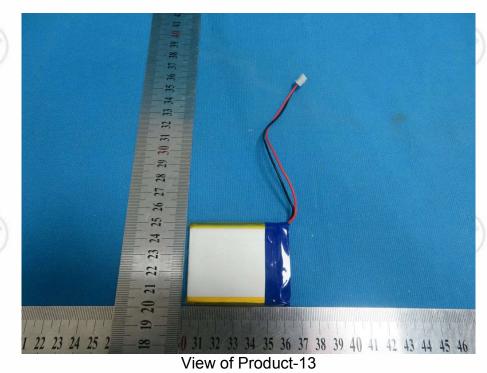
View of Product-9

View of Product-10



View of Product-11

View of Product-12

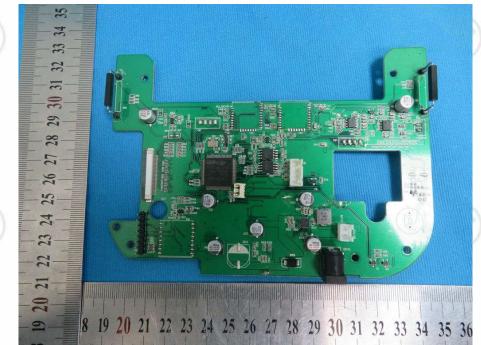


View of Product-14

Report No. : EED32K00171701 Page 48 of 54

View of Product-15

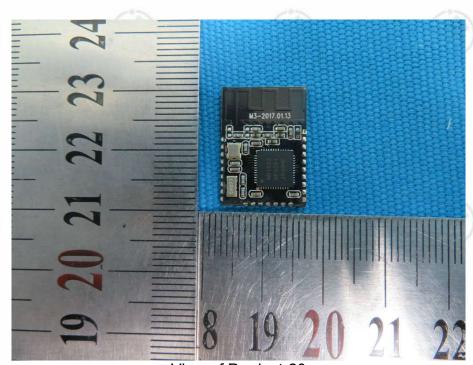
View of Product-16



View of Product-17

View of Product-18

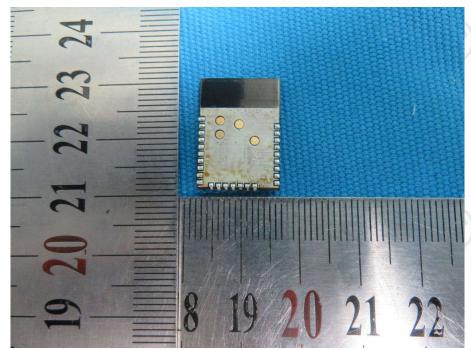




Report No. : EED32K00171701 Page 50 of 54

View of Product-19

View of Product-20



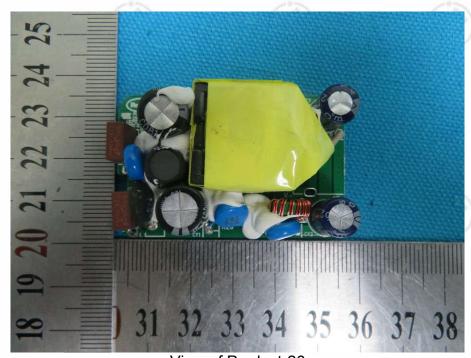
Report No. : EED32K00171701 Page 51 of 54

View of Product-21

View of Product-22

View of Product-23

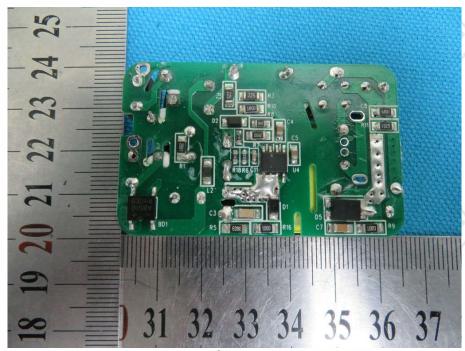
View of Product-24

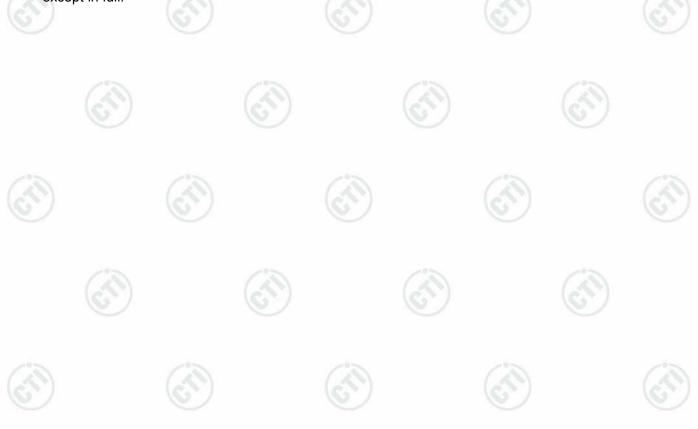


Report No.: EED32K00171701 Page 53 of 54

View of Product-25

View of Product-26




Report No.: EED32K00171701 Page 54 of 54

View of Product-27

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

