


Report Number: F690501/RF-RTL009890-2 Page: 70 of 97

# 5. Maximum Conducted Output Power

## 5.1. Test setup



### 5.2. Limit

#### FCC 15.407 (a)(1)(iv)

For client devices in the 5.15-5.25  $\mbox{ }\mbox{ }$ 

#### (a)(2)

For the 5.25-5.35  $\mbox{ }\mbox{ }\m$ 

# (a)(3)

For the band 5.725-5.85  $\mbox{GHz}$ , the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dB m in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dB i are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB i. However, fixed point-to point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dB i without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.



Report Number: F690501/RF-RTL009890-2 Page: 71 of 97

# 5.3. Test procedure

- 1. This measurement settings are specified in section E.3.a of KDB 789033\_D02 v01r02.
- 2. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
  - The EUT is configured to transmit continuously or to transmit with a consistent duty cycle.
  - At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
  - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 3. If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.
- 4. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 5. Adjust the measurement in dB m by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log(1/0.25) if the duty cycle is 25 percent).
- 6. In case of band crossing channels 144, the measurement is complied with section E.2.d of KDB 789033\_D02 v01r02 and section D of KDB 644545\_D03 v01.



Report Number: F690501/RF-RTL009890-2 Page: 72 of 97

### 5.4. Test result

Ambient temperature :  $(23 \pm 1)$  °C Relative humidity : 47 % R.H.

#### - 11a

|          | Frequency |                     | Conduct                 | ed Power (dB m)                |                                |
|----------|-----------|---------------------|-------------------------|--------------------------------|--------------------------------|
| Band     | (MHz)     | Data Rate<br>[Mbps] | Average Power<br>(dB m) | Duty Correction<br>Factor (dB) | Average Power<br>Result (dB m) |
|          | 5 180     | 6                   | 10.18                   | 0.04                           | 10.22                          |
| U-NII 1  | 5 200     | 6                   | 10.28                   | 0.04                           | 10.32                          |
|          | 5 240     | 6                   | 10.82                   | 0.04                           | <u>10.86</u>                   |
|          | 5 260     | 6                   | 11.16                   | 0.04                           | 11.20                          |
| U-NII 2A | 5 280     | 6                   | 11.22                   | 0.04                           | 11.26                          |
|          | 5 320     | 6                   | 11.48                   | 0.04                           | <u>11.52</u>                   |
|          | 5 500     | 6                   | 11.02                   | 0.04                           | <u>11.06</u>                   |
| U-NII 2C | 5 580     | 6                   | 10.53                   | 0.04                           | 10.57                          |
|          | 5 720     | 6                   | 9.62                    | 0.04                           | 9.66                           |
|          | 5 745     | 6                   | 9.52                    | 0.04                           | <u>9.56</u>                    |
| U-NII 3  | 5 785     | 6                   | 8.93                    | 0.04                           | 8.97                           |
|          | 5 825     | 6                   | 8.63                    | 0.04                           | 8.67                           |

| Rand     |                |                    | Conducted Po   | Power Limit (dB m) |                                                |              |  |
|----------|----------------|--------------------|----------------|--------------------|------------------------------------------------|--------------|--|
| Band     | Frequency (Mb) | Fixed Limit (dB m) | 26 dB BW (MHz) | 11+10LogB (dB m)   | Antenna gain (dBi)                             | Limit (dB m) |  |
|          | 5 180          | 23.98              |                |                    |                                                |              |  |
| U-NII 1  | 5 200          | 23.98              |                |                    |                                                |              |  |
|          | 5 240          | 23.98              |                |                    |                                                |              |  |
|          | 5 260          | 23.98              | 20.40          | 24.10              | 3.50                                           | 23.98        |  |
| U-NII 2A | 5 280          | 23.98              | 20.30          | 24.07              | 3.50                                           | 23.98        |  |
|          | 5 320          | 23.98              | 20.34          | 24.08              | 3.50                                           | 23.98        |  |
|          | 5 500          | 23.98              | 20.34          | 24.08              | 3.34                                           | 23.98        |  |
| U-NII 2C | 5 580          | 23.98              | 20.38          | 24.09              | 3.34                                           | 23.98        |  |
|          | 5 720          | 23.98              | 20.30          | 24.07              | 3.34                                           | 23.98        |  |
|          | 5 745          | 30                 |                |                    | <u>.                                      </u> |              |  |
| U-NII 3  | 5 785          | 30                 |                |                    |                                                |              |  |
|          | 5 825          | 30                 |                |                    |                                                |              |  |



Report Number: F690501/RF-RTL009890-2 Page: 73 of 97

# - 11n\_HT20

|          | Frequency |                     | Conducte                | ed Power (dB m)                |                                |
|----------|-----------|---------------------|-------------------------|--------------------------------|--------------------------------|
| Band     | (MEz)     | Data Rate<br>[Mbps] | Average Power<br>(dB m) | Duty Correction<br>Factor (dB) | Average Power<br>Result (dB m) |
|          | 5 180     | MCS0                | 9.58                    | 0.04                           | 9.62                           |
| U-NII 1  | 5 200     | MCS0                | 9.76                    | 0.04                           | 9.80                           |
|          | 5 240     | MCS0                | 10.01                   | 0.04                           | 10.05                          |
|          | 5 260     | MCS0                | 10.29                   | 0.04                           | 10.33                          |
| U-NII 2A | 5 280     | MCS0                | 10.36                   | 0.04                           | 10.40                          |
|          | 5 320     | MCS0                | 10.61                   | 0.04                           | <u>10.65</u>                   |
|          | 5 500     | MCS0                | 10.11                   | 0.04                           | <u>10.15</u>                   |
| U-NII 2C | 5 580     | MCS0                | 9.72                    | 0.04                           | 9.76                           |
|          | 5 720     | MCS0                | 9.65                    | 0.04                           | 9.69                           |
|          | 5 745     | MCS0                | 8.63                    | 0.04                           | <u>8.67</u>                    |
| U-NII 3  | 5 785     | MCS0                | 8.00                    | 0.04                           | 8.04                           |
|          | 5 825     | MCS0                | 7.87                    | 0.04                           | 7.91                           |

| Band     |                |                    | Conducted Po   | ower Limit (dB m) |                    |              |
|----------|----------------|--------------------|----------------|-------------------|--------------------|--------------|
| Dailu    | Frequency (Mb) | Fixed Limit (dB m) | 26 dB BW (MHz) | 11+10LogB (dB m)  | Antenna gain (dBi) | Limit (dB m) |
|          | 5 180          | 23.98              |                |                   |                    |              |
| U-NII 1  | 5 200          | 23.98              |                |                   |                    |              |
|          | 5 240          | 23.98              |                |                   |                    |              |
|          | 5 260          | 23.98              | 20.48          | 24.11             | 3.50               | 23.98        |
| U-NII 2A | 5 280          | 23.98              | 20.50          | 24.12             | 3.50               | 23.98        |
|          | 5 320          | 23.98              | 20.46          | 24.11             | 3.50               | 23.98        |
|          | 5 500          | 23.98              | 20.50          | 24.12             | 3.34               | 23.98        |
| U-NII 2C | 5 580          | 23.98              | 20.46          | 24.11             | 3.34               | 23.98        |
|          | 5 720          | 23.98              | 20.50          | 24.12             | 3.34               | 23.98        |
|          | 5 745          | 30                 |                |                   |                    |              |
| U-NII 3  | 5 785          | 30                 |                |                   |                    |              |
|          | 5 825          | 30                 |                |                   |                    |              |



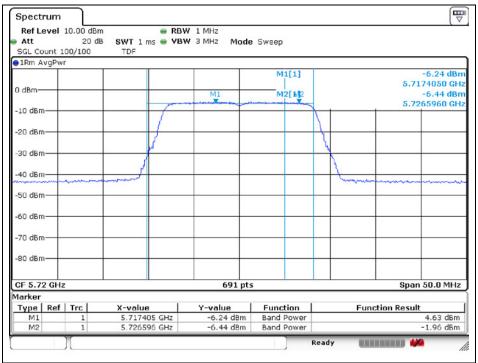
Report Number: F690501/RF-RTL009890-2 Page: 74 of 97

# -Band-crossing channels

| Band     | Mode       | Frequency<br>(Mb) | Mea. Average<br>(dB m) | Duty<br>Correction<br>Factor (dB) | Result<br>(dB m) | Limit<br>(dB m) |
|----------|------------|-------------------|------------------------|-----------------------------------|------------------|-----------------|
| U-NII 2C | 110        | 5 720             | 4.63                   | 0.04                              | 4.67             | 22.82           |
| U-NII 3  | 11a        |                   | -1.96                  | 0.04                              | -1.92            | 30              |
| U-NII 2C | 11 n LIT00 | 5 720             | 4.62                   | 0.04                              | 4.66             | 22.83           |
| U-NII 3  | 11n_HT20   | 5 /20             | -1.46                  | 0.04                              | -1.42            | 30              |

|          |            | · Limit (dB m)    |                       |                |                     |                        |              |
|----------|------------|-------------------|-----------------------|----------------|---------------------|------------------------|--------------|
| Band     | Mode       | Frequency<br>(Mb) | Fixed Limit<br>(dB m) | 26 dB BW (MHz) | 11+10LogB<br>(dB m) | Antenna gain<br>(dB i) | Limit (dB m) |
| U-NII 2C | 11a        | 5 720             | 23.98                 | 15.19          | 22.82               | 3.34                   | 22.82        |
| U-NII 3  | IIa        | 3720              |                       |                | 30                  |                        |              |
| U-NII 2C | 11 n LIT20 | 5 720             | 23.98                 | 15.23          | 22.83               | 3.34                   | 22.83        |
| U-NII 3  |            |                   |                       | 30             |                     |                        |              |

#### Remark:


1. Result (dB m) = Average Power(dB m) + Correction factor (dB)



Report Number: F690501/RF-RTL009890-2 Page: 75 of 97

# **Band-crossing channels**

802.11a (5 720 Mb)



# 802.11n\_HT20 (5 720 Mb)





Report Number: F690501/RF-RTL009890-2 Page: 76 of 97

# 6. Peak Power Spectral Density

## 6.1. Test setup



#### 6.2. Limit

#### FCC 15.407 (a)(1)(iv)

For client devices in the 5.15-5.25 @ band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dB i. In addition, the maximum power spectral density shall not exceed 11 dB m in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dB i are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB i.

## (a)(2)

For the 5.25-5.35 @ and 5.47-5.725 @ bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dB m + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dB m in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB i.

#### (a)(3)

For the band 5.725-5.85 Glz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dB m in any 500-klb band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB i. However, fixed point-to point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dB i without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.



Report Number: F690501/RF-RTL009890-2 Page: 77 of 97

## 6.3. Test procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

- 1. This measurement settings are specified in section F of KDB 789033 D02 v01r02.
- 2. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- 3. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 4. Make the following adjustments to the peak value of the spectrum, if applicable:
- a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.
- b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- 5. The result is the Maximum PSD over 1 Mb reference bandwidth.
- 6. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (*i.e.*, 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:
- a) Set RBW  $\geq 1/T$ , where T is defined in section II.B.l.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500  $\,\mathrm{klz}$ , add  $10\log(500\,\,\mathrm{klz}/RBW)$  to the measured result, whereas RBW (< 500  $\,\mathrm{klz}$ ) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 Mb, add 10log(1 Mb/RBW) to the measured result, whereas RBW (< 1 Mb) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW = 100 kHz is available on nearly all spectrum analyzers.

7. In case of band crossing channels 144, the measurement is complied with section D of KDB 644545\_D03 v01.



Report Number: F690501/RF-RTL009890-2 Page: 78 of 97

# 6.4. Test result

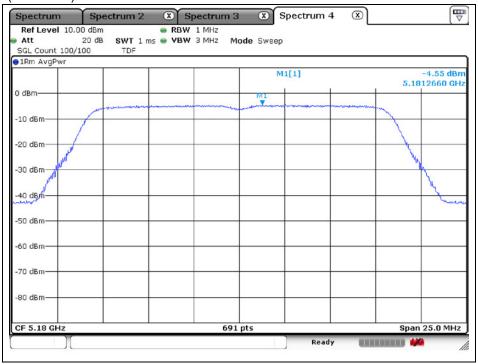
Ambient temperature : (23  $\pm$  1)  $^{\circ}$ C Relative humidity : 47  $^{\circ}$  R.H.

| Band      | Mode     | Frequency (Mb) | Ch. | Data Rate | Measured PPSD<br>(dB m) | Duty Factor<br>(dB) | Final<br>PPSD<br>(dB m) | Limit<br>(dB m/1 MHz) |
|-----------|----------|----------------|-----|-----------|-------------------------|---------------------|-------------------------|-----------------------|
|           |          | 5 180          | 36  | 6 Mbps    | -4.55                   | 0.04                | -4.51                   | 11                    |
|           | 11a      | 5 200          | 44  | 6 Mbps    | -3.56                   | 0.04                | -3.52                   | 11                    |
| U-NII 1   |          | 5 240          | 48  | 6 Mbps    | -4.31                   | 0.04                | -4.27                   | 11                    |
| 0-1411 1  |          | 5 180          | 36  | MCS0      | -3.96                   | 0.04                | -3.92                   | 11                    |
|           | 11n_HT20 | 5 200          | 44  | MCS0      | -3.82                   | 0.04                | -3.78                   | 11                    |
|           |          | 5 240          | 48  | MCS0      | -4.30                   | 0.04                | -4.26                   | 11                    |
|           |          | 5 260          | 52  | 6 Mbps    | -3.89                   | 0.04                | -3.85                   | 11                    |
|           | 11a      | 5 280          | 60  | 6 Mbps    | -3.93                   | 0.04                | -3.89                   | 11                    |
| U-NII 2A  |          | 5 320          | 64  | 6 Mbps    | -3.45                   | 0.04                | -3.41                   | 11                    |
| U-INII ZA |          | 5 260          | 52  | MCS0      | -4.59                   | 0.04                | -4.55                   | 11                    |
|           | 11n_HT20 | 5 280          | 60  | MCS0      | -3.66                   | 0.04                | -3.62                   | 11                    |
|           |          | 5 320          | 64  | MCS0      | -3.66                   | 0.04                | -3.62                   | 11                    |
|           |          | 5 500          | 134 | 6 Mbps    | -4.55                   | 0.04                | -4.51                   | 11                    |
|           | 11a      | 5 580          | 106 | 6 Mbps    | -4.05                   | 0.04                | -4.01                   | 11                    |
| U-NII 2C  |          | 5 720          | 144 | 6 Mbps    | -6.32                   | 0.04                | -6.28                   | 11                    |
| 0-1411 20 |          | 5 500          | 100 | MCS0      | -4.03                   | 0.04                | -3.99                   | 11                    |
|           | 11n_HT20 | 5 580          | 116 | MCS0      | -4.34                   | 0.04                | -4.30                   | 11                    |
|           | -        | 5 720          | 144 | MCS0      | -5.62                   | 0.04                | -5.58                   | 11                    |

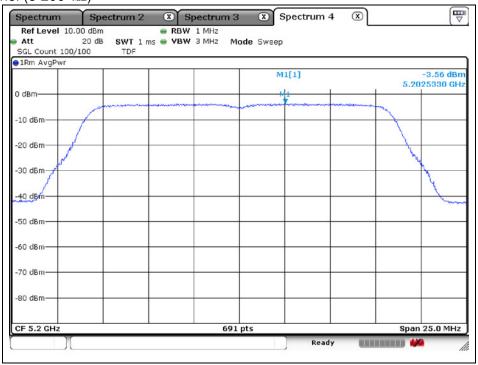
| Band     | Mode  | Frequency (Mb) | Ch.  | Data Rate | Measured PPSD<br>(dB m) | Duty Factor<br>(dB) | Final<br>PPSD<br>(dB m) | Limit<br>(個 m/500 ៤) |
|----------|-------|----------------|------|-----------|-------------------------|---------------------|-------------------------|----------------------|
|          |       | 5 745          | 149  | 6 Mbps    | -8.71                   | 0.04                | -8.67                   | 30                   |
|          | 11a   | 5 785          | 157  | 6 Mbps    | -7.74                   | 0.04                | -7.70                   | 30                   |
| U-NII 3  |       | 5 825          | 165  | 6 Mbps    | -7.32                   | 0.04                | -7.28                   | 30                   |
| 0-1411 3 |       | 5 745          | 149  | MCS0      | -8.54                   | 0.04                | -8.50                   | 30                   |
| 11n_HT20 | 5 785 | 157            | MCS0 | -7.99     | 0.04                    | -7.95               | 30                      |                      |
|          |       | 5 825          | 165  | MCS0      | -7.92                   | 0.04                | -7.88                   | 30                   |

# - Band-crossing channels.

| Band                      | Mode     | Frequency (Mb) | Ch. | Data<br>Rate | Measured PPSD<br>(dB m) | Duty<br>Factor<br>(dB) | Final<br>PPSD<br>(dB m) | Limit<br>(個m/500㎞) |
|---------------------------|----------|----------------|-----|--------------|-------------------------|------------------------|-------------------------|--------------------|
| U-NII 3<br>(Band-crossing | 11a      | 5 720          | 144 | 6 Mbps       | -8.23                   | 0.04                   | -8.19                   | 30                 |
| channel)                  | 11n_HT20 | 5 720          | 144 | MCS0         | -8.94                   | 0.04                   | -8.90                   | 30                 |


Note: Final PPSD (dB m) = Measured PPSD (dB m) + Duty Factor (dB)

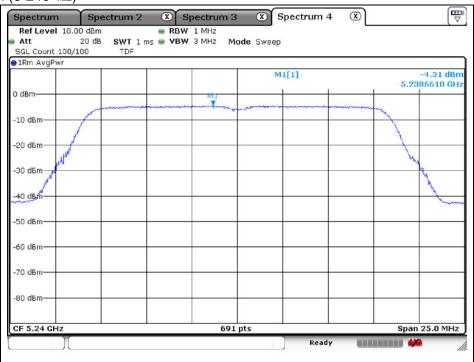



Page: 79 of 97 Report Number: F690501/RF-RTL009890-2

### 802.11a (Band 1)

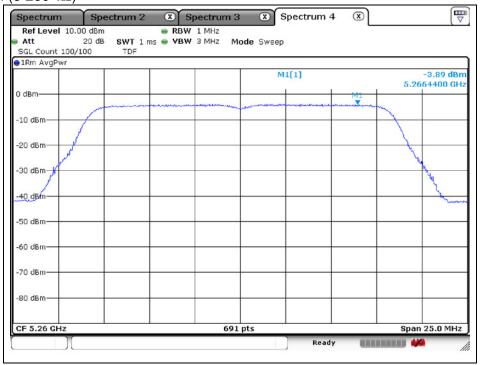
Low Channel (5 180 账)




### Middle Channel (5 200 Mb)



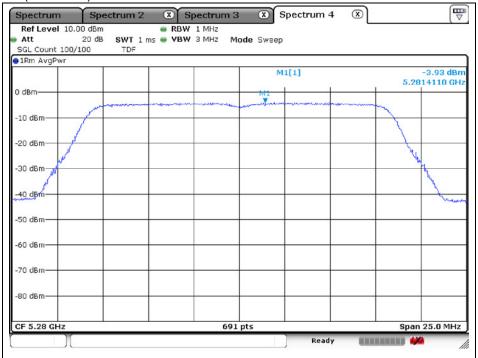



97 Report Number: F690501/RF-RTL009890-2 Page: 80 of

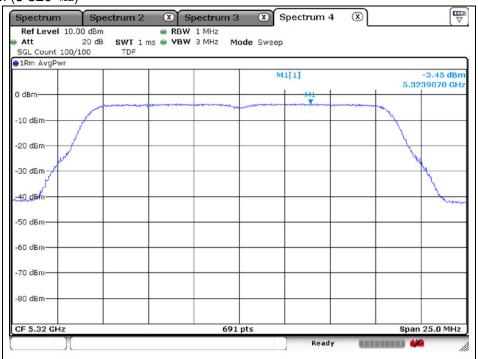
High Channel (5 240 账)



### 802.11a (Band 2A)


Low Channel (5 260 账)



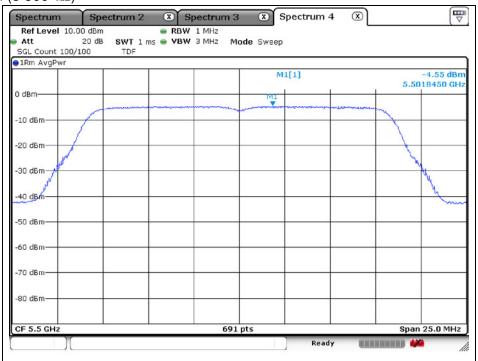



Report Number: F690501/RF-RTL009890-2 Page: 81 of 97

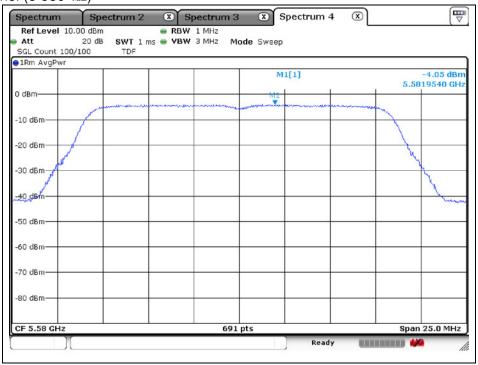
### Middle Channel (5 280 Mb)



# High Channel (5 320 Mb)



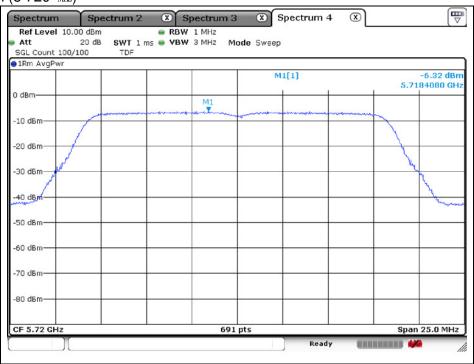




97 Report Number: F690501/RF-RTL009890-2 Page: 82 of

### 802.11a (Band 2C)

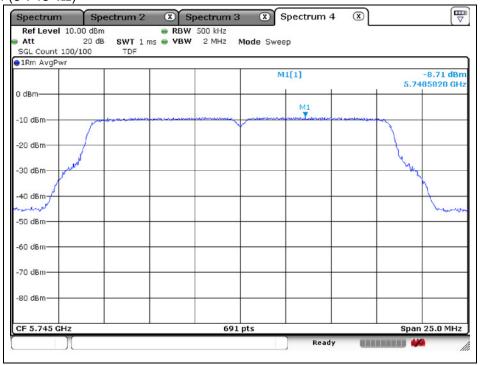
Low Channel (5 500 Mb)




### Middle Channel (5 580 Mb)



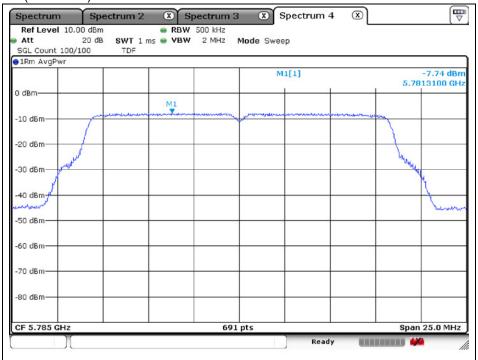



Report Number: F690501/RF-RTL009890-2 Page: 83 of 97

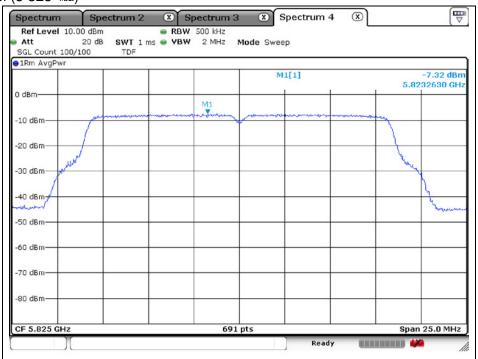
High Channel (5 720 Mb)



### 802.11a (Band 3)


Low Channel (5 745 账)



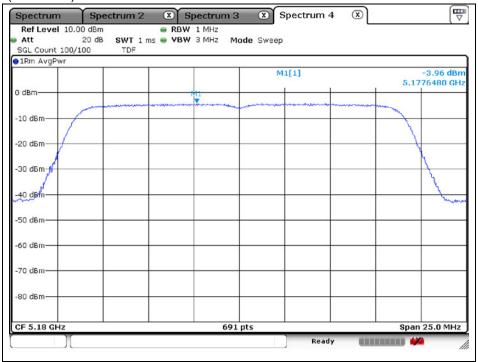



97 Report Number: F690501/RF-RTL009890-2 Page: 84 of

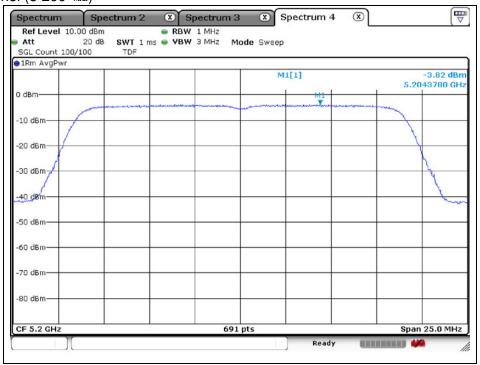
### Middle Channel (5 785 Mb)



# High Channel (5 825 Mb)



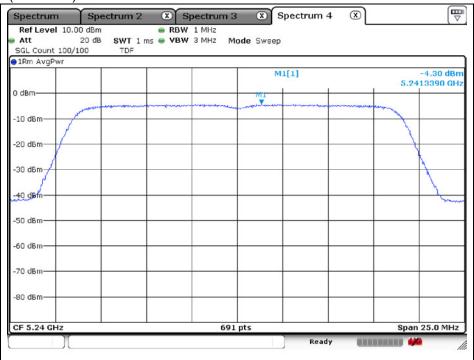




Report Number: F690501/RF-RTL009890-2 Page: 97 85 of

### 802.11n\_HT20 (Band 1)

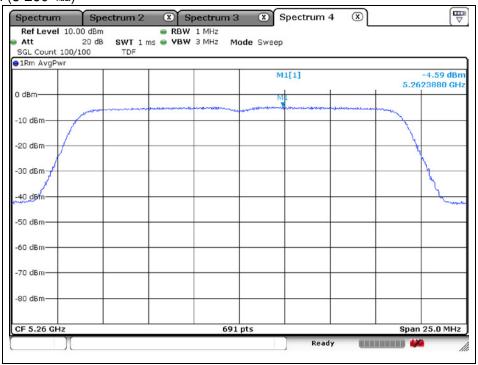
Low Channel (5 180 Mb)




### Middle Channel (5 200 Mb)



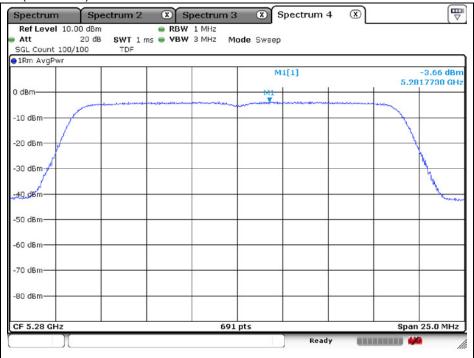



Report Number: F690501/RF-RTL009890-2 97 Page: 86 of

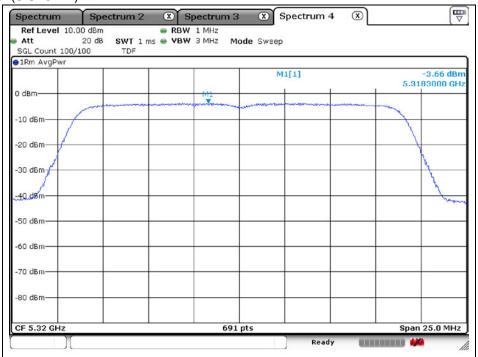
# High Channel (5 240 账)



### 802.11n\_HT20 (Band 2A)


Low Channel (5 260 Mb)



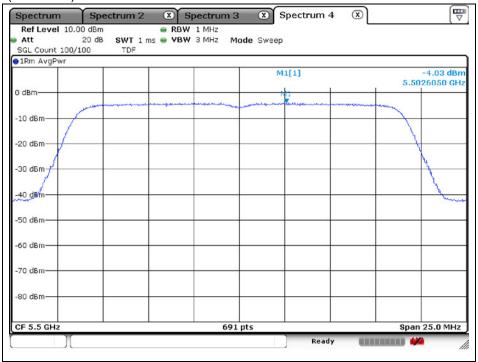



97 Report Number: F690501/RF-RTL009890-2 Page: 87 of

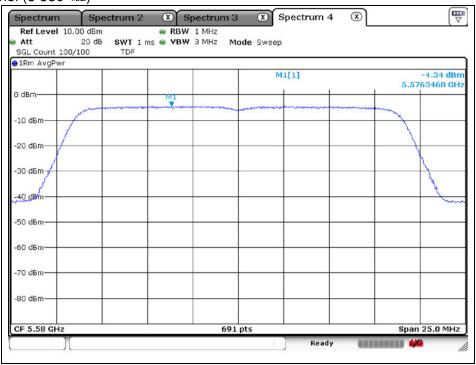
### Middle Channel (5 280 Mb)



# High Channel (5 320 Mb)



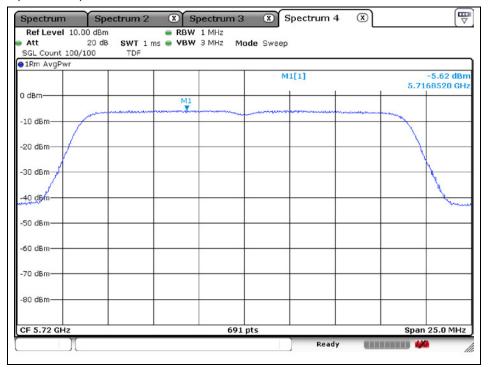




Report Number: F690501/RF-RTL009890-2 Page: 97 88 of

### 802.11n\_HT20 (Band 2C)

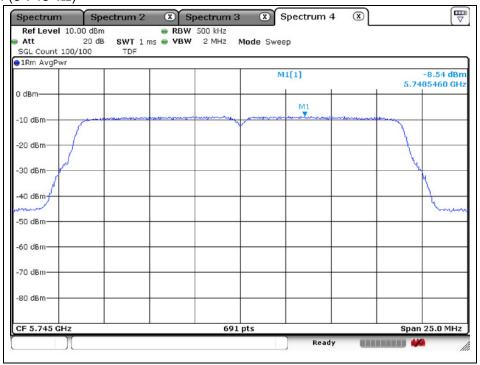
Low Channel (5 500 Mb)




### Middle Channel (5 580 Mb)






Report Number: F690501/RF-RTL009890-2 Page: 89 of 97

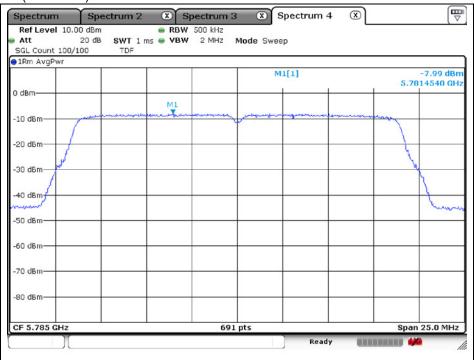
# High Channel (5 720 Mb)



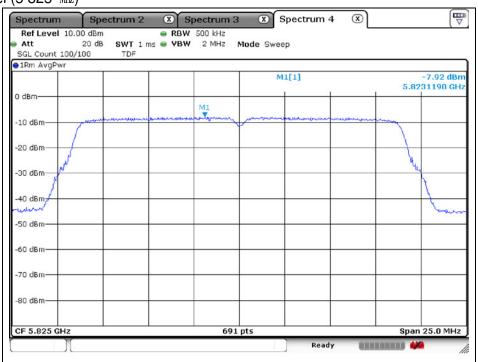
### 802.11n\_HT20 (Band 3)

Low Channel (5 745 账)




The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <a href="http://www.sgsgroup.kr">http://www.sgsgroup.kr</a>

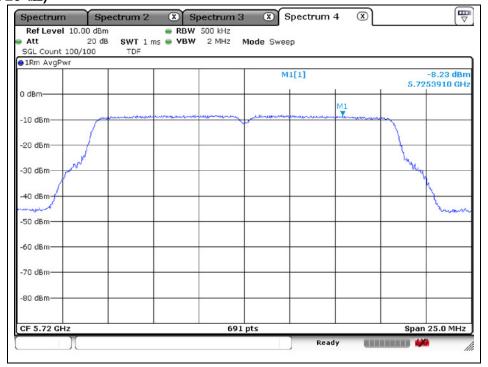



97 Report Number: F690501/RF-RTL009890-2 Page: 90 of

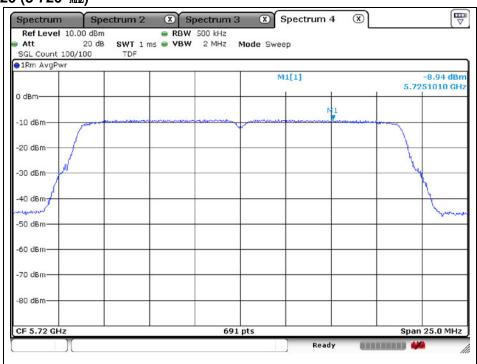
### Middle Channel (5 785 Mb)



# High Channel (5 825 Mb)







Report Number: F690501/RF-RTL009890-2 Page: 91 of 97

## **Band-crossing channels**

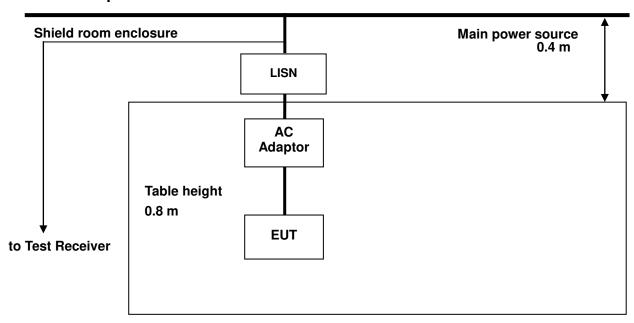
# 802.11a (5 720 Mb)



# 802.11n\_HT20 (5 720 Mb)



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.


SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <a href="http://www.sgsgroup.kr">http://www.sgsgroup.kr</a>



Report Number: F690501/RF-RTL009890-2 Page: 92 of 97

## 7. AC Power Line Conducted Emissions

## 7.1. Test Setup



#### **7.2. Limit**

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50  $\mu$  H /50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

| Everyoney of Emission (IIII-) | Conducted limit (dBμV) |          |  |  |  |
|-------------------------------|------------------------|----------|--|--|--|
| Frequency of Emission (쌘)     | Quasi-peak             | Average  |  |  |  |
| 0.15 - 0.50                   | 66 - 56*               | 56 - 46* |  |  |  |
| 0.50 - 5.00                   | 56                     | 46       |  |  |  |
| 5.00 – 30.0                   | 60                     | 50       |  |  |  |

<sup>\*</sup> Decreases with the logarithm of the frequency.



Report Number: F690501/RF-RTL009890-2 Page: 93 of 97

#### 7.3. Test Procedures

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

AC line conducted emissions from the EUT were measured according to the dictates of ANSI C63.10-2013

- 1. The test procedure is performed in a 6.5 m × 3.6 m × 3.6 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. The excess power cable between the EUT and the LISN was bundled. All connecting cables of EUT were moved to find the maximum emission.



Report Number: F690501/RF-RTL009890-2 Page: 94 of 97

### 7.4. Test Results

The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line

Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H.

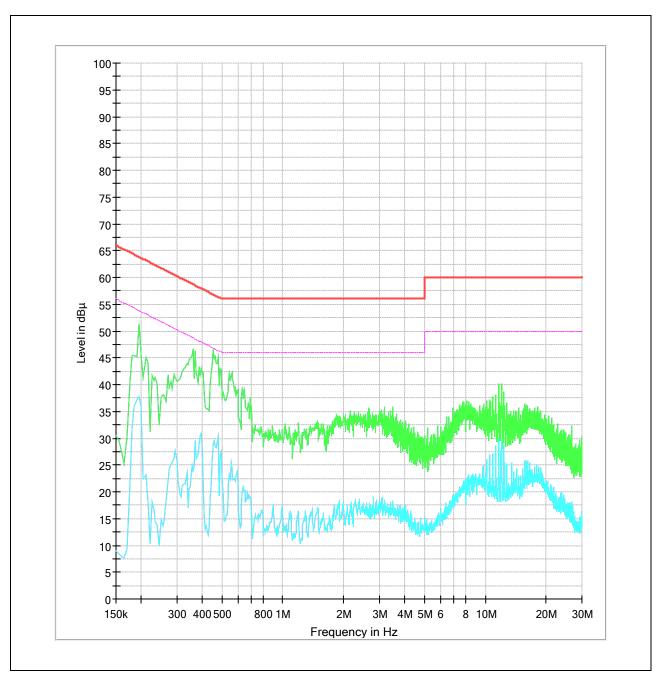
: 0.15 MHz - 30 MHzFrequency range

Measured Bandwidth 9 kHz

| FREQ. | LEVEL  | .(dB µV) | LINE    | LIMIT(dBµV) |         | MARG   | IN(dB)  |
|-------|--------|----------|---------|-------------|---------|--------|---------|
| (MHz) | Q-Peak | Average  | LINE    | Q-Peak      | Average | Q-Peak | Average |
| 0.46  | 42.20  | 24.60    | Neutral | 56.69       | 46.69   | 14.49  | 22.09   |
| 1.19  | 26.50  | 15.70    | Neutral | 56.00       | 46.00   | 29.50  | 30.30   |
| 2.65  | 29.10  | 16.30    | Neutral | 56.00       | 46.00   | 26.90  | 29.70   |
| 7.78  | 29.90  | 20.60    | Neutral | 60.00       | 50.00   | 30.10  | 29.40   |
| 11.70 | 30.00  | 24.40    | Neutral | 60.00       | 50.00   | 30.00  | 25.60   |
| 18.10 | 29.20  | 23.50    | Neutral | 60.00       | 50.00   | 30.80  | 26.50   |
| 0.40  | 43.00  | 30.60    | Hot     | 57.85       | 47.85   | 14.85  | 17.25   |
| 1.26  | 30.70  | 16.30    | Hot     | 56.00       | 46.00   | 25.30  | 29.70   |
| 3.04  | 30.70  | 16.30    | Hot     | 56.00       | 46.00   | 25.30  | 29.70   |
| 6.51  | 22.90  | 15.00    | Hot     | 60.00       | 50.00   | 37.10  | 35.00   |
| 12.02 | 36.80  | 31.50    | Hot     | 60.00       | 50.00   | 23.20  | 18.50   |
| 23.92 | 31.20  | 25.30    | Hot     | 60.00       | 50.00   | 28.80  | 24.70   |

## Remark;

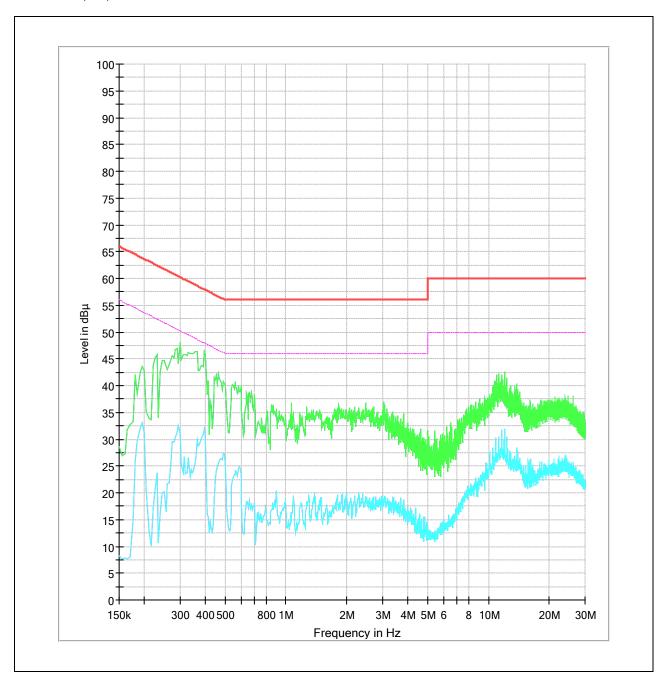
- 1. Line (H): Hot, Line (N): Neutral
- All channel of operation were investigated and the worst-case emissions were reported using


#### 11a (Band 2A) / 6 Mbps / Low channel

- 3. Traces shown in plot mad using a peak detector and average detector
- The limit for Class B device(s) from 150 klb to 30 Mb are specified in Section of the Title 47 CFR. 4.
- 5. Deviations to the Specifications: None.



Report Number: F690501/RF-RTL009890-2 Page: 95 of 97


Test mode: (Neutral)





Report Number: F690501/RF-RTL009890-2 Page: 96 of 97

Test mode: (Hot)





Report Number: F690501/RF-RTL009890-2 Page: 97 of 97

# 8. Antenna Requirement

# 8.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.407 (a) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

### 8.2. Antenna Connected Construction

Antenna used in this product is PCB antenna and peak max gain of antenna as below.

| Band | 5 180 MHz - 5 320 MHz | 5 180 MHz - 5 320 MHz 5 500 MHz - 5 720 MHz |          |  |  |  |  |  |
|------|-----------------------|---------------------------------------------|----------|--|--|--|--|--|
| Mode | 11a/n_HT20            |                                             |          |  |  |  |  |  |
| Gain | 3.50 dBi              | 3.34 dBi                                    | 3.01 dBi |  |  |  |  |  |