

Page 1 of 46

TEST REPORT

- Product Trade mark
- Non-invasive Ventilator
- : N/A

LeRes-B,R100,LeRes-S,R200,LeRes-

Serial Number Report Number FCC ID Date of Issue Test Standards Test result

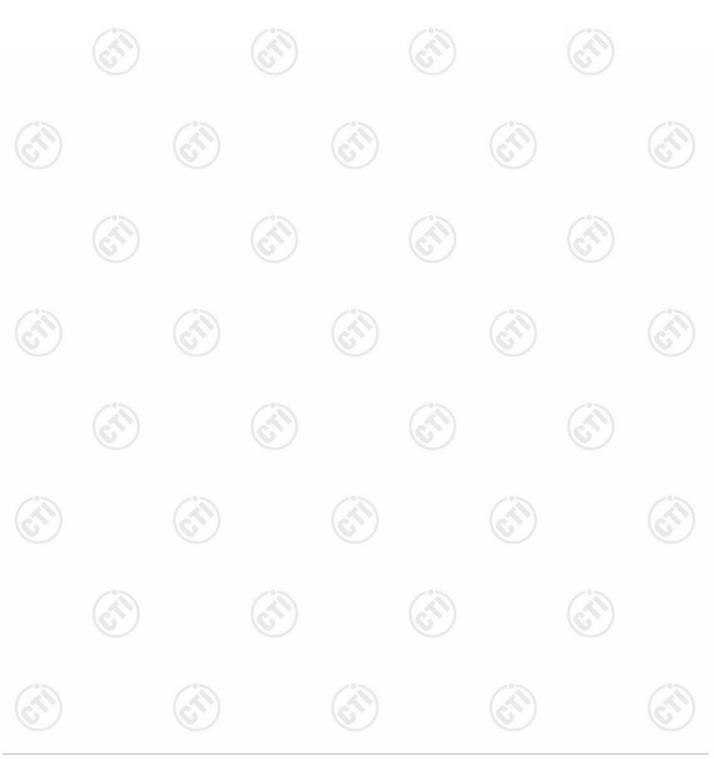
Model/Type reference

- : B1,R101,LeRes-S1,R201,LeRes-C,R10,LeRes-A, R20,LeRes-C1,R11,LeRes-A1,R21
- EED32N81058702
- : 2ADXK-9000
- : Feb. 25, 2022
- : 47 CFR Part 15 Subpart C
- : PASS

Prepared for: Shenzhen Viatom Technology Co., Ltd. 4E, 3#, Tingwei Industrial Park,Honglang North 2nd Road, Baoan District, Shenzhen, China

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

	Compiled by:	mark. chen	Revie	ewed by:	Aaron Ma	(A)
S	ADDroved by	Mark Chen David Wany	Date:		Aaron Ma Feb. 25, 2022	
RE TESTING	Approved by a	David Wang	(<u>(1)</u>	(A)	
CENTRE	Report Seal				Check No.::8	3109211021


Page 2 of 46

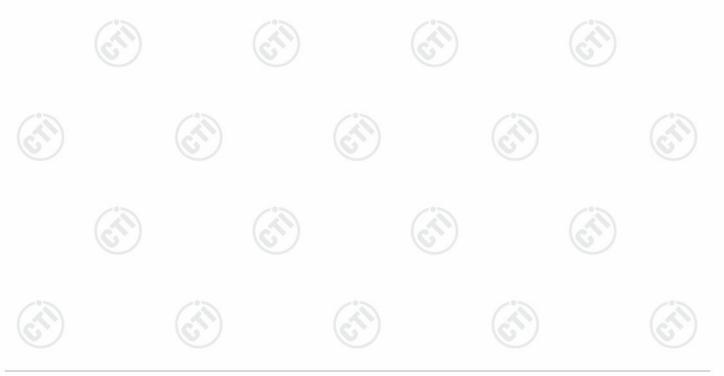
2	Content			
1 C	OVER PAGE	~~		•••••
2 C	ONTENT			
3 V	ERSION	<u></u>	<u></u>	
4 TI	EST SUMMARY			
5 G	GENERAL INFORMATION	<u> </u>		
5 5 5 5 5	5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (95% CONFIDE			
		10		
	EST RESULTS AND MEASUREMENT DATA			
7 7 7 7 7	 7.1 ANTENNA REQUIREMENT 7.2 AC POWER LINE CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT POWER 7.4 DTS BANDWIDTH 7.5 MAXIMUM POWER SPECTRAL DENSITY 7.6 BAND EDGE MEASUREMENTS AND CONDUCTE 7.7 RADIATED SPURIOUS EMISSION & RESTRICTE 	ED Spurious Emission		
8 A	APPENDIX A			
	PHOTOGRAPHS OF TEST SETUP			
9 P	TOTOGRAPHS OF TEST SETUP	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••

3 Version

	Version No.	Date	Q	Description)
	00	Feb. 25, 2022		Original	
5	1	1	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12
2	(0	S) (2	(~)	(25)	(25)

Lost Summary

Page 4 of 46


Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band edge measurements	edge measurements 47 CFR Part 15 Subpart C Section 15.247(d)		
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: LeRes-B,R100,LeRes-S,R200,LeRes-B1,R101,LeRes-S1,R201,LeRes-C,R10,LeRes-A,

R20,LeRes-C1,R11,LeRes-A1,R21. Only the model LeRes-S1 was tested, the differences between each model are modes of Operation and turbo. However, the WIFI module, Bluetooth module, the rest circuit principle, the internal structure, the PCB Layout, and safety key parts are the same, which doesn' t affect the EMC and RF test.

5 General Information

5.1 Client Information

Shenzhen Viatom Technology Co., Ltd.
4E, 3#, Tingwei Industrial Park,Honglang North 2nd Road, Baoan District, Shenzhen, China
Shenzhen Viatom Technology Co., Ltd.
501, Building B, Ganghongji High-tech Intelligent Industrial Park, No.1008 Songbai Road, Xili Street, Nanshan District, 518055 Shenzhen, China
Shenzhen Viatom Technology Co., Ltd.
501, Building B, Ganghongji High-tech Intelligent Industrial Park, No.1008 Songbai Road, Xili Street, Nanshan District, 518055 Shenzhen, China

Page 5 of 46

5.2 General Description of EUT

Product Name:	Non-invasive	e Ventilator	
Model No.:		100,LeRes-S,R200,LeRes-B1,R101,LeRes- Res-C,R10,LeRes-A, R20,LeRes-C1,R11,LeRes- <i>A</i>	A1,R21
Test Model No.:	LeRes-S1		0
Trade mark:	N/A		\sim
Product Type:	Mobile	\Box Portable \boxtimes Fix Location	
Software Version:	EspRFTest1	ool	
Operation Frequency:	IEEE 802.11	lb/g/n(HT20): 2412MHz to 2462MHz	
Modulation Type:	IEEE for 802	2.11b: DSSS(CCK,DQPSK,DBPSK) 2.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) 2.11n(HT20) : OFDM (64QAM, 16QAM,QPSK,BPSK)
Number of Channel:	IEEE 802.11	b/g, IEEE 802.11n HT20: 11 Channels	13
Channel Separation:	5MHz		0
Antenna Type:	PCB Antenn	a	
Antenna Gain:	2dBi		
Power Supply:	Adapter:	Model:MDA90B-220S24-18 Input:100-240V~50/60Hz 2.2A Max Output:24V3.75A	
Test Voltage:	AC 120V	·	
Sample Received Date:	Oct. 21, 202	1	
Sample tested Date:	Oct. 21, 202	1 to Jan. 09, 2022	(2
(\mathcal{O})	1		0

Page 6 of 46

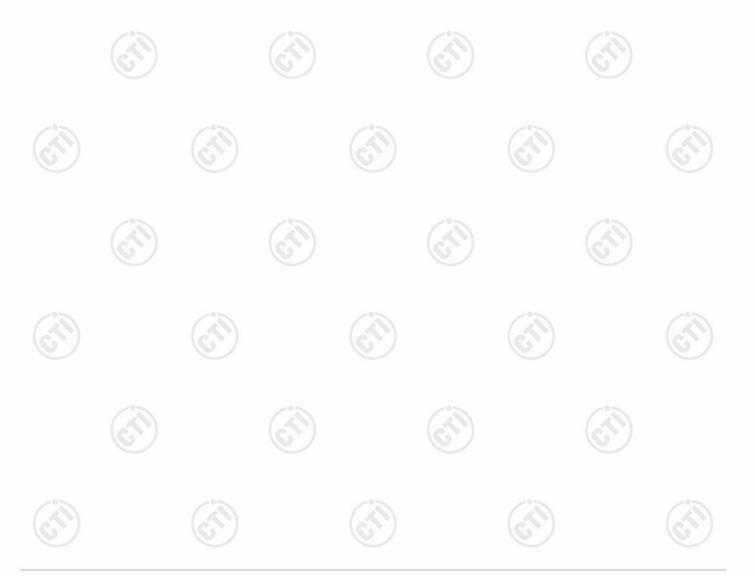
Operation	Frequency ea	ch of channe	el (802.11b/g/n	НТ20))	(3)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		G

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/g/n (HT20)

		Cha	nnel			Frequ	ency	
			st channel	I		2412		 Image: A start of the start of
_		The middl				2437		
L	(S)	The highe	st channel		(A)	24621	MHZ	



Page 7 of 46

5.3 Test Configuration

EUT Test Software Settings:			
Software:	EspRFTestTool		
EUT Power Grade:	Default		(1)
Use test software to set the low transmitting of the EUT.	vest frequency, the middle frequ	ency and the highest frequency keep	6
Test Mode:			
rest woue.			
We have verified the construct	on and function in typical operat on, which was shown in this test	ion. All the test modes were carried o report and defined as follows:	ut with
We have verified the construct the EUT in transmitting operation		report and defined as follows:	ut with
We have verified the construct the EUT in transmitting operation	on, which was shown in this test	report and defined as follows:	ut with
We have verified the construct the EUT in transmitting operati Per-scan all kind of data rate	on, which was shown in this test	report and defined as follows:	ut with
We have verified the construct the EUT in transmitting operati Per-scan all kind of data rate was worst case.	on, which was shown in this test in lowest channel, and found	report and defined as follows: the follow list which it	ut with
We have verified the construct the EUT in transmitting operati Per-scan all kind of data rate was worst case. Mode	on, which was shown in this test in lowest channel, and found	report and defined as follows: the follow list which it Data rate	ut with

According to ANSI C63.10 standards, the test results are bo 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(HT20).

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 8 of 46

5.4 Test Environment

	Operating Environment	:				
	Radiated Spurious Emi	ssions:				
12	Temperature:	22~25.0 °C	6)			(2)
	Humidity:	50~55 % RH		C		S
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	$\langle \mathcal{O} \rangle$		(\mathcal{O})	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:	·				
2	Temperature:	22~25.0 °C	S	1		13
(\cdot)	Humidity:	50~55 % RH	°)	$(c^{(n)})$		(\mathcal{S})
	Atmospheric Pressure:	1010mbar		I A A A A A A A A A A A A A A A A A A A		U

5.5 Description of Support Units

The EUT has be	een tested with a	ssociated equipmer	nt below.	
Description	Manufacture	model	Supplie d by	Certification
Notebook	DELL	Latitude 3490	CTI	CE&FCC

5.6 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-26.5GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
A		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

RF test system											
Equipment	Manufacturer	Manufacturer Mode No.		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020 12-24-2021	12-27-2021 12-23-2022						
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020 12-24-2021	12-27-2021 12-23-2022						
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021	06-23-2022						
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		(I)						
High-pass filter	MICRO- TRONICS	SPA-F-63029-4									
DC Power	Keysight	E3642A	MY56376072	12-28-2020 12-24-2021	12-27-2021 12-23-2022						
Power unit	R&S	OSP120	101374	12-28-2020 12-24-2021	12-27-2021 12-23-2022						
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020 12-24-2021	12-27-2021 12-23-2022						
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		(<u>-</u>						

Conducted disturbance Test											
Equipment	Manufacturer	r Model No. Serial Number		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022						
Temperature/ Humidity Indicator	Defu	TH128	/		03-03-2022						
LISN	R&S	ENV216	100098	03-04-2021							
Barometer	changchun	DYM3	1188		A)						

		3M Semi/full-anec	noic Chamber			
Equipment	Manufacturer	facturer Model No. Serial Number		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	ток	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024	
Receiver	R&S	ESCI7	100938-003	10-14-2021	10-13-2022	
Multi device Controller	maturo	NCD/070/10711 112			e	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022	
Cable line	Fulai(7M)	SF106	5219/6A	2000-		
Cable line	Fulai(6M)	SF106	5220/6A		()	
Cable line	Fulai(3M)	SF106	5216/6A	6-	\G	
Cable line	Fulai(3M)	SF106	5217/6A		>	

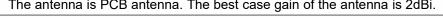
Page 11 of 46

		3M full-anecho		-	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS- LINDGREN	3117	00057407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020 12-24-2021	12-30-2021 12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	ТДК	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	(9-
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	$\left(\begin{array}{c} \\ \\ \end{array} \right)$	(3
Cable line	Times	EMC104-NMNM- 1000	SN160710		-
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(<u>- (S</u>
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		9-
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos
The antenna is PCB antenn	a. The best case gain of the antenna is 2dBi

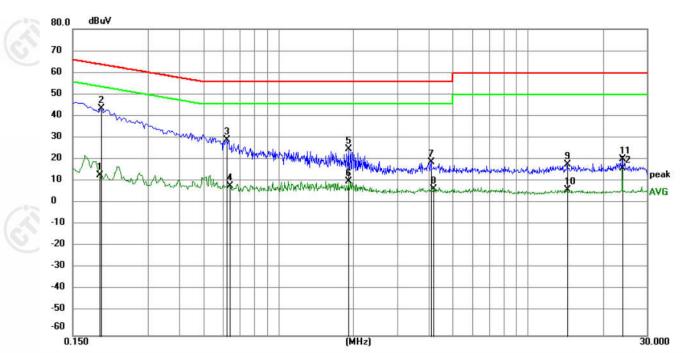
Page 13 of 46


7.2 AC Power Line Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 15.	.207	
	Test Method:	ANSI C63.10: 2013		
	Test Frequency Range:	150kHz to 30MHz		
19	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	
ŝ.	Limit:		Limit ((dBuV)
~		Frequency range (MHz)	Quasi-peak	Average
		0.15-0.5	66 to 56*	56 to 46*
		0.5-5	56	46
		5-30	60	50
		* Decreases with the logarith		
	Test Setup:	.	1 2	
<u>ن</u>		AC Mains	AE USN2 + AC Ground Reference Plane	Test Receiver
				0
3	Test Procedure:	 impedance. The power connected to a second Lipplane in the same way multiple socket outlet stripsingle LISN provided the r 3) The tabletop EUT was pl ground reference plane. A placed on the horizontal g 4) The test was performed w the EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bor mounted on top of the grout the closest points of the and associated equipment 	to AC power source Network) which provide cables of all other SN 2, which was bond as the LISN 1 for the owas used to connect rating of the LISN was aced upon a non-met And for floor-standing a ground reference plane ith a vertical ground re- from the vertical groue from the vertical groue a plane was bonded N 1 was placed 0.8 m nded to a ground re- bund reference plane. LISN 1 and the EUT. t was at least 0.8 m fro	e through a LISN 1 (Line es a $50\Omega/50\mu$ H + 5Ω linear units of the EUT were ed to the ground reference e unit being measured. A multiple power cables to a not exceeded. allic table 0.8m above the arrangement, the EUT was the EUT was deference plane. The rear of bund reference plane. The to the horizontal ground in from the boundary of the deference plane for LISNs This distance was between All other units of the EUT om the LISN 2.
		 In order to find the maxim and all of the interface ca ANSI C63.10: 2013 on col 	bles must be changed	according to
9	Test Mode:	All modes were tested, only t 802.11b was recorded in the	he worse case lowest	\Cs* /

Page 14 of 46

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



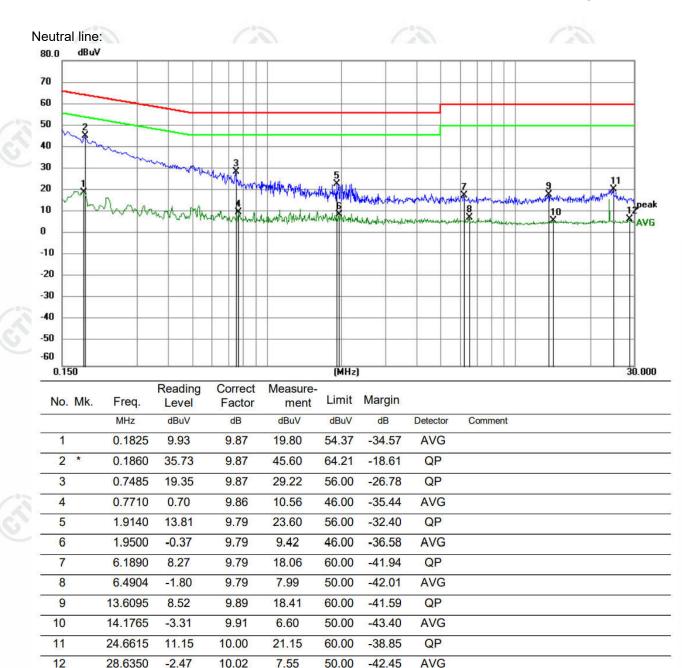
Page 15 of 46

Measurement Data

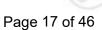
Live line:

No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.191	4 3.60	9.87	13.47	53.98	-40.51	AVG	
2 *	0.194	9 34.03	9.87	43.90	63.83	-19.93	QP	
3	0.622	5 19.50	10.03	29.53	56.00	-26.47	QP	
4	0.640	5 -1.51	9.99	8.48	46.00	-37.52	AVG	
5	1.914	0 15.41	9.79	25.20	56.00	-30.80	QP	
6	1.914	0 0.64	9.79	10.43	46.00	-35.57	AVG	
7	4.110	0 9.48	9.78	19.26	56.00	-36.74	QP	
8	4.182	0 -2.83	9.78	6.95	46.00	-39.05	AVG	
9	14.388	0 8.48	9.91	18.39	60.00	-41.61	QP	
10	14.388	0 -3.38	9.91	6.53	50.00	-43.47	AVG	
11	24.000	0 10.75	9.99	20.74	60.00	-39.26	QP	
12	24.000	0 6.43	9.99	16.42	50.00	-33.58	AVG	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

0 and 10 af 46


Page 16 of 46

Remark:

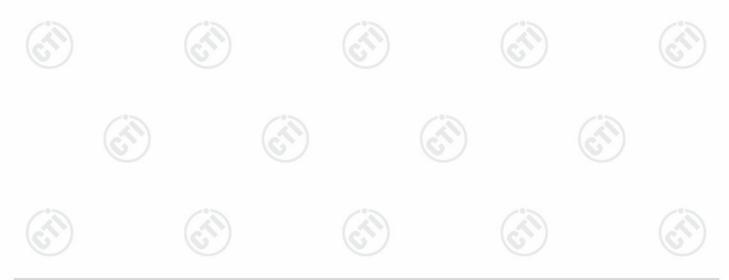
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b	p)(3)	
200	Test Method:	ANSI C63.10 2013	-0-	100
ି	Test Setup:			GI
		Control Computer Power Supply TEMPERATURE CABINET	RF test – System Instrument	
<u>ک</u>		Table	67	
(¹)	Test Procedure:	 PKPM1 Peak power meter meases The maximum peak conducted outport broadband peak RF power meter. To bandwidth that is greater than or each use a fast-responding diode detected Method AVGPM-G Average power Method AVGPM-G is a measurement meter. Alternatively, measurements gated RF power meter provided that the power is measured only wher maximum power control level. Becard during the ON time of the transmitter required. 	but power may be mea The power meter shall jual to the DTS bandw or. er measurement ent using a gated RF a s may be performed us the gate parameters ien the EUT is transmi use the measurement	have a video ridth and shall verage power sing a wideband are adjusted such itting at its t is made only
	Limit:	30dBm		
	Test Mode:	Refer to clause 5.3		(A)
	Test Results:	Refer to Appendix A		6)

7.4 DTS Bandwidth

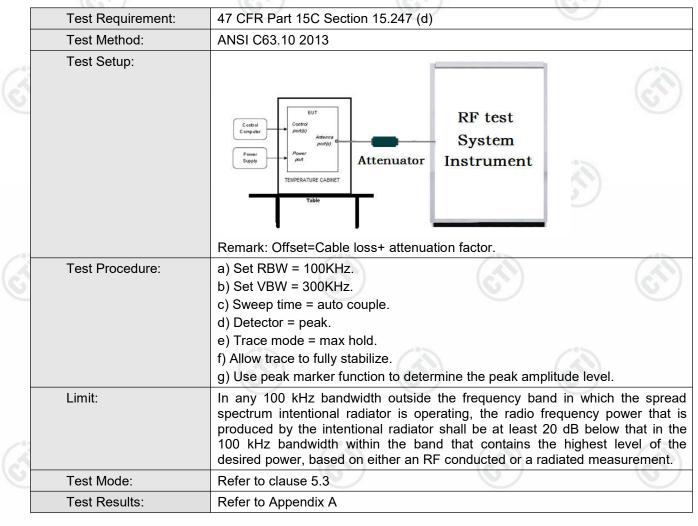
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Computer Computer portic) Automas portic)	test stem rument
Test Procedure:	Remark: Offset=Cable loss+ attenuation fact a) Set RBW = 100 kHz. b) Set the VBW \geq [3 \times RBW]. c) Detector = peak.	tor.
	 d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the em frequencies associated with the tw (upper and lower frequencies) that an the maximum level measured in the full 	vo outermost amplitude points re attenuated by 6 dB relative to
Limit:	≥ 500 kHz	
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix A	



Page 19 of 46

7.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)
	Test Method:	ANSI C63.10 2013
	Test Setup:	
		Carteri Cargular Carteri Cargular Power Supply Forwar TeMPERATURE CABNET Table
2		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
	Limit:	≤8.00dBm/3kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix A

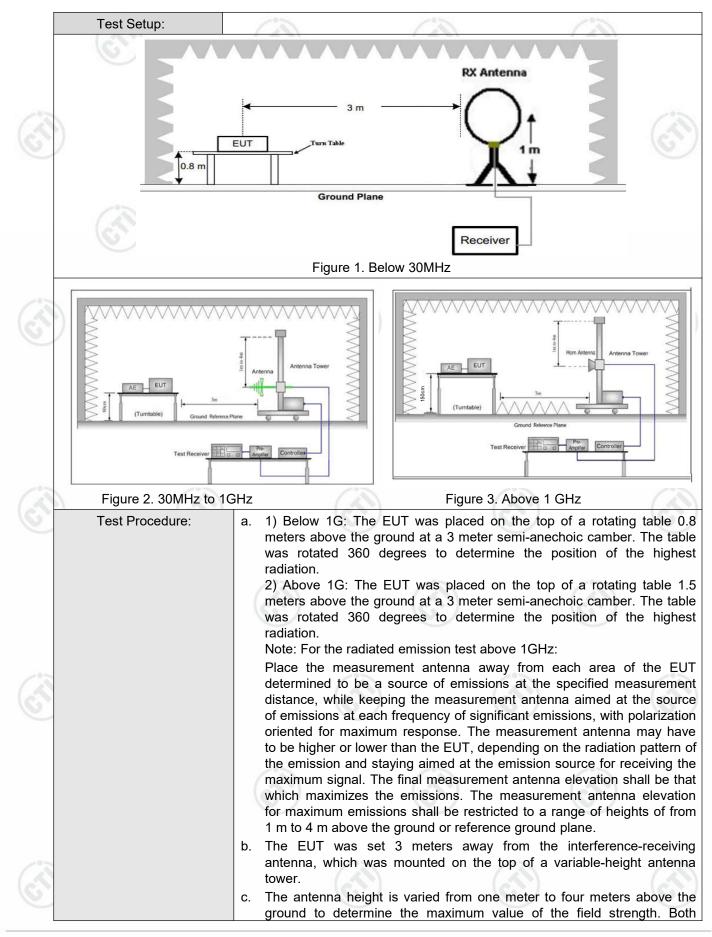


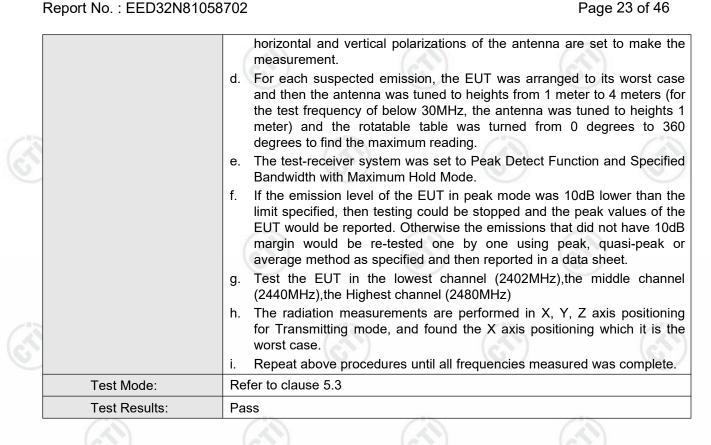
Page 20 of 46

7.6 Band Edge Measurements and Conducted Spurious Emission

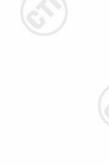
Page 21 of 46

7.7 Radiated Spurious Emission & Restricted bands

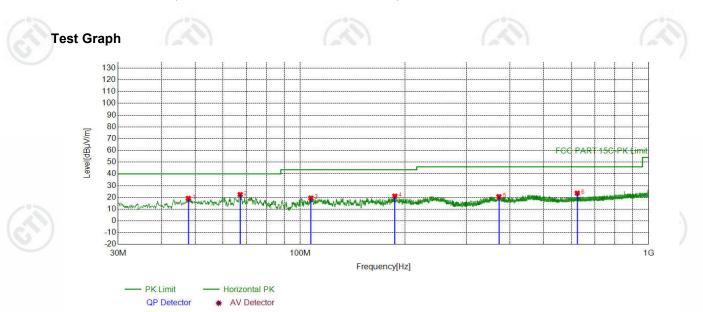

	Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15	.205		C	/			
	Test Method:	ANSI C63.10 2013									
-	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
	Receiver Setup:	Frequency	6	Detector	RBW	1	VBW	Remark			
(U)		0.009MHz-0.090MH	z	Peak	10kHz	z	30kHz	Peak			
		0.009MHz-0.090MH	z	Average	10kHz	z	30kHz	Average			
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak			
		0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average			
		0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz (Quasi-peak			
		30MHz-1GHz		Quasi-peak	100 kH	Iz	300kHz	Quasi-peak			
13			~	Peak	1MHz		3MHz	Peak			
(c)		Above 1GHz		Peak	1MHz)	10kHz	Average			
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)		Remark	Measuremer distance (m)			
		0.009MHz-0.490MHz	24	400/F(kHz)	-		- / >	300			
		0.490MHz-1.705MHz	24	000/F(kHz)	-		- 2	30			
		1.705MHz-30MHz	30		-		<u>e</u>	30			
		30MHz-88MHz	100		40.0	Q	uasi-peak	3			
		88MHz-216MHz		150	43.5	Q	uasi-peak	3			
		216MHz-960MHz	2	200	46.0	Q	uasi-peak	3			
<u> </u>		960MHz-1GHz	/	500	54.0	Q	uasi-peak	3			
		Above 1GHz		500	54.0		Average	3			
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20d quip	B above the ment under t	maximum est. This p	per	rmitted ave	erage emission			



Page 22 of 46



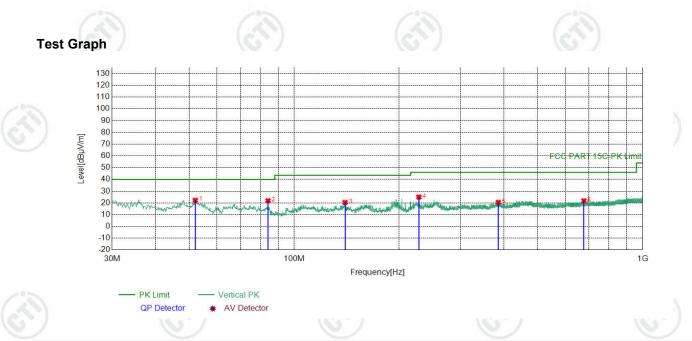
【华测检测



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 1Mbps for 802.11b was recorded in the report.

	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
5	1	47.7528	-17.17	36.36	19.19	40.00	20.81	PASS	Horizontal	PK
2	2	67.2517	-20.17	42.62	22.45	40.00	17.55	PASS	Horizontal	PK
	3	107.3167	-18.39	37.86	19.47	43.50	24.03	PASS	Horizontal	PK
	4	186.8647	-19.10	40.24	21.14	43.50	22.36	PASS	Horizontal	PK
	5	371.8622	-13.51	34.17	20.66	46.00	25.34	PASS	Horizontal	PK
	6	624.0874	-8.44	32.09	23.65	46.00	22.35	PASS	Horizontal	PK



Page 24 of 46

Page 25 of 46

	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	52.0212	-17.44	39.74	22.30	40.00	17.70	PASS	Vertical	PK
	2	84.1314	-21.56	43.46	21.90	40.00	18.10	PASS	Vertical	PK
	3	140.0090	-22.03	42.41	20.38	43.50	23.12	PASS	Vertical	PK
- 0-	4	227.9968	-17.05	42.07	25.02	46.00	20.98	PASS	Vertical	PK
$\boldsymbol{\mathcal{A}}$	5	385.3465	-13.28	33.76	20.48	46.00	25.52	PASS	Vertical	PK
2	6	678.5099	-7.92	29.71	21.79	46.00	24.21	PASS	Vertical	PK

Radiated Spurious Emission above 1GHz:

						<u></u>			
Mode	:		302.11 b Tran	smitting		Channe	el:	2412MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1235.0235	0.89	42.61	43.50	74.00	30.50	PASS	Н	PK
2	1870.8871	3.81	41.31	45.12	74.00	28.88	PASS	Н	PK
3	4824.1216	-16.22	69.62	53.40	74.00	20.60	PASS	Н	PK
4	4825.1217	-16.22	65.52	49.30	54.00	4.70	PASS	Н	AV
5	7233.2822	-11.79	54.03	42.24	74.00	31.76	PASS	Н	PK
6	11322.5548	-6.52	52.13	45.61	74.00	28.39	PASS	Н	PK
7	14413.7609	1.02	48.12	49.14	74.00	24.86	PASS	Н	PK
8	1310.0310	1.09	42.36	43.45	74.00	30.55	PASS	V	PK
9	1790.8791	3.25	41.22	44.47	74.00	29.53	PASS	V	PK
10	4824.1216	-16.22	65.41	49.19	54.00	4.81	PASS	V	AV
11	4824.1216	-16.22	71.18	54.96	74.00	19.04	PASS	V	PK
12	7579.3053	-11.19	53.05	41.86	74.00	32.14	PASS	V	PK
13	11279.5520	-6.59	51.96	45.37	74.00	28.63	PASS	V	PK
14	14375.7584	0.82	49.12	49.94	74.00	24.06	PASS	V	PK
I	(6)		(25)		6)	(c		

	Mode:	:	80)2.11 b Tran	smitting		Channe	el:	2437MH	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1263.6264	0.97	42.16	43.13	74.00	30.87	PASS	Н	PK
-	2	1792.0792	3.25	41.39	44.64	74.00	29.36	PASS	Н	PK
	3	4874.1249	-16.21	65.93	49.72	74.00	24.28	PASS	Н	PK
	4	7351.2901	-11.60	53.43	41.83	74.00	32.17	PASS	Н	PK
	5	9748.4499	-7.55	52.27	44.72	74.00	29.28	PASS	Н	PK
	6	12544.6363	-4.51	51.68	47.17	74.00	26.83	PASS	Н	PK
	7	1464.6465	1.44	42.48	43.92	74.00	30.08	PASS	V	PK
	8	1970.6971	4.40	40.94	45.34	74.00	28.66	PASS	V	PK
	9	4874.1249	-16.21	69.08	52.87	74.00	21.13	PASS	V	PK
	10	6662.2442	-12.61	55.84	43.23	74.00	30.77	PASS	V	PK
	11	9271.4181	-7.93	52.24	44.31	74.00	29.69	PASS	V	PK
	12	12403.6269	-4.70	51.55	46.85	74.00	27.15	PASS	V	PK

Page 27 of 46

		10		100		1977		1	0	
	Mode	:		802.11 b Tran	smitting		Channe	el:	2462MH	z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1147.8148	0.83	42.62	43.45	74.00	30.55	PASS	н	PK
	2	1659.4659	2.68	41.55	44.23	74.00	29.77	PASS	Н	PK
	3	4924.1283	-16.11	65.81	49.70	74.00	24.30	PASS	Н	PK
	4	7386.2924	-11.53	53.88	42.35	74.00	31.65	PASS	Н	PK
	5	11240.5494	-6.51	52.67	46.16	74.00	27.84	PASS	Н	PK
	6	14326.7551	0.00	49.37	49.37	74.00	24.63	PASS	Н	PK
	7	1190.6191	0.80	42.76	43.56	74.00	30.44	PASS	V	PK
	8	1593.4593	2.24	42.27	44.51	74.00	29.49	PASS	V	PK
	9	4924.1283	-16.11	68.56	52.45	74.00	21.55	PASS	V	PK
	10	7196.2798	-11.83	54.50	42.67	74.00	31.33	PASS	V	PK
	11	10223.4816	-6.97	51.54	44.57	74.00	29.43	PASS	V	PK
	12	13805.7204	-1.65	50.47	48.82	74.00	25.18	PASS	V	PK

Mode	:	80	2.11 g Tran	smitting		Channe	el:	2412MH	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1325.6326	1.14	41.99	43.13	74.00	30.87	PASS	Н	PK
2	1766.2766	3.17	40.74	43.91	74.00	30.09	PASS	Н	PK
3	4822.1215	-16.22	76.81	60.59	74.00	13.41	PASS	Н	PK
4	4823.1215	-16.22	65.51	49.29	54.00	4.71	PASS	Н	AV
5	7240.2827	-11.78	61.96	50.18	74.00	23.82	PASS	Н	PK
6	9645.4430	-7.51	61.57	54.06	74.00	19.94	PASS	Н	PK
7	9648.4432	-7.52	49.15	41.63	54.00	12.37	PASS	Н	AV
8	13722.7148	-1.74	50.27	48.53	74.00	25.47	PASS	Н	PK
9	1236.0236	0.89	42.92	43.81	74.00	30.19	PASS	V	PK
10	1593.8594	2.24	43.47	45.71	74.00	28.29	PASS	V	PK
11	4826.1217	-16.22	66.27	50.05	54.00	3.95	PASS	V	AV
12	4833.1222	-16.22	77.91	61.69	74.00	12.31	PASS	V	PK
13	7239.2826	-11.78	61.90	50.12	74.00	23.88	PASS	V	PK
14	9643.4429	-7.50	59.59	52.09	74.00	21.91	PASS	V	PK
15	12399.6266	-4.69	51.60	46.91	74.00	27.09	PASS	V	PK

Page 28 of 46

	10-		1000		10 %			O have	
Mo	de:	8	802.11 g Tran	smitting		Channe	el:	2437MHz	
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1222.0222	0.86	42.43	43.29	74.00	30.71	PASS	н	PK
2	1703.6704	2.95	41.41	44.36	74.00	29.64	PASS	Н	PK
3	4874.1249	-16.21	74.42	58.21	74.00	15.79	PASS	Н	PK
4	4877.1251	-16.21	63.76	47.55	54.00	6.45	PASS	Н	AV
5	7311.2874	-11.67	62.10	50.43	74.00	23.57	PASS	Н	PK
6	9743.4496	-7.57	61.72	54.15	74.00	19.85	PASS	Н	PK
7	9749.4500	-7.55	49.40	41.85	54.00	12.15	PASS	Н	AV
8	15335.8224	-0.22	49.42	49.20	74.00	24.80	PASS	Н	PK
9	1221.8222	0.86	42.34	43.20	74.00	30.80	PASS	V	PK
10	1597.6598	2.27	43.38	45.65	74.00	28.35	PASS	V	PK
11	4870.1247	-16.21	79.11	62.90	74.00	11.10	PASS	V	PK
12	4872.1248	-16.21	65.72	49.51	54.00	4.49	PASS	V	AV
13	7317.2878	-11.66	63.73	52.07	74.00	21.93	PASS	V	PK
14	9759.4506	-7.51	59.77	52.26	74.00	21.74	PASS	V	PK
15	13204.6803	-3.13	50.90	47.77	74.00	26.23	PASS	V	PK
	1 July 10 Mar.		a seal of the search of the second seco		1 and 10 miles			CO TRACT	

Mo	de:	80)2.11 g Tran	smitting		Channe	el:	2462MHz	
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1174.0174	0.81	42.42	43.23	74.00	30.77	PASS	Н	PK
2	1992.4993	4.51	40.94	45.45	74.00	28.55	PASS	Н	PK
3	4923.1282	-16.11	62.42	46.31	54.00	7.69	PASS	Н	AV
4	4927.1285	-16.10	73.93	57.83	74.00	16.17	PASS	Н	PK
5	7390.2927	-11.53	64.07	52.54	74.00	21.46	PASS	Н	PK
6	9852.4568	-7.22	60.80	53.58	74.00	20.42	PASS	Н	PK
7	13158.6772	-3.35	50.99	47.64	74.00	26.36	PASS	Н	PK
8	1073.8074	0.88	43.19	44.07	74.00	29.93	PASS	V	PK
9	1593.6594	2.24	41.80	44.04	74.00	29.96	PASS	V	PK
10	4925.1283	-16.10	65.51	49.41	54.00	4.59	PASS	V	AV
11	4925.1283	-16.10	78.04	61.94	74.00	12.06	PASS	V	PK
12	7388.2926	-11.53	63.85	52.32	74.00	21.68	PASS	V	PK
13	9848.4566	-7.23	57.16	49.93	74.00	24.07	PASS	V	PK
14	14398.7599	1.20	47.64	48.84	74.00	25.16	PASS	V	PK

Page 29 of 46

	100		1000		197		1	0	
Mode	:	80)2.11 n(HT2	0) Transmitti	ing	Channe	el:	2412MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1251.4251	0.93	42.90	43.83	74.00	30.17	PASS	Н	PK
2	2011.1011	4.59	40.96	45.55	74.00	28.45	PASS	Н	PK
3	4827.1218	-16.22	62.16	45.94	54.00	8.06	PASS	Н	AV
4	4828.1219	-16.22	72.86	56.64	74.00	17.36	PASS	Н	PK
5	7232.2822	-11.79	59.45	47.66	74.00	26.34	PASS	Н	PK
6	9648.4432	-7.52	57.98	50.46	74.00	23.54	PASS	Н	PK
7	12523.6349	-4.66	51.09	46.43	74.00	27.57	PASS	Н	PK
8	1436.0436	1.42	42.49	43.91	74.00	30.09	PASS	V	PK
9	2042.3042	4.69	40.69	45.38	74.00	28.62	PASS	V	PK
10	4826.1217	-16.22	65.53	49.31	54.00	4.69	PASS	V	AV
11	4830.1220	-16.22	77.29	61.07	74.00	12.93	PASS	V	PK
12	7235.2824	-11.79	57.91	46.12	74.00	27.88	PASS	V	PK
13	9647.4432	-7.52	57.70	50.18	74.00	23.82	PASS	V	PK
14	13727.7152	-1.73	50.86	49.13	74.00	24.87	PASS	V	PK

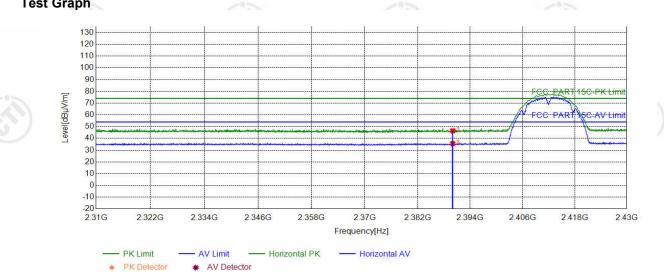
					E				
Mo	de:		802.11 n(HT2	0) Transmitti	ing	Channe	el:	2437MH	z
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1330.4330	1.16	41.92	43.08	74.00	30.92	PASS	Н	PK
2	1594.6595	2.25	41.80	44.05	74.00	29.95	PASS	Н	PK
3	4873.1249	-16.21	73.43	57.22	74.00	16.78	PASS	Н	PK
4	4875.1250	-16.21	61.21	45.00	54.00	9.00	PASS	Н	AV
5	7315.2877	-11.66	58.21	46.55	74.00	27.45	PASS	Н	PK
6	9756.4504	-7.52	58.40	50.88	74.00	23.12	PASS	Н	PK
7	13147.6765	-3.41	50.92	47.51	74.00	26.49	PASS	Н	PK
8	1182.6183	0.81	42.18	42.99	74.00	31.01	PASS	V	PK
9	1755.2755	3.13	40.87	44.00	74.00	30.00	PASS	V	PK
10	4875.1250	-16.21	77.39	61.18	74.00	12.82	PASS	V	PK
11	4876.1251	-16.21	65.05	48.84	54.00	5.16	PASS	V	AV
12	7312.2875	-11.67	57.76	46.09	74.00	27.91	PASS	V	PK
13	9747.4498	-7.55	55.58	48.03	74.00	25.97	PASS	V	PK
14	12953.6636	-4.21	50.78	46.57	74.00	27.43	PASS	V	PK

Page 30 of 46

		100		12		197		1	0	
Μ	lode	:	8	302.11 n(HT2	0) Transmitti	ing	Channe	el:	2462MHz	
Ν	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1407.6408	1.40	41.79	43.19	74.00	30.81	PASS	Н	PK
	2	1779.6780	3.21	41.12	44.33	74.00	29.67	PASS	Н	PK
	3	4925.1283	-16.10	60.91	44.81	54.00	9.19	PASS	Н	AV
	4	4928.1285	-16.09	71.96	55.87	74.00	18.13	PASS	Н	PK
	5	7385.2924	-11.54	60.36	48.82	74.00	25.18	PASS	Н	PK
	6	9847.4565	-7.23	57.79	50.56	74.00	23.44	PASS	Н	PK
	7	11900.5934	-5.83	52.39	46.56	74.00	27.44	PASS	Н	PK
	8	1281.2281	1.01	41.89	42.90	74.00	31.10	PASS	V	PK
	9	1684.4684	2.84	41.20	44.04	74.00	29.96	PASS	V	PK
1	10	4912.1275	-16.15	74.99	58.84	74.00	15.16	PASS	V	PK
1	11	4924.1283	-16.11	65.13	49.02	54.00	4.98	PASS	V	AV
1	12	7380.2920	-11.55	59.14	47.59	74.00	26.41	PASS	V	PK
-1	13	9855.4570	-7.21	54.00	46.79	74.00	27.21	PASS	V	PK
1	14	13756.7171	-1.69	50.59	48.90	74.00	25.10	PASS	V	PK

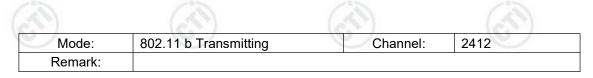
Remark:

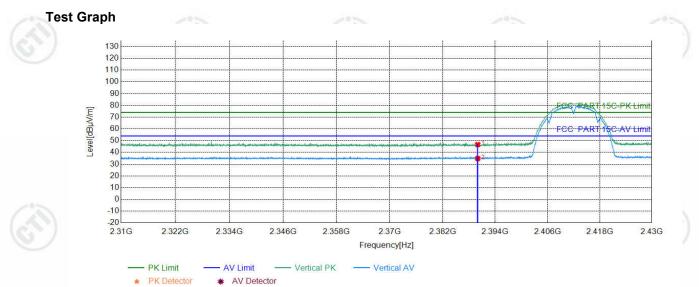
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

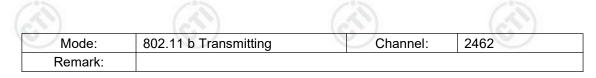
Test Graph

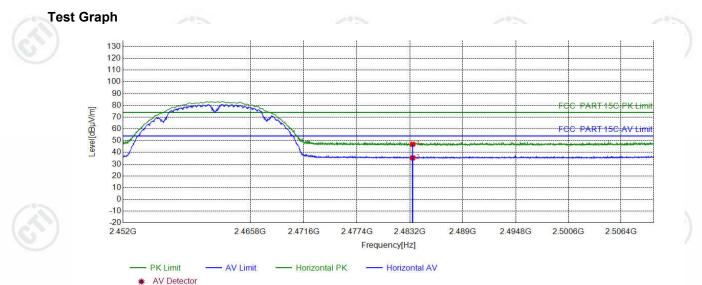



NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.73	46.50	74.00	27.50	PASS	Horizontal	PK
2	2390.0000	5.77	29.86	35.63	54.00	18.37	PASS	Horizontal	AV

Page 32 of 46

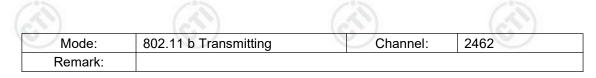
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.90	46.67	74.00	27.33	PASS	Vertical	PK
2	2390.0000	5.77	29.04	34.81	54.00	19.19	PASS	Vertical	AV

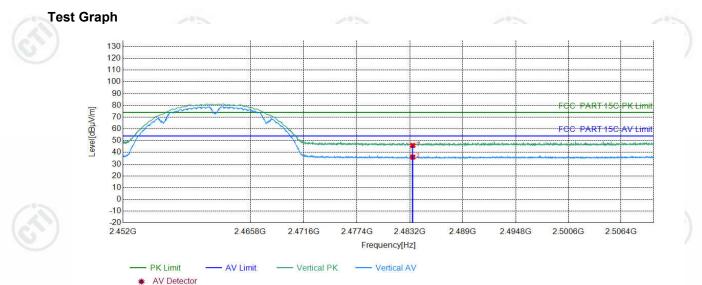




Page 33 of 46

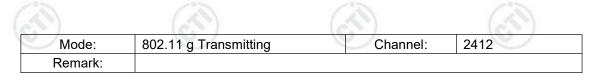
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.41	46.98	74.00	27.02	PASS	Horizontal	PK
2	2483.5000	6.57	28.76	35.33	54.00	18.67	PASS	Horizontal	AV

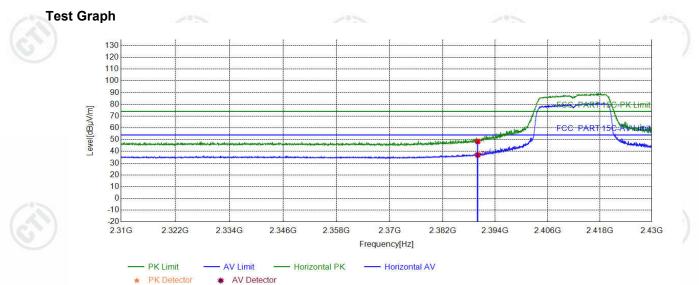




Page 34 of 46

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.34	45.91	74.00	28.09	PASS	Vertical	PK
2	2483.5000	6.57	29.41	35.98	54.00	18.02	PASS	Vertical	AV

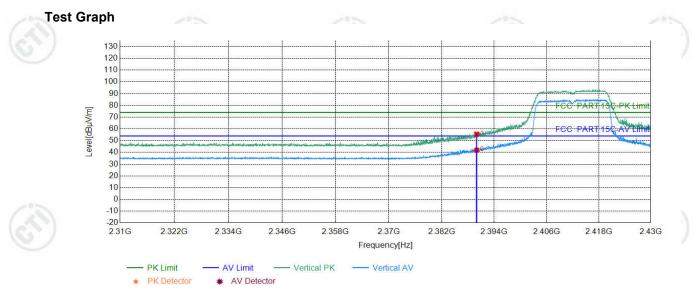




Page 35 of 46

Suspe	cted List							22	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	42.70	48.47	74.00	25.53	PASS	Horizontal	PK
2	2390.0000	5.77	31.23	37.00	54.00	17.00	PASS	Horizontal	AV
7		G J	•	G		G			GU

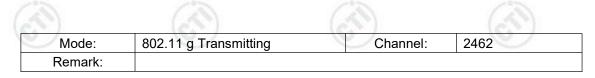
(S

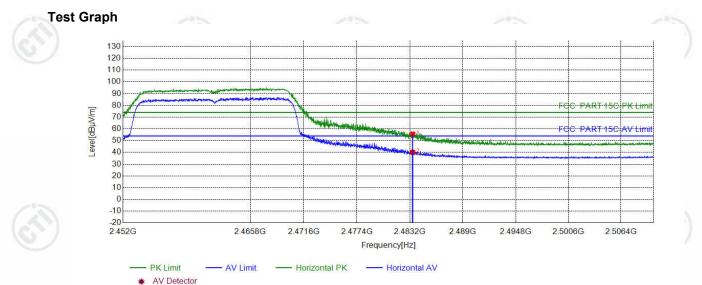


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 36 of 46

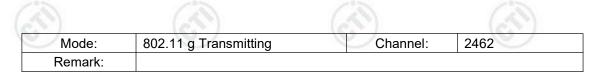
Susp	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	49.78	55.55	74.00	18.45	PASS	Vertical	PK
2	2390.0000	5.77	36.15	41.92	54.00	12.08	PASS	Vertical	AV
1		GT /		67		G			(C)

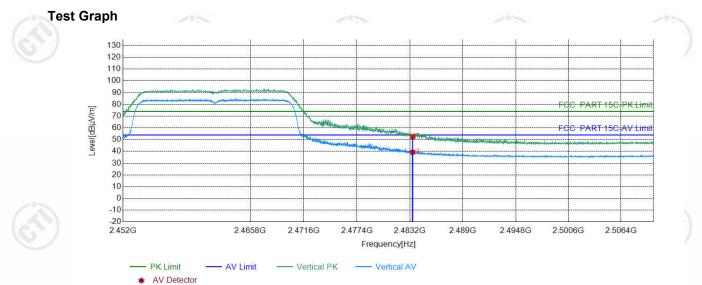




Page 37 of 46

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	49.08	55.65	74.00	18.35	PASS	Horizontal	PK
2	2483.5000	6.57	33.58	40.15	54.00	13.85	PASS	Horizontal	AV

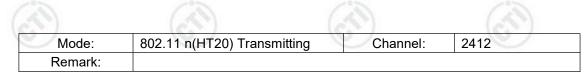


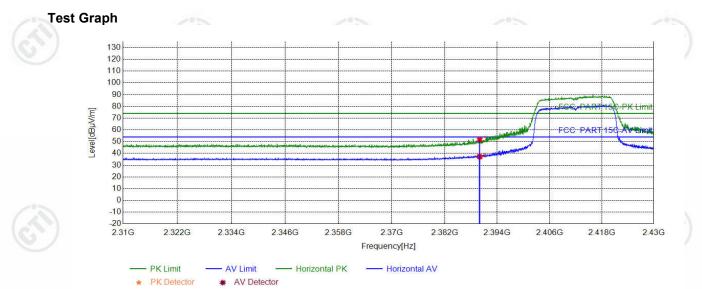


Page 38 of 46

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	45.99	52.56	74.00	21.44	PASS	Vertical	PK
2	2483.5000	6.57	32.75	39.32	54.00	14.68	PASS	Vertical	AV

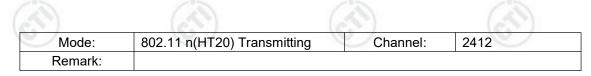
3

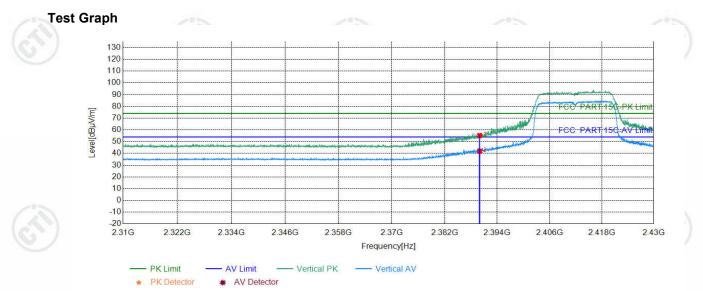




Page 39 of 46

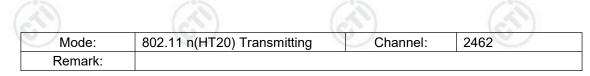
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	45.94	51.71	74.00	22.29	PASS	Horizontal	PK
2	2390.0000	5.77	31.40	37.17	54.00	16.83	PASS	Horizontal	AV
1		GT /		G		G			GU

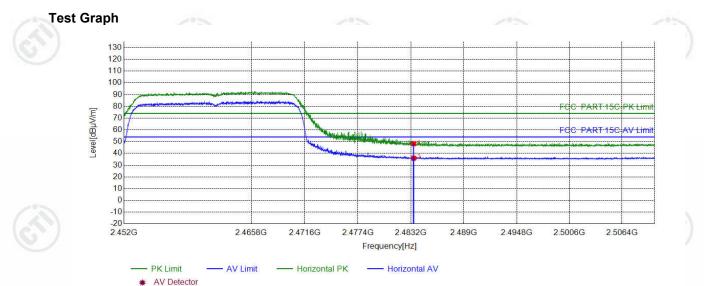




Page 40 of 46

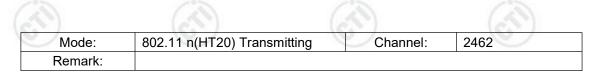
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	49.50	55.27	74.00	18.73	PASS	Vertical	PK
2	2390.0000	5.77	36.12	41.89	54.00	12.11	PASS	Vertical	AV
1		CS7 /	1	67		LC.	2.1		657

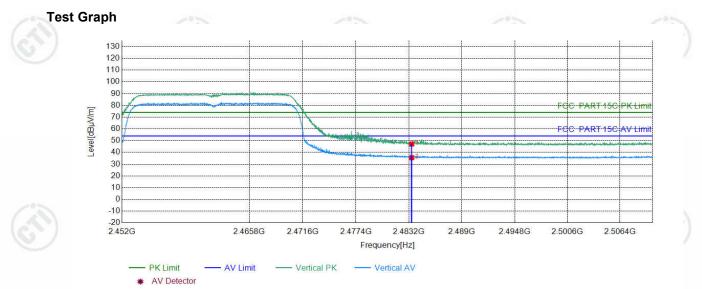




Page 41 of 46

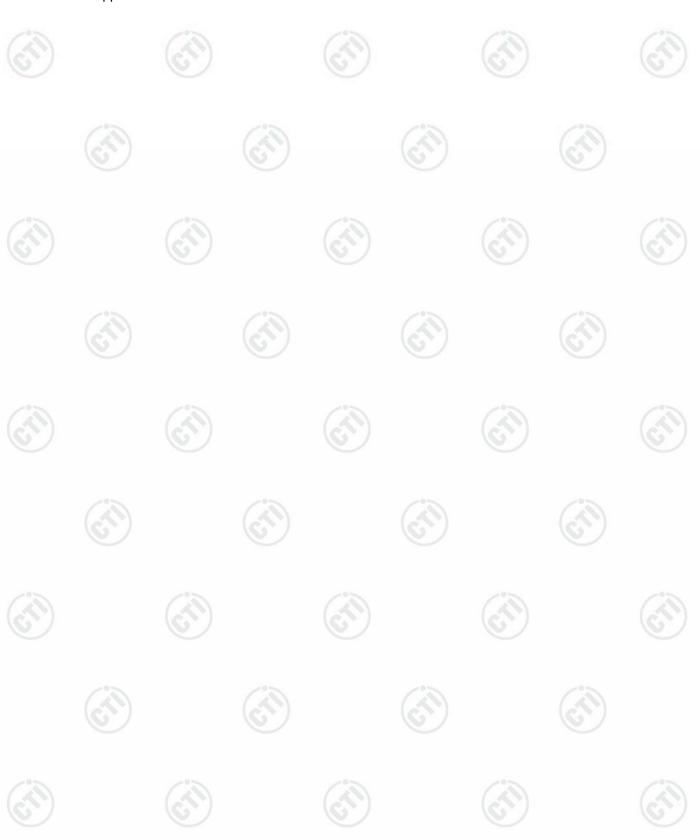
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.71	48.28	74.00	25.72	PASS	Horizontal	PK
2	2483.5000	6.57	29.33	35.90	54.00	18.10	PASS	Horizontal	AV





Page 42 of 46

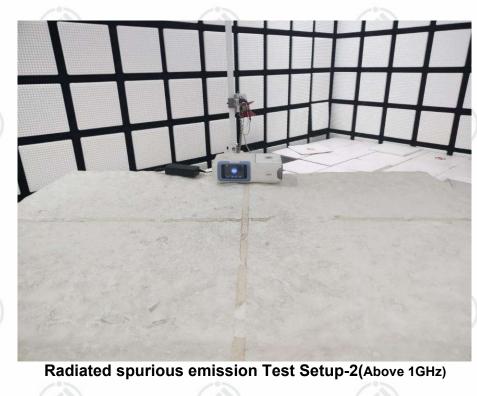
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.56	47.13	74.00	26.87	PASS	Vertical	PK
2	2483.5000	6.57	28.96	35.53	54.00	18.47	PASS	Vertical	AV
7		ST/		67)		G			C)


Note: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading - Correct Factor Correct Factor = Preamplifier Factor– Antenna Factor–Cable Factor

8 Appendix A

Refer to Appendix: 2.4G WIFI of EED32N81058702

Page 43 of 46


Page 44 of 46

9 PHOTOGRAPHS OF TEST SETUP

Test model No.: LeRes-S1

Radiated spurious emission Test Setup-1(Below 1GHz)

Page 45 of 46

Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

Conducted Emissions Test Setup

10 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32N81058701 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***

