

Report No.: EED32L00281801 Page 1 of 58

TEST REPORT

Product Blood Pressure Monitor

Trade mark Viatom Model/Type reference BP2, BP2A

Serial Number 1904320006

Report Number EED32L00281801

FCC ID : 2ADXK-8621 : Oct. 25, 2019 Date of Issue

Test Standards 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Shenzhen Viatom Technology Co., Ltd 4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Mark Chen

Compiled by:

Smile

Reviewed by:

None Xm

Ware Xin

Oct. 25, 2019

Smile Zhong

Check No:3970323004

Date:

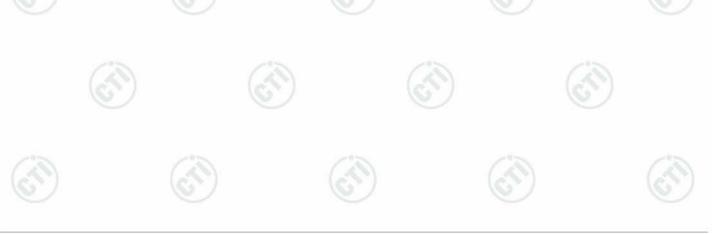
2 Version

Version No.	Date	(6)	Description	9
00	Oct. 25, 2019		Original	
	*	12	75	/05
((35)	(6,42)	(6/2)

Report No.: EED32L00281801 Page 3 of 58

3 Test Summary

, rest Gairmany			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS


Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

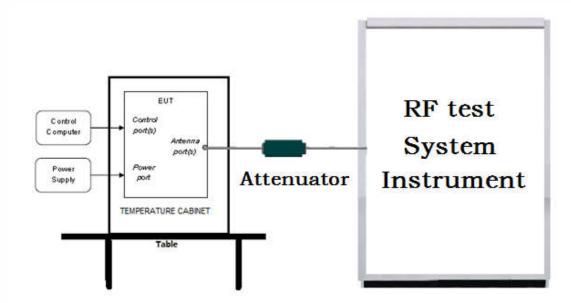
Model No.:BP2, BP2A

Only the model BP2 was tested, The BP2 has NIBP and ECG functions, and the BP2A only has NIBP function. Their electrical circuit design, layout, components used and internal wiring of NIBP function are identical.

Report No.: EED32L00281801 Page 4 of 58

4 Content

I COVER PAGE			1
2 VERSION			2
B TEST SUMMARY			3
4 CONTENT			4
TEST REQUIREMENT			5
5.1.1 For Conducted test set 5.1.2 For Radiated Emission 5.1.3 For Conducted Emission 5.2 TEST ENVIRONMENT	s test setup ons test setup		
GENERAL INFORMATION			7
6.2 GENERAL DESCRIPTION OF E 6.3 PRODUCT SPECIFICATION SUI 6.4 DESCRIPTION OF SUPPORT U 6.5 THE EUT HAS BEEN TESTED 6.6 TEST LOCATION	BJECTIVE TO THIS STANDARD INITS INDEPENDENTLY DARD CONDITIONS STED BY THE CUSTOMER Y (95% CONFIDENCE LEVELS, K=2)		
7 EQUIPMENT LIST			10
RADIO TECHNICAL REQUIRE			
Appendix A): 6dB Occupied Appendix B): Conducted Pea Appendix C): Band-edge for Appendix D): RF Conducted Appendix E): Power Spectra Appendix F): Antenna Requi Appendix G): AC Power Line Appendix H): Restricted band	Bandwidth	cy (Radiated)	
PHOTOGRAPHS OF TEST SETU	JP		49
PHOTOGRAPHS OF EUT CONS	TRUCTIONAL DETAILS		52



Report No. : EED32L00281801 Page 5 of 58

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

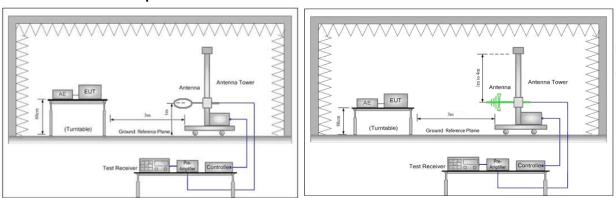


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

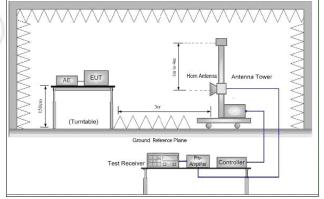
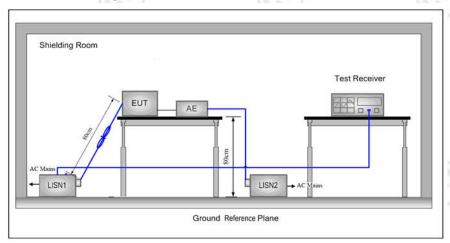
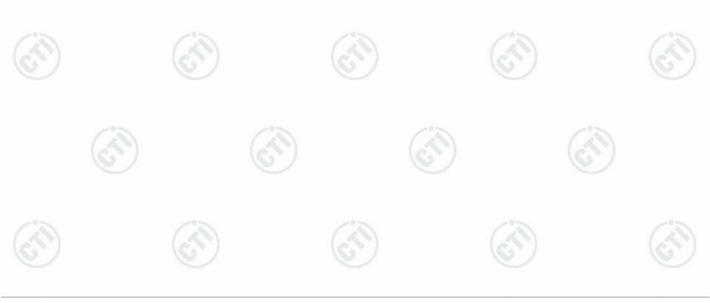



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

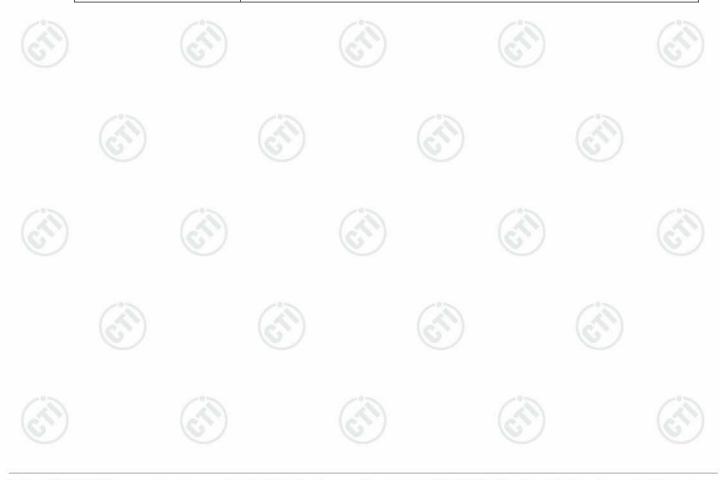

5.2 Test Environment

Operating Environment:			(9)
Temperature:	23.0 °C		
Humidity:	55 % RH	Daniel Control	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel		_00
١	rest Mode	TX/KX	Low(L)	Middle(M)	High(H)
l	F01/	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40
	FSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	nodulation and a	all kind of data
	40.00		1.00		


6 General Information

6.1 Client Information

Applicant:	Shenzhen Viatom Technology Co., Ltd
Address of Applicant:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China.
Manufacturer:	Shenzhen Viatom Technology Co., Ltd
Address of Manufacturer:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China.
Factory:	Shenzhen Viatom Technology Co., Ltd
Address of Factory:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China.

6.2 General Description of EUT

Product Name:	Blood Press	ure Monitor			
Model No.(EUT):	BP2, BP2A				
Add Model No.:	BP2		(30)		(2)
Trade mark:	Viaton	n w	(0,)		6.
EUT Supports Radios application:	4.0 BT Singl	e mode			
Power Supply:	Battery	580mAh 3.7V			
Sample Received Date:	Sep. 29, 201	19		(0)	
Sample tested Date:	Sep. 29, 201	19 to Oct. 24, 2019			

2454MHz

2456MHz

2458MHz

2460MHz

2474MHz

2476MHz

2478MHz

2480MHz

37

38

39

40

Page 8 of 58 Report No.: EED32L00281801

6.3

Operation F	requency:	2402MH	z~2480MHz						
Bluetooth \	/ersion:	4.0							
Modulation	Technique:	DSSS	1500						
Modulation	Type:	FSK					(2)		
Number of	Channel:	40	(6,		(0.)		6.		
Hardware \	version:	V1.0							
Test Power	Grade:	6dBm				1.00			
Test Softwa	are of EUT:	nRFgo S	tudio		1	(48)	4		
Antenna Ty	/pe and Gain:	Itilayer C	Itilayer Chip antenna; 0.5 dBi						
Test Voltag	je:	DC3.7V							
Operation F	requency eac	h of channe							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz		
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz		
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz		
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz		
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz		
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz		

2434MHz

2436MHz

2438MHz

2440MHz

27

28

29

30

2414MHz

2416MHz

2418MHz

2420MHz

8

9

10

17

18

19

20

Report No. : EED32L00281801 Page 9 of 58

6.4 Description of Support Units

6.5 The EUT has been tested independently

6.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.7 Abnormalities from Standard Conditions

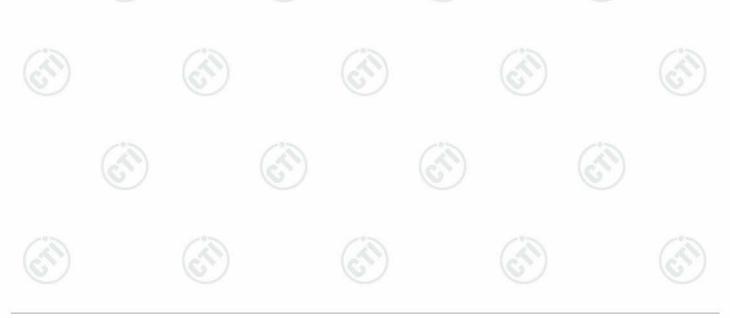
None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2 RF power, conducted		0.46dB (30MHz-1GHz)		
	RF power, conducted	0.55dB (1GHz-18GHz)		
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)		
3	Natiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
4	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		



Report No. : EED32L00281801 Page 10 of 58

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32L00281801 Page 11 of 58

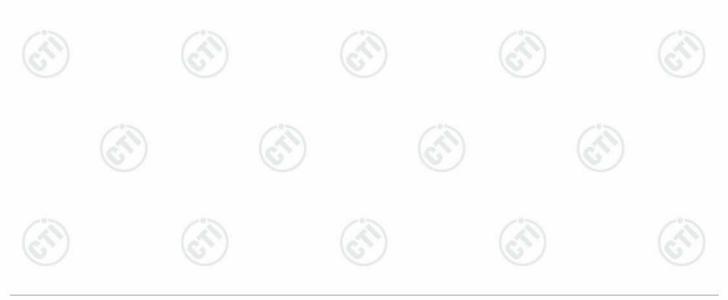
			100		
	3M S	emi/full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	07-12-2019	07-11-2020
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	07-26-2019	07-24-2020
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	(<u>C.</u>)	01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-252020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002	(C)	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Report No. : EED32L00281801 Page 12 of 58

3M full-anechoic Chamber								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-18-2019	06-17-2020			
Receiver	Keysight	N9038A	MY5729013 6	03-27-2019	03-25-2020			
Spectrum Analyzer	Keysight	N9020B	MY5711111 2	03-27-2019	03-25-2020			
Spectrum Analyzer	Keysight	N9030B	MY5714087 1	03-27-2019	03-25-2020			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021			
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021			
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021			
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021			
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020			
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021			
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021			
Preamplifier	EMCI	EMC18405 5SE	980596	05-22-2019	05-20-2020			
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020			
Preamplifier	EMCI	EMC00133 0	980563	05-08-2019	05-06-2020			
Preamplifier	Agilent	8449B	3008A0242 5	07-12-2019	07-11-2020			
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020			
Signal Generator	KEYSIGHT	E8257D	MY5340110 6	03-01-2019	02-28-2020			
Fully Anechoic Chamber	TDK	FAC-3	// //	01-17-2018	01-15-2021			
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021			
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0001	01-09-2019	01-08-2020			
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0002	01-09-2019	01-08-2020			
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0003	01-09-2019	01-08-2020			
Cable line	Times	SFT205- NMSM- 2.50M	393495- 0001	01-09-2019	01-08-2020			
Cable line	Times	EMC104- NMNM- 1000	SN160710	01-09-2019	01-08-2020			
Cable line	Times	SFT205- NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020			
Cable line	Times	SFT205- NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020			
Cable line	Times	SFT205- NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020			
Cable line	Times	HF160- KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020			

Report No. : EED32L00281801 Page 13 of 58

(Conducted dist	turbance Test			
Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
R&S	ESCI	100435	05-20-2019	05-18-2020	
Defu	TH128	1	06-14-2019	06-12-2020	
Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020	
R&S	CMW500	152394	03-01-2019	02-29-2020	
R&S	ENV216	100098	05-08-2019	05-06-2020	
schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020	
R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020	
R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020	
TESEQ	ISN T800	30297	01-06-2019	01-15-2020	
changchun	DYM3	1188	06-20-2019	06-18-2020	
	Manufacturer R&S Defu Agilent R&S R&S schwarzbeck R&S R&S TESEQ	Manufacturer Model No. R&S ESCI Defu TH128 Agilent E5515C R&S CMW500 R&S ENV216 schwarzbeck NNLK8121 R&S ESH2-Z3 0299.7810.5 6 R&S EZ-17 816.2063.03 TESEQ ISN T800	Manufacturer Model No. Serial Number R&S ESCI 100435 Defu TH128 / Agilent E5515C GB47050 534 R&S CMW500 152394 R&S ENV216 100098 schwarzbeck NNLK8121 8121-529 R&S ESH2-Z3 0299.7810.5 6 100042 6 R&S EZ-17 816.2063.03 100106 TESEQ ISN T800 30297	Manufacturer Model No. Number (mm-dd-yyyy) R&S ESCI 100435 05-20-2019 Defu TH128 / 06-14-2019 Agilent E5515C GB47050 534 03-01-2019 R&S CMW500 152394 03-01-2019 R&S ENV216 100098 05-08-2019 schwarzbeck NNLK8121 8121-529 05-08-2019 R&S ESH2-Z3 0299.7810.5 6 100042 06-13-2017 R&S EZ-17 816.2063.03 100106 05-20-2019 TESEQ ISN T800 30297 01-06-2019	

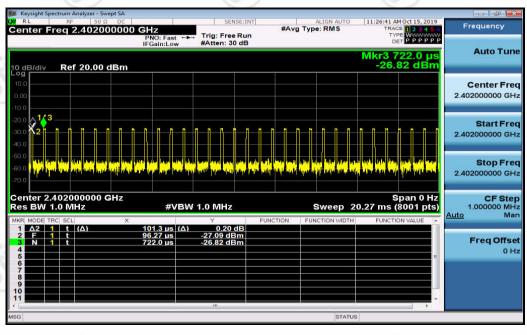

8 Radio Technical Requirements Specification

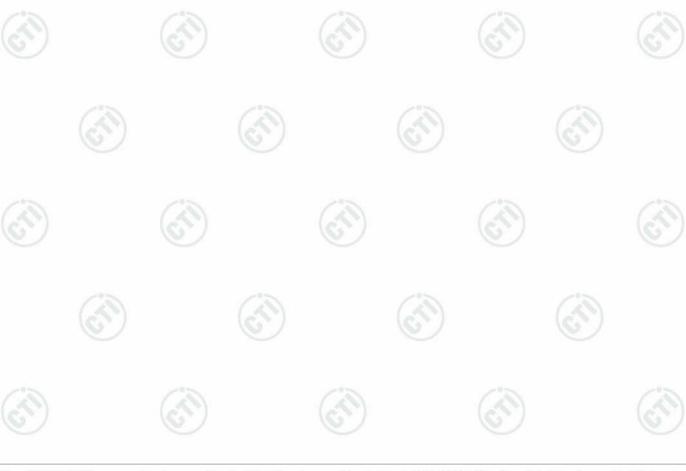
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)


 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$



Report No.: EED32L00281801 Page 15 of 58

Duty Cycle

Duty Cycle				
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)	
BLE	0.1013	0.626	16.18%	

Report No. : EED32L00281801 Page 16 of 58

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

ú			
	Limit	Shall be at least 500kHz	

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Page 17 of 58

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6780	1.0673	PASS
BLE	MCH	0.6887	1.0756	PASS
BLE	HCH	0.6860	1.0734	PASS
BLE	LCH	0.5977	1.0392	PASS
BLE	MCH	0.5943	1.0411	PASS
BLE	HCH	0.5986	1.0419	PASS

Report No.: EED32L00281801 Page 18 of 58



Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(.43)		9
(0,		
Limit	 ☐ Antenna with DG greater than 6 dBi [Limit = 30 - (DG - 6)] ☐ Point-to-point operation 	

Test Procedure

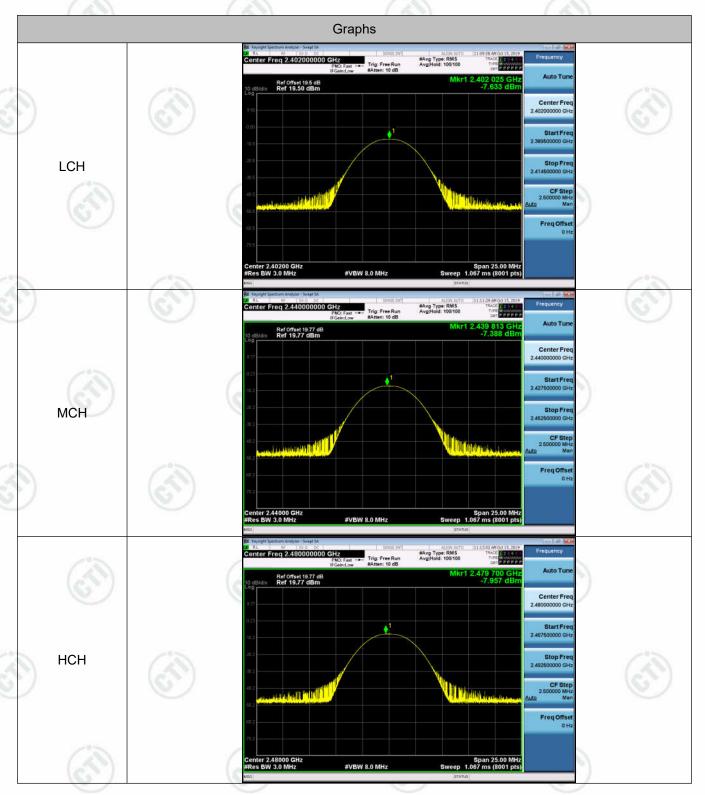
Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report. **Test Setup**

Page 21 of 58

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-7.633	PASS
BLE	MCH	-7.388	PASS
BLE	HCH	-7.957	PASS



Test Graphs

Report No. : EED32L00281801 Page 23 of 58

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Report No. : EED32L00281801 Page 24 of 58

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-7.610	-61.030	-27.61	PASS
BLE	HCH	-7.858	-59.399	-27.86	PASS

Test Graphs

Report No.: EED32L00281801 Page 25 of 58

Appendix D): RF Conducted Spurious Emissions Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup Spectrum EUT Analyzer

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-7.813	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-7.605	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-8.198	<limit< td=""><td>PASS</td></limit<>	PASS

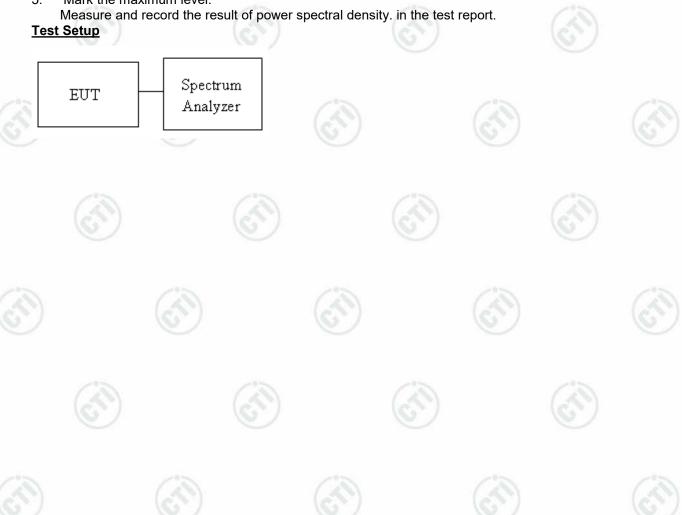


Report No.: EED32L00281801 Page 29 of 58

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

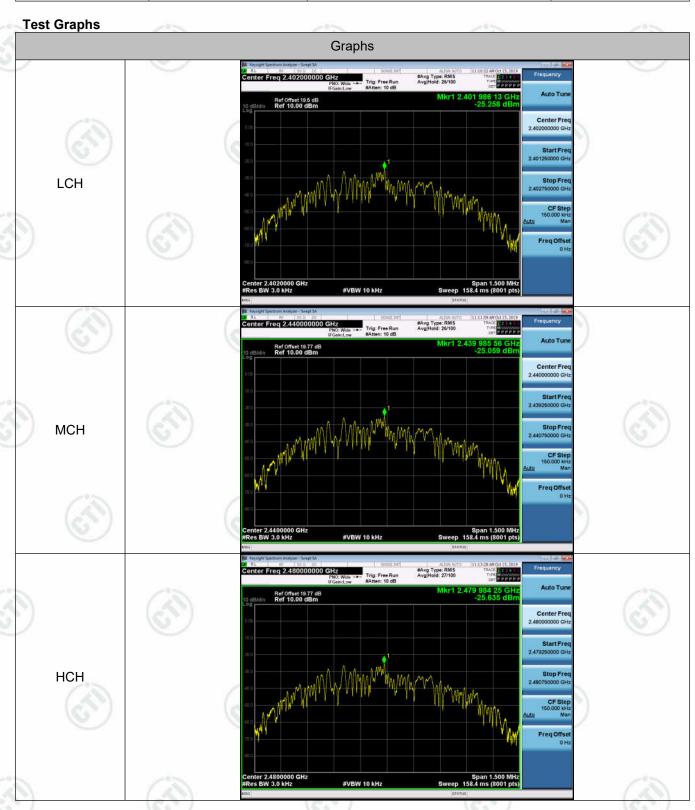

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit Antenna not exceed 6 dBi ∶ 8dBm Antenna with DG greater than 6 dBi [Limit = 8 – (DG – 6)] Point-to-point operation ∶	
--	--

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.



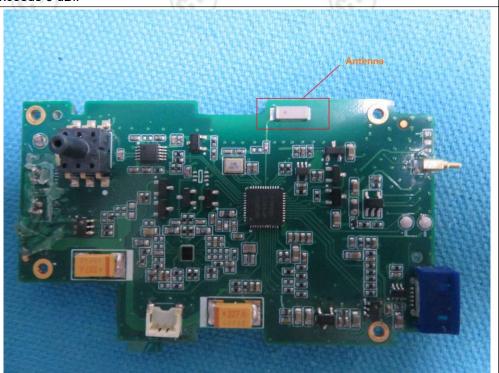
Result Table

Mode	Channel PSD [dBm]		Verdict		
BLE	LCH	-25.258	PASS		
BLE	MCH	-25.059	PASS		
BLE	HCH	-25.635	PASS		

Report No.: EED32L00281801 Page 31 of 58

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

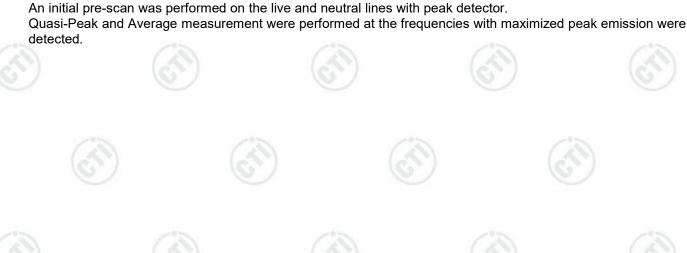
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.5dBi.

Report No.: EED32L00281801 Page 32 of 58

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz
	1)The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the

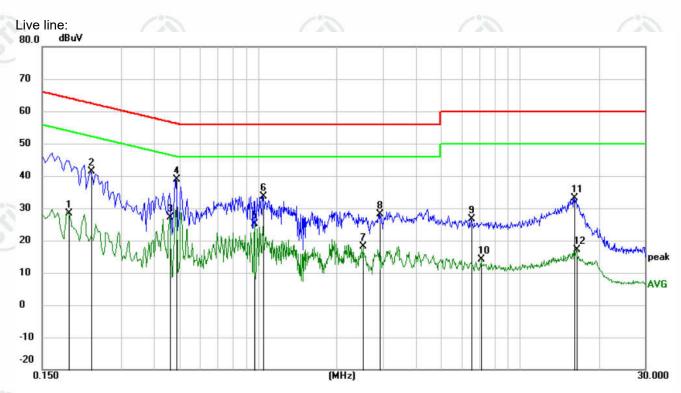
- EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Limit:

Fraguency range (MHz)	Limit (dBµV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

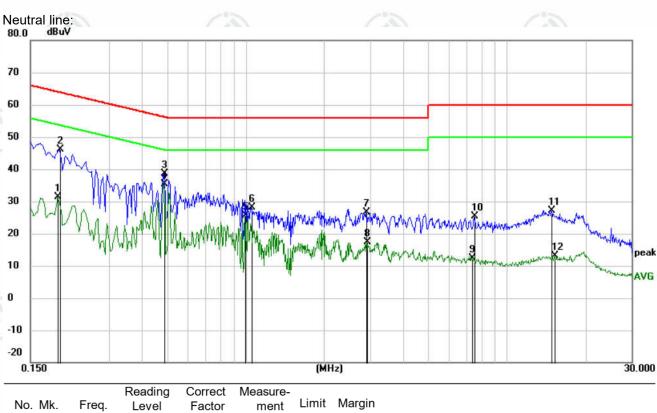
NOTE: The lower limit is applicable at the transition frequency


Measurement Data

Report No.: EED32L00281801 Page 33 of 58

Product : Blood Pressure Monitor Model/Type reference : BP2, BP2A

No. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1884	18.42	10.01	28.43	54.11	-25.68	AVG	
2		0.2310	31.24	10.04	41.28	62.41	-21.13	peak	
3		0.4605	17.21	10.00	27.21	46.68	-19.47	AVG	
4	*	0.4875	28.88	10.00	38.88	56.21	-17.33	peak	
5		0.9690	15.22	9.91	25.13	46.00	-20.87	AVG	
6		1.0455	23.82	9.91	33.73	56.00	-22.27	peak	
7		2.5215	8.29	9.83	18.12	46.00	-27.88	AVG	
8		2.9085	18.21	9.83	28.04	56.00	-27.96	peak	
9		6.5175	16.69	9.85	26.54	60.00	-33.46	peak	
10		7.1340	4.38	9.85	14.23	50.00	-35.77	AVG	
11	1	16.1070	23.09	9.97	33.06	60.00	-26.94	peak	
12	1	16.4490	7.12	9.97	17.09	50.00	-32.91	AVG	



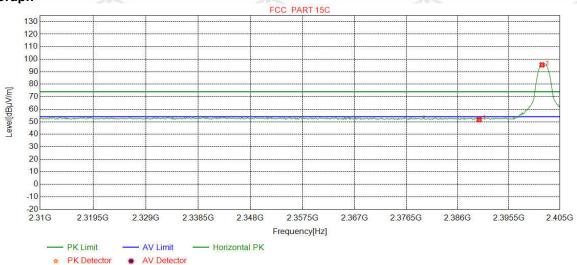
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1905	21.39	10.01	31.40	54.01	-22.61	AVG	
	2		0.1949	36.14	10.02	46.16	63.83	-17.67	peak	
Γ	3		0.4875	28.73	10.00	38.73	56.21	-17.48	peak	
	4	*	0.4875	25.49	10.00	35.49	46.21	-10.72	AVG	
Г	5		0.9960	15.84	9.91	25.75	46.00	-20.25	AVG	
	6		1.0500	18.20	9.91	28.11	56.00	-27.89	peak	
	7		2.8905	16.84	9.83	26.67	56.00	-29.33	peak	
	8		2.9130	7.46	9.83	17.29	46.00	-28.71	AVG	
	9		7.3410	2.48	9.86	12.34	50.00	-37.66	AVG	
	10		7.4895	15.42	9.87	25.29	60.00	-34.71	peak	
_	11		14.8155	17.27	9.98	27.25	60.00	-32.75	peak	
Γ	12		15.2565	3.22	9.98	13.20	50.00	-36.80	AVG	
_										

Notes:

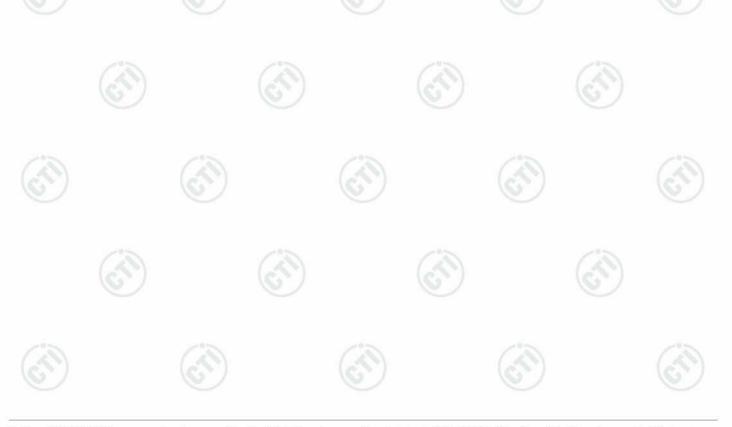
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)	163	(0.5)		. //	63.7		
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	Quasi-peak	120kHz 3	300kHz	Quasi-peak		
	Ab 2012 4 OUT	Peak	1MHz	3MHz	Peak	-05	
	Above 1GHz	Peak	1MHz	10Hz	Average	6	
Test Procedure:	 Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 v04, Section 12.1 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel 						
	g. Different between above to fully Anechoic Chamles 18GHz the distance is 6. h. Test the EUT in the low. i. The radiation measurer Transmitting mode, and	re as below: e is the test site, of the control of the X axis	able 0.8 m is 1.5 meter e Highest c ned in X, Y, positioning	eter to 1. ⁻). hannel Z axis po g which it	Anechoic Cha 5 meter(Abo ositioning for is worse cas	ambe ve	
imit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chamles 18GHz the distance is 6. h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedure.	re as below: e is the test site, of the control of	able 0.8 m is 1.5 meter e Highest c ned in X, Y, positioning ncies meas	eter to 1.). hannel Z axis po y which it sured wa	Anechoic Cha 5 meter(Abo ositioning for is worse cas s complete.	ambe ve	
imit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chamle 18GHz the distance is of h. Test the EUT in the local i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency	re as below: e is the test site, of the correct change form to the meter and table is west channel, the ments are perform found the X axis es until all freque	able 0.8 m is 1.5 meter e Highest c ned in X, Y, positioning ncies meas	eter to 1.). hannel Z axis po g which it sured wa Ren	Anechoic Cha 5 meter(Abo ositioning for is worse cas s complete.	ambe ve	
imit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chamles 18GHz the distance is 6. h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedure.	re as below: e is the test site, of the control of	able 0.8 m is 1.5 meter e Highest c ned in X, Y, positioning ncies meas	eter to 1. -). hannel Z axis po y which it sured wa Ren Quasi-pe	Anechoic Cha 5 meter(Abo ositioning for is worse cas s complete.	ambe ve	
imit:	g. Different between above to fully Anechoic Chamber 18GHz the distance is a h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz	re as below: e is the test site, of the correction of the correcti	able 0.8 m is 1.5 meter e Highest c ned in X, Y, positioning ncies meas	eter to 1. '). hannel Z axis po y which it sured wa Ren Quasi-pe	Anechoic Cha 5 meter(Abo ositioning for is worse cas s complete.	ambe ve	
imit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chamle 18GHz the distance is 7 h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz	re as below: e is the test site, of the control of	able 0.8 m is 1.5 meter e Highest c ned in X, Y, positioning ncies meas	eter to 1. -). hannel Z axis por y which it sured wa Ren Quasi-pe Quasi-pe Quasi-pe	Anechoic Cha 5 meter(Abo ositioning for is worse cas s complete. nark eak Value	ambe ve	
imit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chamle 18GHz the distance is 6. h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	re as below: e is the test site, of the correction of the correcti	able 0.8 m is 1.5 meter e Highest c ned in X, Y, positioning ncies meas	eter to 1. '). hannel Z axis pog which it sured wa Ren Quasi-pe Quasi-pe Quasi-pe	Anechoic Cha 5 meter(Abo ositioning for is worse cas s complete. nark eak Value eak Value	ambe ve	
_imit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chamle 18GHz the distance is of h. Test the EUT in the loce i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	re as below: e is the test site, of the change form to meter and table in west channel, the ments are performed found the X axis the es until all freque to the change of	able 0.8 m is 1.5 meter e Highest c ned in X, Y, positioning ncies meas	eter to 1. -). hannel Z axis por gradient wared ware guasi-per Average	Anechoic Cha 5 meter(Abo ositioning for is worse cas s complete. nark eak Value eak Value eak Value	ambei ve	

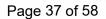


Page 36 of 58

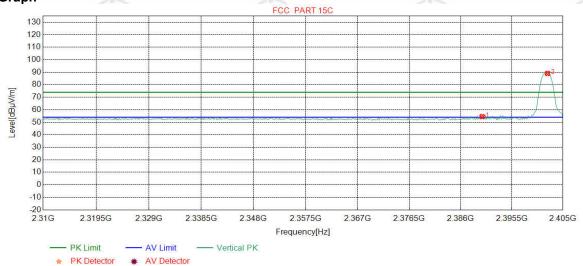

Test plot as follows:

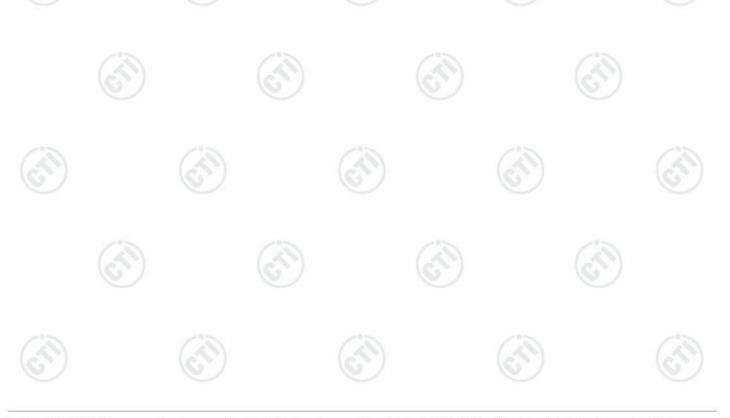
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	48.53	51.71	74.00	22.29	Pass	Horizontal
2	2401.6708	32.26	13.31	-42.43	92.31	95.45	74.00	-21.45	Pass	Horizontal

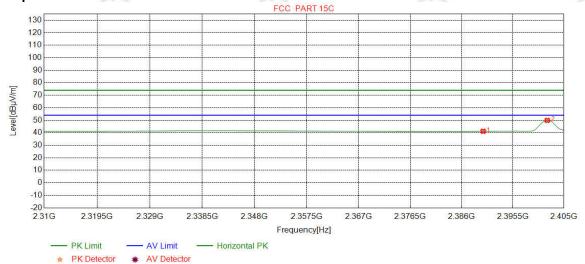




Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.36	54.54	74.00	19.46	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	85.89	89.03	74.00	-15.03	Pass	Vertical

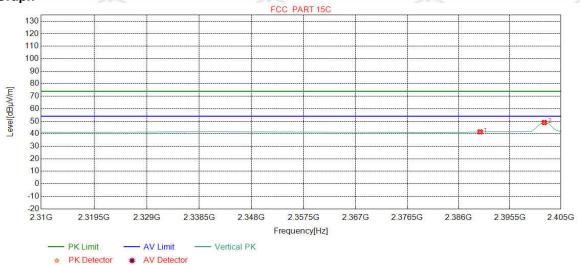


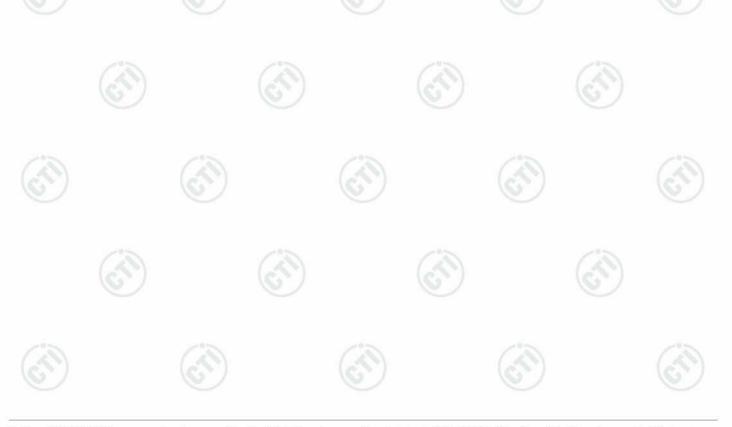

Report No.: EED32L00281801 Page 38 of 58

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.02	41.20	54.00	12.80	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	46.75	49.89	54.00	4.11	Pass	Horizontal

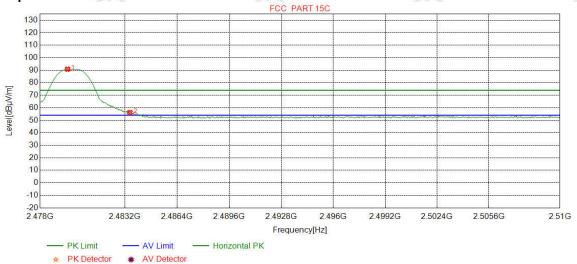


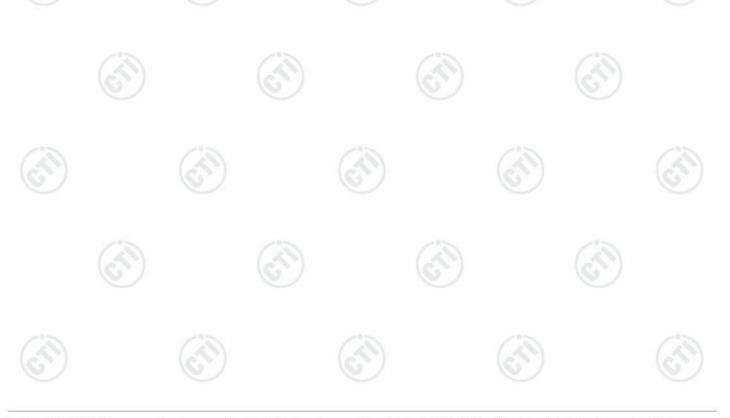

Report No.: EED32L00281801 Page 39 of 58

2.7	10.7	47.76	1200
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.35	41.53	54.00	12.47	Pass	Vertical
2	2401.9086	32.26	13.31	-42.43	45.85	48.99	54.00	5.01	Pass	Vertical

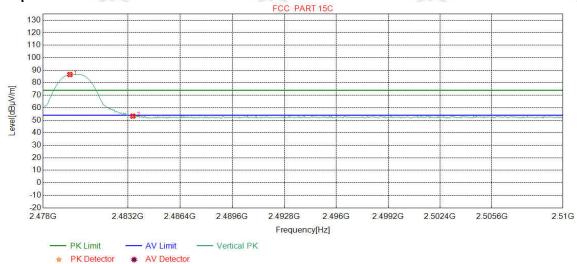


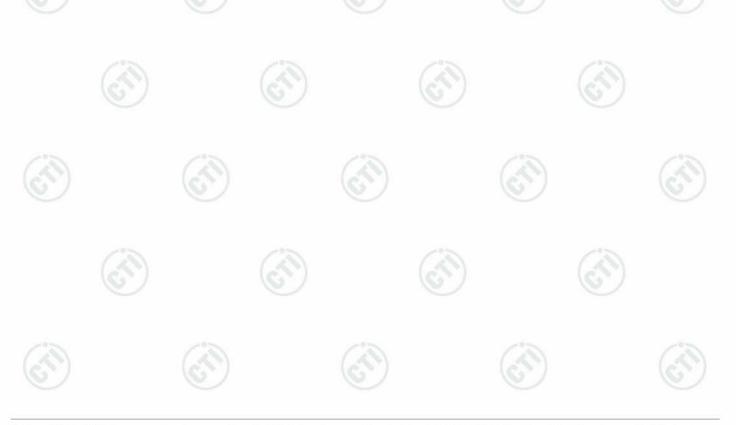

Report No.: EED32L00281801 Page 40 of 58

C.7 1	10.7.1	12027	1,627
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6821	32.37	13.39	-42.39	87.44	90.81	74.00	-16.81	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	52.80	56.16	74.00	17.84	Pass	Horizontal

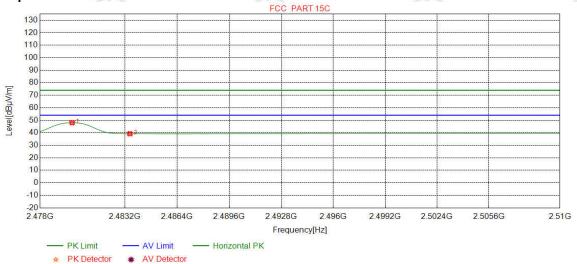


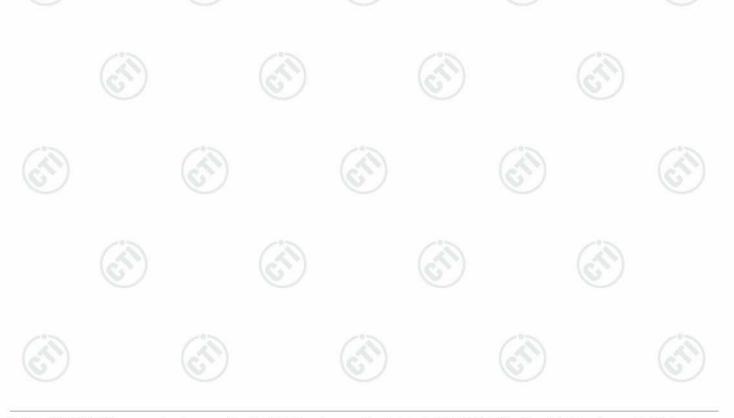


20.79	183.1	1200	16391
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6421	32.37	13.39	-42.39	83.19	86.56	74.00	-12.56	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.92	53.28	74.00	20.72	Pass	Vertical

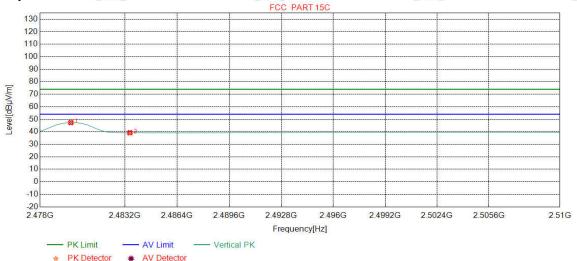




Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV	Ondriner.	2400

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9625	32.37	13.39	-42.39	44.69	48.06	54.00	5.94	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	35.89	39.25	54.00	14.75	Pass	Horizontal



Report No. : EED32L00281801 Page 43 of 58

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8824	32.37	13.39	-42.39	43.95	47.32	54.00	6.68	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	35.89	39.25	54.00	14.75	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
(0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	0.
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	AL 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

			٠.	
ı	_ir	n	ıτ	•
L	_!!		ıι	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(3)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(6.5)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

Mode	: :	BLE GF	SK Tran	smitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	96.0636	10.37	1.13	-32.07	56.03	35.46	43.50	8.04	Pass	Н
2	120.0250	9.20	1.30	-32.07	61.12	39.55	43.50	3.95	Pass	Н
3	168.0448	8.34	1.52	-31.96	61.95	39.85	43.50	3.65	Pass	Н
4	216.0646	11.32	1.75	-31.95	60.06	41.18	46.00	4.82	Pass	Н
5	263.9874	12.48	1.94	-31.88	55.07	37.61	46.00	8.39	Pass	Н
6	399.6070	15.39	2.38	-31.76	36.46	22.47	46.00	23.53	Pass	Н
7	72.0052	8.62	0.97	-32.05	47.93	25.47	40.00	14.53	Pass	V
8	107.9958	10.92	1.23	-32.07	51.37	31.45	43.50	12.05	Pass	V
9	156.0156	7.76	1.46	-31.99	63.07	40.30	43.50	3.20	Pass	V
10	264.0844	12.48	1.94	-31.88	59.26	41.80	46.00	4.20	Pass	V
11	384.0854	15.05	2.33	-31.86	42.85	28.37	46.00	17.63	Pass	V
12	876.1186	21.81	3.55	-31.69	36.30	29.97	46.00	16.03	Pass	V

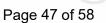
		127.79		10			163 163			A		
	Mode	:	BLE GF	SK Tran	smitting		Channel:		2440			
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	
	1	72.0052	8.62	0.97	-32.05	44.32	21.86	40.00	18.14	Pass	Н	
	2	96.0636	10.37	1.13	-32.07	57.27	36.70	43.50	6.80	Pass	Н	
	3	156.0156	7.76	1.46	-31.99	61.63	38.86	43.50	4.64	Pass	Н	
	4	240.0260	11.94	1.84	-31.90	55.88	37.76	46.00	8.24	Pass	Н	
	5	312.0072	13.46	2.10	-31.89	44.09	27.76	46.00	18.24	Pass	Н	
	6	876.1186	21.81	3.55	-31.69	33.51	27.18	46.00	18.82	Pass	Н	
	7	72.0052	8.62	0.97	-32.05	48.33	25.87	40.00	14.13	Pass	V	
Ī	8	96.0636	10.37	1.13	-32.07	61.41	40.84	43.50	2.66	Pass	V	
Ī	9	156.0156	7.76	1.46	-31.99	61.32	38.55	43.50	4.95	Pass	V	
j	10	240.0260	11.94	1.84	-31.90	59.85	41.73	46.00	4.27	Pass	V	
١	11	264.0844	12.48	1.94	-31.88	59.27	41.81	46.00	4.19	Pass	V	
	12	384.0854	15.05	2.33	-31.86	43.27	28.79	46.00	17.21	Pass	V	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32L00281801

Page 46 of 58

2480				Channel:		smitting	SK Tran	BLE GF) :	Mode
Polarity	Result	Margin [dB]	Limit [dBµV/m]	Level [dBµV/m]	Reading [dBµV]	Pream gain [dB]	Cable loss [dB]	Ant Factor [dB]	Freq. [MHz]	NO
Н	Pass	18.01	40.00	21.99	44.45	-32.05	0.97	8.62	72.0052	1
Н	Pass	7.07	43.50	36.43	57.00	-32.07	1.13	10.37	96.0636	2
Н	Pass	3.97	43.50	39.53	61.10	-32.07	1.30	9.20	120.0250	3
Н	Pass	5.52	43.50	37.98	60.75	-31.99	1.46	7.76	156.0156	4
Н	Pass	5.83	46.00	40.17	57.63	-31.88	1.94	12.48	264.0844	5
Н	Pass	23.89	46.00	22.11	36.59	-31.86	2.33	15.05	384.0854	6
V	Pass	13.90	40.00	26.10	48.56	-32.05	0.97	8.62	72.0052	7
V	Pass	4.37	43.50	39.13	61.90	-31.99	1.46	7.76	156.0156	8
V	Pass	4.03	46.00	41.97	60.09	-31.90	1.84	11.94	240.0260	9
V	Pass	3.78	46.00	42.22	59.68	-31.88	1.94	12.48	264.0844	10
V	Pass	12.76	46.00	33.24	49.57	-31.89	2.10	13.46	312.0072	11
V	Pass	17.86	46.00	28.14	42.62	-31.86	2.33	15.05	384.0854	12
	Pass Pass	3.78 12.76	46.00 46.00	42.22 33.24	59.68 49.57	-31.88 -31.89	1.94 2.10	12.48 13.46	264.0844 312.0072	10



Transmitter Emission above 1GHz

Report No.: EED32L00281801

Mode	:	BLE GF	SK Tran	smitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1998.4999	31.69	3.47	-42.61	48.56	41.11	74.00	32.89	Pass	Н
2	3038.0025	33.22	4.85	-42.10	42.34	38.31	74.00	35.69	Pass	Н
3	4989.1326	34.50	4.82	-40.51	43.70	42.51	74.00	31.49	Pass	Н
4	9665.4444	37.67	6.68	-40.71	42.71	46.35	74.00	27.65	Pass	Н
5	13077.6718	39.57	8.04	-41.65	42.56	48.52	74.00	25.48	Pass	Н
6	16463.8976	42.27	10.04	-43.63	43.99	52.67	74.00	21.33	Pass	Н
7	1397.4397	28.30	2.90	-42.69	51.59	40.10	74.00	33.90	Pass	٧
8	2926.9927	33.08	4.39	-42.16	44.70	40.01	74.00	33.99	Pass	V
9	4330.0887	34.26	4.47	-40.87	43.36	41.22	74.00	32.78	Pass	V
10	8514.3676	36.63	6.44	-40.56	42.46	44.97	74.00	29.03	Pass	V
11	13695.7130	39.52	8.33	-41.21	44.36	51.00	74.00	23.00	Pass	V
12	17037.9359	42.24	11.11	-43.29	43.91	53.97	74.00	20.03	Pass	V

Mode	: :	BLE GF	SK Tran	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1795.6796	30.35	3.31	-42.70	48.33	39.29	74.00	34.71	Pass	Н
2	3811.0541	33.65	4.37	-41.18	42.54	39.38	74.00	34.62	Pass	Н
3	5639.1759	35.22	5.00	-40.77	42.57	42.02	74.00	31.98	Pass	Н
4	8376.3584	36.55	6.25	-40.66	42.24	44.38	74.00	29.62	Pass	Н
5	11674.5783	39.04	7.46	-41.32	41.17	46.35	74.00	27.65	Pass	Н
6	16490.8994	42.29	10.10	-43.64	42.82	51.57	74.00	22.43	Pass	Н
7	1595.8596	29.03	3.07	-42.89	52.36	41.57	74.00	32.43	Pass	V
8	3196.0131	33.28	4.64	-42.00	45.73	41.65	74.00	32.35	Pass	V
9	4997.1331	34.50	4.82	-40.50	43.22	42.04	74.00	31.96	Pass	V
10	7653.3102	36.54	6.16	-40.84	42.21	44.07	74.00	29.93	Pass	V
11	11230.5487	38.74	7.22	-41.23	41.65	46.38	74.00	27.62	Pass	V
12	17042.9362	42.24	11.18	-43.29	42.91	53.04	74.00	20.96	Pass	V

Report No.: EED32L00281801 Page 48 of 58

		0.00	540%				- A C 700	- 2 C No.			
	Mode	e:	BLE GF	SK Tran	smitting		Channel:		2480		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	1797.8798	30.37	3.32	-42.72	51.32	42.29	74.00	31.71	Pass	Н
ď	2	3759.0506	33.61	4.35	-41.28	42.47	39.15	74.00	34.85	Pass	Н
	3	5027.1351	34.53	4.85	-40.51	42.97	41.84	74.00	32.16	Pass	Н
	4	7658.3106	36.54	6.17	-40.85	42.00	43.86	74.00	30.14	Pass	Н
	5	12466.6311	39.58	7.65	-41.10	42.10	48.23	74.00	25.77	Pass	Н
	6	17040.9361	42.24	11.15	-43.29	43.39	53.49	74.00	20.51	Pass	Н
	7	1397.4397	28.30	2.90	-42.69	48.74	37.25	74.00	36.75	Pass	V
	8	1960.6961	31.44	3.43	-42.63	47.78	40.02	74.00	33.98	Pass	V
	9	3187.0125	33.27	4.63	-42.00	42.97	38.87	74.00	35.13	Pass	V
	10	5110.1407	34.61	4.80	-40.53	43.60	42.48	74.00	31.52	Pass	V
1	11	9696.4464	37.68	6.60	-40.68	43.20	46.80	74.00	27.20	Pass	V
6	12	17037.9359	42.24	11.11	-43.29	42.99	53.05	74.00	20.95	Pass	V
	- 2		0.40.40					5 Th. 10			V 100 100 1

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

