

Page 1 of 42

TEST REPORT

Product **Trade mark** Model/Type reference Serial Number **Report Number** FCC ID Date of Issue **Test Standards Test result**

Blood Pressure Monitor

- N/A •
- **BP1S.BP1SA** :
- : N/A
- : EED32N81308501
- 2ADXK-8612
- Dec. 20, 2021
- 47 CFR Part 15 Subpart C
- PASS

Prepared for:

Shenzhen Viatom Technology Co., Ltd. 4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China

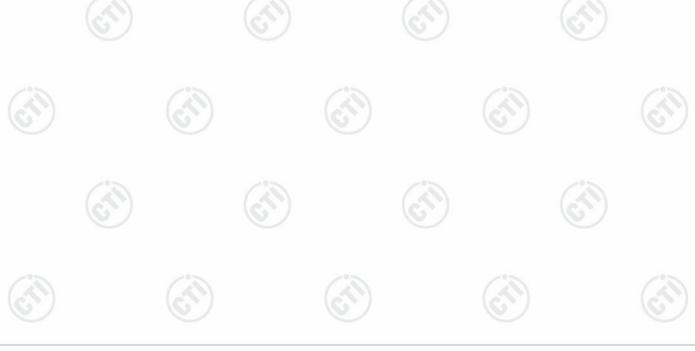
Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Jerazer. Li forron Reviewed by: Compiled by: Frazer Li Aaron Ma David Wang Date: Dec. 20, 2021 David Wang Check No.: 5039061221 Report Seal

1 Version

Version No.	Date	C	Description	
00	Dec. 20, 2021		Original	
s		12	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13
	S)	$(\sim S)$		

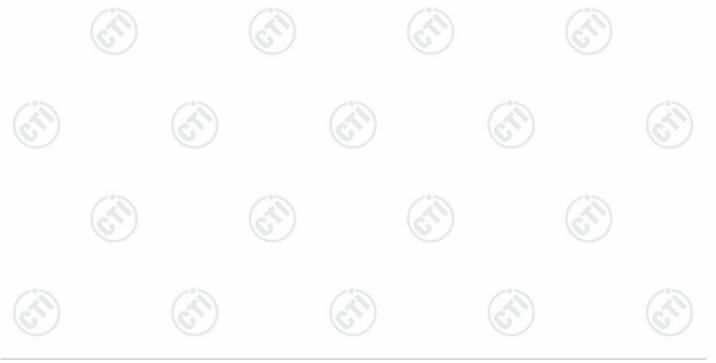


(A)

Page 3 of 42

2	Content				
1 \	/ERSION				2
	CONTENT				
3 1	EST SUMMARY	<u></u>			
4 (GENERAL INFORMATION	I			5
•	 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPPO 4.6 TEST LOCATION 4.7 MEASUREMENT UNCER 	OF EUT	٢	0	
5 E	EQUIPMENT LIST				9
6 T	TEST RESULTS AND ME	ASUREMENT DATA			11
	6.1 ANTENNA REQUIREMEN 6.2 CONDUCTED EMISSION 6.3MAXIMUM CONDUCTED (6.4DTS BANDWIDTH 6.5MAXIMUM POWER SPEC 6.6BAND EDGE MEASUREMI 6.7RADIATED SPURIOUS EM	S DUTPUT POWER TRAL DENSITY ENTS AND CONDUCTED SPU	JRIOUS EMISSION		
7 <i>F</i>	APPENDIX A			•••••	
PH	IOTOGRAPHS OF TEST	SETUP			
PH	IOTOGRAPHS OF EUT C	ONSTRUCTIONAL DET	AILS		

Page 4 of 42

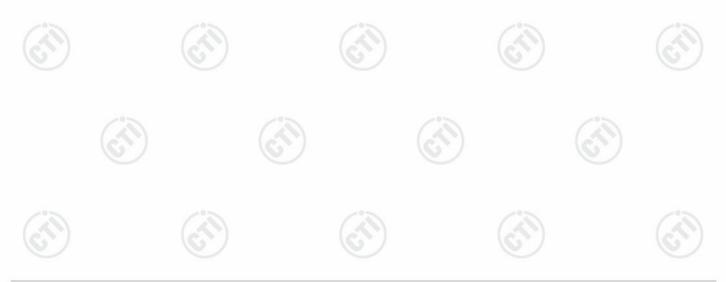

Test Requirement	Result	
47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
47 CFR Part 15 Subpart C Section 15.207	PASS	
47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	
	 47 CFR Part 15 Subpart C Section 15.203/15.247 (c) 47 CFR Part 15 Subpart C Section 15.207 47 CFR Part 15 Subpart C Section 15.247 (a)(2) 47 CFR Part 15 Subpart C Section 15.247 (b)(3) 47 CFR Part 15 Subpart C Section 15.247 (e) 47 CFR Part 15 Subpart C Section 15.247(d) 	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: BP1S, BP1SA

Only the model BP1S was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, the only difference is the enclosure color, BP1S is light silver, while BP1SA is dark silver.


4 General Information

4.1 Client Information

Applicant:	Shenzhen Viatom Technology Co.,Ltd.
Address of Applicant:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China
Manufacturer:	Shenzhen Viatom Technology Co.,Ltd.
Address of Manufacturer:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China
Factory:	Shenzhen Viatom Technology Co., Ltd.
Address of Factory:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China

4.2 General Description of EUT

Product Name:	Blood Pressure Monitor			
Mode No.:	BP1S,BP1SA			13
Trade mark:	N/A	(\mathcal{C})		67
Bluetooth Version:	V4.2	\smile		\sim
Operation Frequency:	2402MHz~2480MHz			
Modulation Type:	GFSK	13	13	
Transfer Rate:	⊠1Mbps □2Mbps	(25)	(\sim)	
Number of Channel:	40		S	
Product Type:	Mobile Portable	Fix Location		
Antenna Type:	Monopole Antenna	23		~
Antenna Gain:	3.19dBi			
Power Supply:	Lithium battery: DC 3.7V,13	0mAh,0.481Wh		e
Test Voltage:	DC 3.7V			
Sample Received Date:	Dec. 07, 2021			
Sample tested Date:	Dec. 07, 2021 to Dec. 16, 2	021		
(GT)		G	67)	


Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

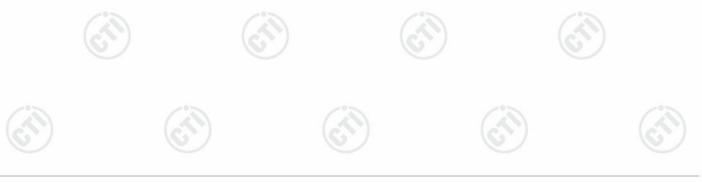
Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Software	Settings:							
Software:	nrfgostudio	nrfgostudio						
EUT Power Grade:	Default	Default						
Use test software to transmitting of the EU	set the lowest frequency JT.	, the middle freque	ncy and the highest	frequency keep				
Test Mode	Modulation Rate		Channel	Frequency(MHz)				
Mode a	GFSK	1Mbps	СН0	2402				
Mode b	GFSK	1Mbps	CH19	2440				
Mode c	GFSK	1Mbps	CH39	2480				


4.4 Test Environment

Operating Environme	nt:				
Radiated Spurious E	nissions:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		-05		
Atmospheric Pressure:	1010mbar				
RF Conducted:	·				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				13
		62)		(2)	62

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

	ociated nent name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Netbook	ASUSTek	/	FCC&CE	CTI	FCC ID
AE2	Phone	XIAOMI	MI 6X	1e8964f9	СТІ	FCC ID
AE3	Switching Adapter	SHENZHEN SANSON POWER TECHNOLOG Y CO.,LTD	TPA- 915200VU	1	СТІ	FCC ID

All tests were performed at:

4.6 Test Location

)

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
2	Dedicted Sources emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
7	DC power voltages	0.026%

5 Equipment List

		BT/WIFI/SRD R	RF test system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-28-2020	12-27-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(9)

	3M Se	mi/full-anechoic Cl	hamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024	
Receiver	R&S	ESCI7	100938-003	10-14-2021	10-13-2022	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A	- ()		
Cable line	Fulai(3M)	SF106	5216/6A			
Cable line	Fulai(3M)	SF106	5217/6A			

Page 10 of 42

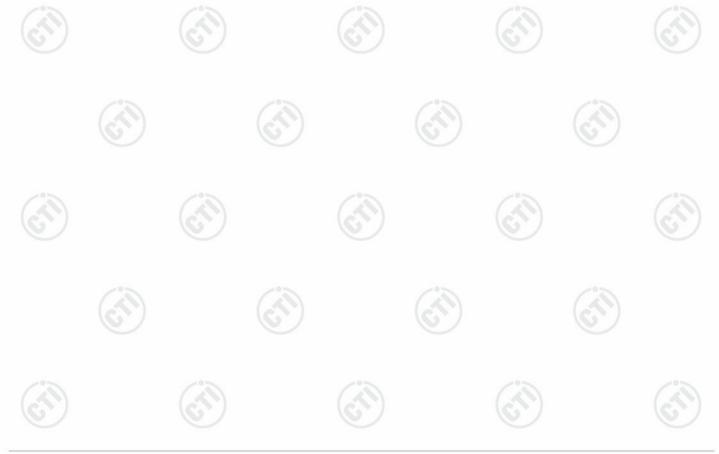
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS- LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845SE	12-31-2020	12-30-2021
Communication test set	R&S	CMW500	102898	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	(@	S) -
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		-
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	<u> </u>	- (2
Cable line	Times	EMC104-NMNM- 1000	SN160710		_
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(-
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	(9
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

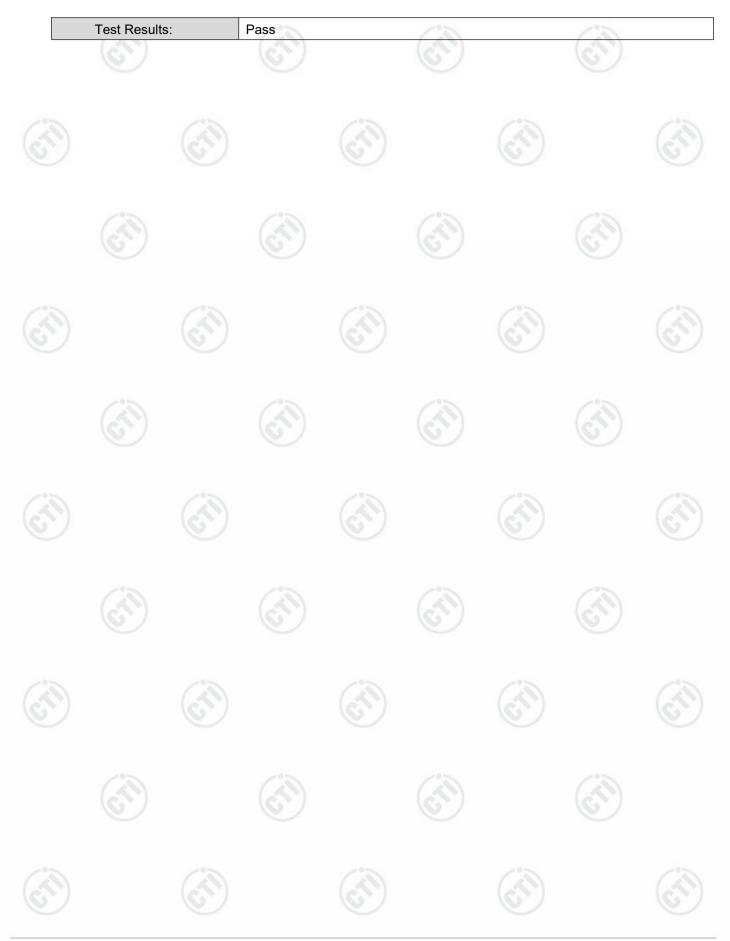
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos
The enterna is Monopole or	tonna. The best case gain of the antonna is 3 10dRi

The antenna is Monopole antenna. The best case gain of the antenna is 3.19dBi.

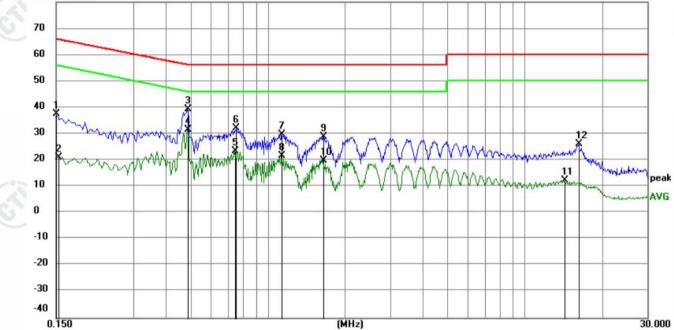
Page 12 of 42


6.2 Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 15.2	207	(6)
	Test Method:	ANSI C63.10: 2013	J	
	Test Frequency Range:	150kHz to 30MHz		
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto	- 515
2	Limit:		Limit (c	BuV)
3		Frequency range (MHz)	Quasi-peak	Average
		0.15-0.5	66 to 56*	56 to 46*
		0.5-5	56	46
		5-30	60	50
	Test Setup:	* Decreases with the logarithm	AE	Test Receiver
	Test Procedure:	 The mains terminal disturbution. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet striptions single LISN provided the rational ground reference plane. A placed on the horizontal ground reference plane. A placed on the horizontal ground reference plane. The EUT shall be 0.4 m vertical ground reference reference plane. The LISN unit under test and born mounted on top of the grout the closest points of the L and associated equipment In order to find the maximum 	to AC power source etwork) which provides cables of all other SN 2, which was bonder as the LISN 1 for the was used to connect in ating of the LISN was r aced upon a non-meta nd for floor-standing a round reference plane. th a vertical ground ref from the vertical ground plane was bonded N 1 was placed 0.8 m ded to a ground ref und reference plane. T LISN 1 and the EUT. A was at least 0.8 m from	through a LISN 1 (Line s a $50\Omega/50\mu$ H + 5Ω linear units of the EUT were ed to the ground reference unit being measured. A multiple power cables to a not exceeded. allic table 0.8m above the rrangement, the EUT was ference plane. The rear of und reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs his distance was between All other units of the EUT m the LISN 2.
3	Test Mode:	and all of the interface cal ANSI C63.10: 2013 on cor All modes were tested, only the report.	bles must be changed iducted measurement.	according to

Page 13 of 42

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



Page 14 of 42

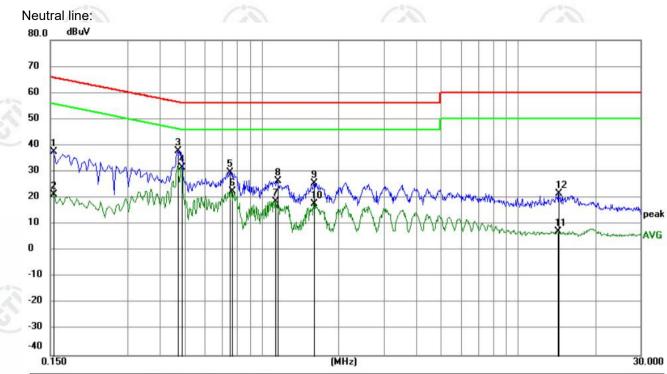
		5
		-

No. Mk.	Freq.	Level	Factor	ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	27.64	9.87	37.51	66.00	-28.49	peak	
2	0.1532	11.16	9.87	21.03	55.82	-34.79	AVG	
3	0.4875	29.33	9.95	39.28	56.21	- <mark>16.9</mark> 3	peak	
4 *	0.4875	21.53	9.95	31.48	46.21	-14.73	AVG	
5	0.7440	13.53	9.87	23.40	46.00	-22.60	AVG	
6	0.7530	22.28	9.86	32.14	56.00	-23.86	peak	
7	1.1310	20.03	9.82	29.85	56.00	-26.15	peak	
8	1.1310	11.78	9.82	21.60	46.00	-24.40	AVG	
9	1.6395	19.16	9.80	28.96	56.00	-27.04	peak	
10	1.6395	10.15	9.80	19.95	46.00	-26.05	AVG	
11	14.3250	2.49	9.91	12.40	50.00	-37.60	AVG	
12	16.2870	16.09	9.94	26.03	60.00	-33.97	peak	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Reading


Correct

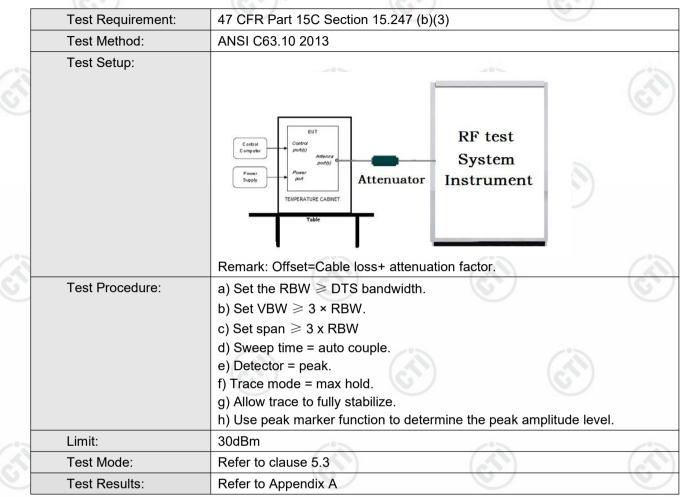
Measure-

3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 15 of 42

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1545	27.65	9.87	37.52	65.75	-28.23	peak	
2		0.1545	11.49	9.87	21.36	55.75	-34.39	AVG	
3		0.4695	27.78	9.96	37.74	56.52	-18.78	peak	
4	*	0.4875	21.71	9.95	31.66	46.21	-14.55	AVG	
5		0.7530	20.02	9.86	29.88	56.00	-26.12	peak	
6		0.7665	12.57	9.86	22.43	46.00	-23.57	AVG	
7		1.1310	8.95	9.82	18.77	46.00	-27.23	AVG	
8		1.1535	16.69	9.82	26.51	56.00	-29.49	peak	
9		1.5990	15.78	9.81	25.59	56.00	-30.41	peak	
10		1.5990	7.99	9.81	17.80	46.00	-28.20	AVG	
11		14.2575	-2.54	9.91	7.37	50.00	-42.63	AVG	
12		14.3745	11.87	9.91	21.78	60.00	-38.22	peak	

Remark:

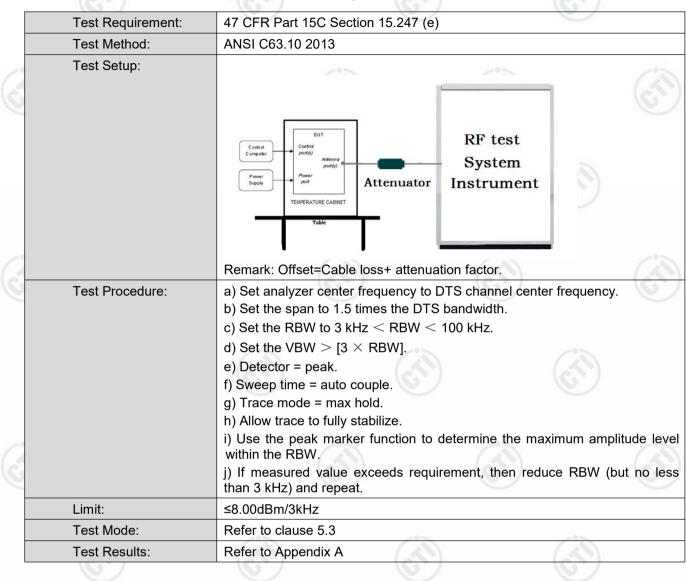

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 42

6.3Maximum Conducted Output Power

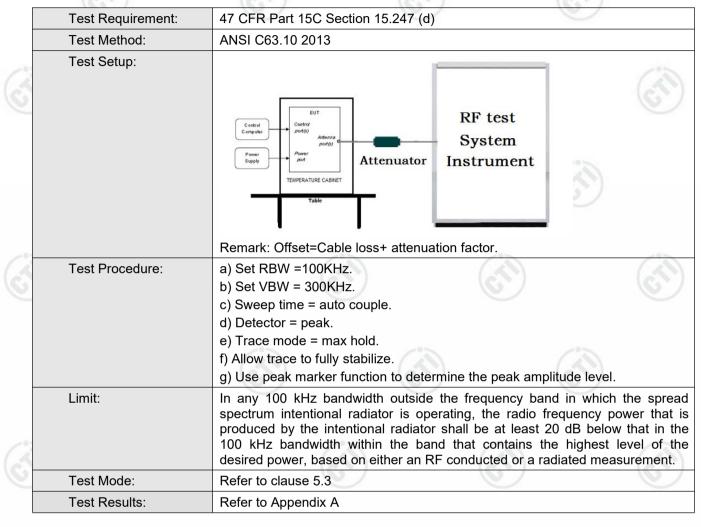
Page 17 of 42

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
	Test Method:	ANSI C63.10 2013
ŝ	Test Setup:	
		Control Computer Porter Supply Table RF test System Instrument
23		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper arr lower frequencies) that are attenuated by 6 dB relative to the maximum lever measured in the fundamental emission.
	Limit:	\geq 500 kHz
2	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix A



Page 18 of 42

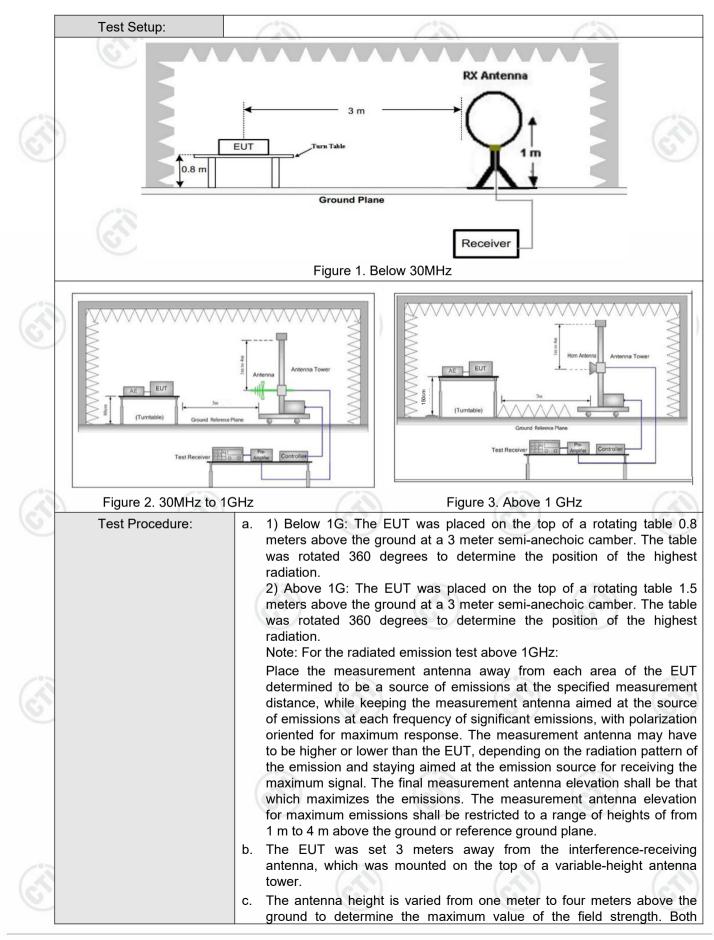
6.5Maximum Power Spectral Density



6.6Band Edge measurements and Conducted Spurious Emission

Page 20 of 42

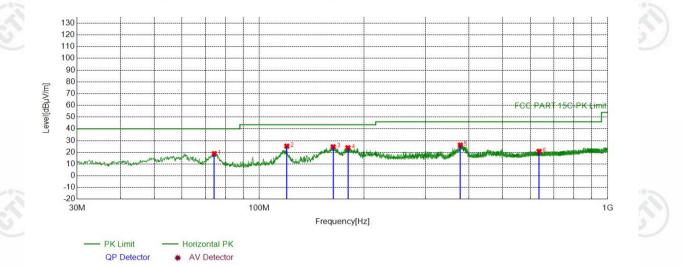
6.7 Radiated Spurious Emission & Restricted bands


				Ser /			6	/		
	Test Requirement:	47 CFR Part 15C Secti	on 15	.209 and 15	.205		C	C		
	Test Method:	ANSI C63.10 2013	I C63.10 2013							
100	Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)							
	Receiver Setup:	Frequency	0	Detector	RBW	1	VBW	Remark		
0		0.009MHz-0.090MH	lz	Peak	10kHz	z	30kHz	Peak		
		0.009MHz-0.090MH	lz	Average	10kHz	z	30kHz	Average		
		0.090MHz-0.110MH	lz	Quasi-peak	10kHz	z	30kHz	Quasi-peak		
		0.110MHz-0.490MH	lz	Peak	10kHz	z	30kHz	Peak		
		0.110MHz-0.490MH	lz	Average	10kHz	z	30kHz	Average		
		0.490MHz -30MHz	<u>.</u>	Quasi-peak	10kHz	z	30kHz	Quasi-peak		
		30MHz-1GHz		Quasi-peak	. 100 k⊢	lz	300kHz	Quasi-peak		
13				Peak	1MHz	<u>.</u>	3MHz	Peak		
S I		Above 1GHz	P) [Peak	1MHz		10kHz	Average		
	Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	F	Remark	Measuremer distance (m		
		0.009MHz-0.490MHz	24	00/F(kHz)	-		- / >	300		
		0.490MHz-1.705MHz	240	00/F(kHz)	-		-	30		
		1.705MHz-30MHz		30	-		<u>e</u>	30		
		30MHz-88MHz		100	40.0	Qu	lasi-peak	3		
		88MHz-216MHz		150	43.5	Qu	lasi-peak	3		
		216MHz-960MHz	9	200	46.0	Qu	lasi-peak	3		
6		960MHz-1GHz		500	54.0	Qu	lasi-peak	3		
		Above 1GHz		500	54.0	A	verage	3		
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20dE 20dE	3 above the nent under t	maximum est. This p	perr	mitted ave	erage emission		

CTI华测检测

Report No.: EED32N81308501

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	 (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positionin for Transmitting mode, and found the X axis positioning which it is th worst case. i. Repeat above procedures until all frequencies measured was complete.
	average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dl margin would be re-tested one by one using peak, quasi-peak of
	e. The test-receiver system was set to Peak Detect Function and Specifie Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst cas and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 36 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.

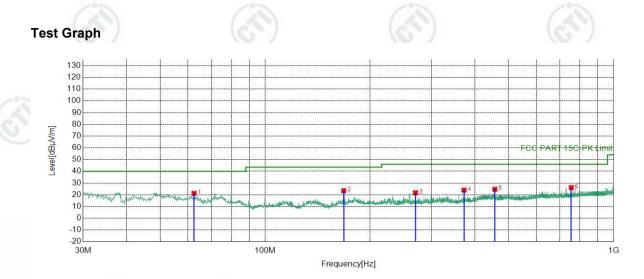

Page 23 of 42

Report No.: EED32N81308501

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode d was recorded in the report.

Test Graph


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	74.3334	-21.56	40.41	18.85	40.00	21.15	PASS	Horizontal	Peak
2	120.0250	-20.08	45.33	25.25	43.50	18.25	PASS	Horizontal	Peak
3	163.0003	-20.94	45.66	24.72	43.50	18.78	PASS	Horizontal	Peak
4	179.7830	-19.83	43.72	23.89	43.50	19.61	PASS	Horizontal	Peak
5	377.6828	-13.41	39.62	26.21	46.00	19.79	PASS	Horizontal	Peak
6	635.8256	-8.37	29.23	20.86	46.00	25.14	PASS	Horizontal	Peak

Page 24 of 42

					/				
NO	Freq.	Factor	Reading	Level	Limit	Margin [dB]	Result	Polarity	Remark
	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]				
1	62.4983	-19.07	40.33	21.26	40.00	18.74	PASS	Vertical	Peak
2	168.0448	-20.59	44.09	23.50	43.50	20.00	PASS	Vertical	Peak
3	270.0020	-16.15	37.89	21.74	46.00	24.26	PASS	Vertical	Peak
4	372.0562	-13.51	37.49	23.98	46.00	22.02	PASS	Vertical	Peak
5	456.0666	-11.61	36.32	24.71	46.00	21.29	PASS	Vertical	Peak
6	756.0206	-6.95	33.12	26.17	46.00	19.83	PASS	Vertical	Peak
67	D	0)	6)	6	/	6	7

Radiated Spurious Emission above 1GHz:

	Mode	:		BLE GFSK Tra	ansmitting		Channel:		2402 MHz	
2	NO	Freq. [MHz]	Facto [dB]	[dBuV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1225.6226	0.87	43.67	44.54	74.00	29.46	Pass	Н	PK
	2	1880.6881	3.89	42.07	45.96	74.00	28.04	Pass	Н	PK
ſ	3	4804.1203	-16.23	3 56.48	40.25	74.00	33.75	Pass	Н	PK
	4	7205.2804	-11.83	68.65	56.82	74.00	17.18	Pass	Н	PK
	5	7206.2804	-11.83	3 58.88	47.05	54.00	6.95	Pass	Н	AV
	6	10717.5145	-6.43	52.57	46.14	74.00	27.86	Pass	Н	PK
	7	14368.7579	0.70	49.53	50.23	74.00	23.77	Pass	Н	PK
3	8	1308.4308	1.09	43.41	44.50	74.00	29.50	Pass	V	PK
	9	1826.2826	3.48	42.67	46.15	74.00	27.85	Pass	V	PK
-	10	4646.1097	-16.64	4 57.84	41.20	74.00	32.80	Pass	V	PK
	11	7205.2804	-11.83	3 71.32	59.49	74.00	14.51	Pass	V	PK
	12	7207.2805	-11.83	3 59.97	48.14	54.00	5.86	Pass	V	AV
	13	10777.5185	-6.28	52.32	46.04	74.00	27.96	Pass	V	PK
	14	14398.7599	1.20	48.79	49.99	74.00	24.01	Pass	V	PK

	Mode	:		BLE GFSK	Transmitting		Channel:		2440 MH	Z
2	NO	Freq. [MHz]	Facto [dB]	r Readin [dBµV]		Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1184.4184	0.81	43.74	44.55	74.00	29.45	Pass	Н	PK
	2	2079.5080	4.81	41.95	46.76	74.00	27.24	Pass	н	PK
	3	4843.1229	-16.22	2 55.85	39.63	74.00	34.37	Pass	н	PK
	4	7319.2880	-11.66	67.61	55.95	74.00	18.05	Pass	Н	PK
	5	7320.2880	-11.65	5 56.45	44.80	54.00	9.20	Pass	н	AV
	6	10258.4839	-6.74	52.72	45.98	74.00	28.02	Pass	Н	PK
	7	14383.7589	0.95	49.60	50.55	74.00	23.45	Pass	н	PK
0	8	1328.0328	1.15	43.34	44.49	74.00	29.51	Pass	V	PK
	9	1740.2740	3.08	42.98	46.06	74.00	27.94	Pass	V	PK
	10	5028.1352	-15.78	3 56.96	41.18	74.00	32.82	Pass	V	PK
	11	7320.2880	-11.65	5 71.04	59.39	74.00	14.61	Pass	V	PK
	12	7321.2881	-11.65	5 58.21	46.56	54.00	7.44	Pass	V	AV
	13	10293.4862	-6.50	52.57	46.07	74.00	27.93	Pass	V	PK
	14	14410.7607	1.07	49.99	51.06	74.00	22.94	Pass	V	PK

Page 26 of 42

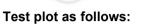
		10		20		10.70				
	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1392.2392	1.36	43.35	44.71	74.00	29.29	Pass	Н	PK
	2	1812.0812	3.37	42.03	45.40	74.00	28.60	Pass	Н	PK
	3	4855.1237	-16.21	55.40	39.19	74.00	34.81	Pass	Н	PK
	4	7439.2960	-11.34	67.75	56.41	74.00	17.59	Pass	Н	PK
	5	7441.2961	-11.34	56.61	45.27	54.00	8.73	Pass	Н	AV
	6	11200.5467	-6.43	53.63	47.20	74.00	26.80	Pass	Н	PK
	7	14329.7553	0.05	49.91	49.96	74.00	24.04	Pass	Н	PK
	8	1422.2422	1.41	43.17	44.58	74.00	29.42	Pass	V	PK
	9	1862.6863	3.75	41.39	45.14	74.00	28.86	Pass	V	PK
	10	4855.1237	-16.21	55.56	39.35	74.00	34.65	Pass	V	PK
3	11	7440.2960	-11.34	70.29	58.95	74.00	15.05	Pass	V	PK
	12	7441.2961	-11.34	60.05	48.71	54.00	5.29	Pass	V	AV
-	13	10993.5329	-6.17	52.25	46.08	74.00	27.92	Pass	V	PK
	14	14321.7548	-0.08	50.70	50.62	74.00	23.38	Pass	V	PK

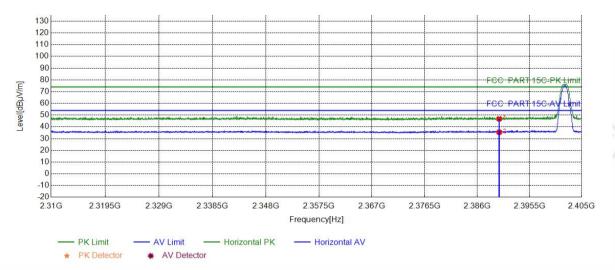
Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Factor

- Factor=Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.





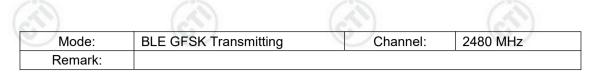
Restricted bands:

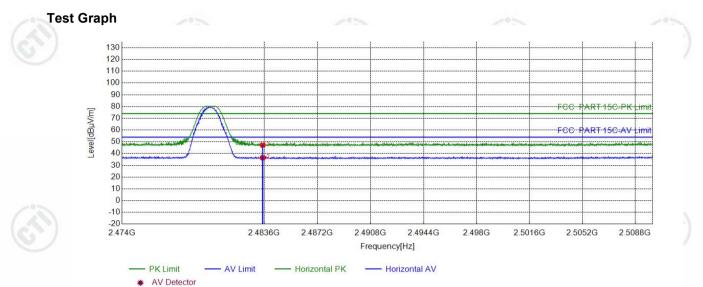


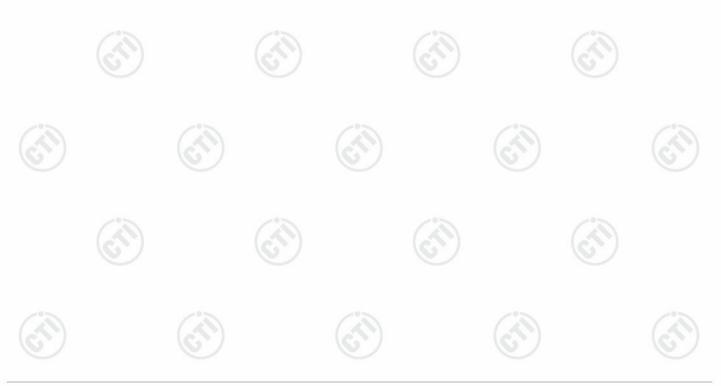
Mode:	BLE GFSK Transmitting	Channel:	2402 MHz
Remark:		6)

Test Graph

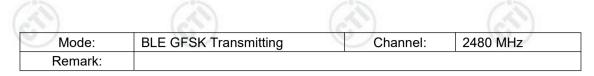
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
C	1	2390.0000	5.77	41.07	46.84	74.00	27.16	PASS	Horizontal	PK
	2	2390.0000	5.77	29.64	35.41	54.00	18.59	PASS	Horizontal	AV

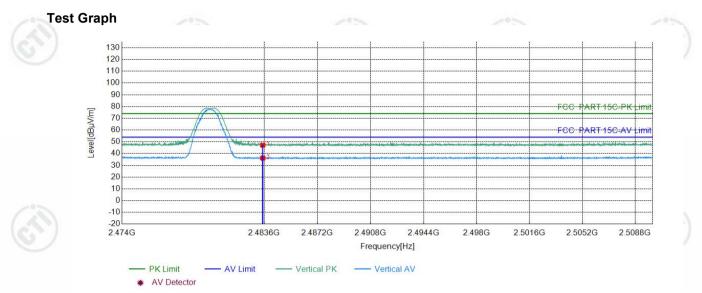

Level[dBµV/m]	a sugar	his could have been been and the state	and the second state of th	Harden and a strange of the state	and the state of t	and the second second second	الالميديانية مركب من الأكثر من المركب من الأكثر من	Service of the servic	sisters with the and		an addition of the state	ana ang tang tang tang tang tang tang ta	- Abruptorium Beginnetto	
Ľ	20					Managara and a state of the sta						······		and have
	20													
	10													
	-20													
	2.31G	2.31	195G 2	.329G	2.33850	3 2.3	48G 2.3	575G	2.367G	2.3765G	2.38	6G	2.3955G	2.405G
							Frequ	ency[Hz]						
	-	- PK Lin	nit —	AV Limit		Vertical Pk	< <u> </u>	rtical AV						
			tector											


	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	40.58	46.35	74.00	27.65	PASS	Vertical	PK
100	2	2390.0000	5.77	30.11	35.88	54.00	18.12	PASS	Vertical	AV
)	((\mathcal{A})		(2)	()		(2)



Page 29 of 42




				- A.S.						
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folding	Remark
	1	2483.5000	6.57	40.71	47.28	74.00	26.72	PASS	Horizontal	PK
100	2	2483.5000	6.57	29.91	36.48	54.00	17.52	PASS	Horizontal	AV
	9	(2			7	0	0		

Page 30 of 42

	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	40.64	47.21	74.00	26.79	PASS	Vertical	PK
_	2	2483.5000	6.57	29.59	36.16	54.00	17.84	PASS	Vertical	AV
0.7				•	1.0.1					

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Factor

Factor=Antenna Factor + Cable Factor – Preamplifier Factor

