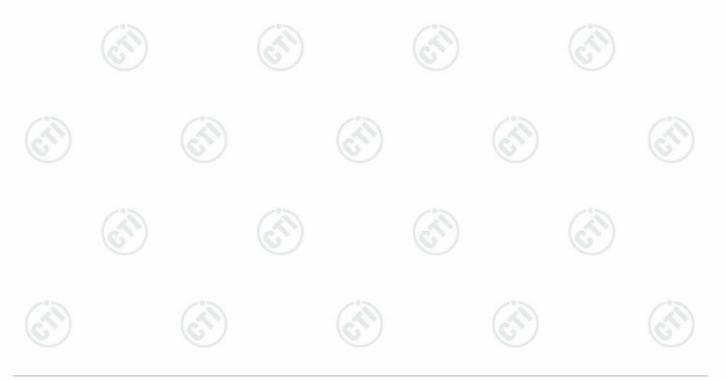


2 Version

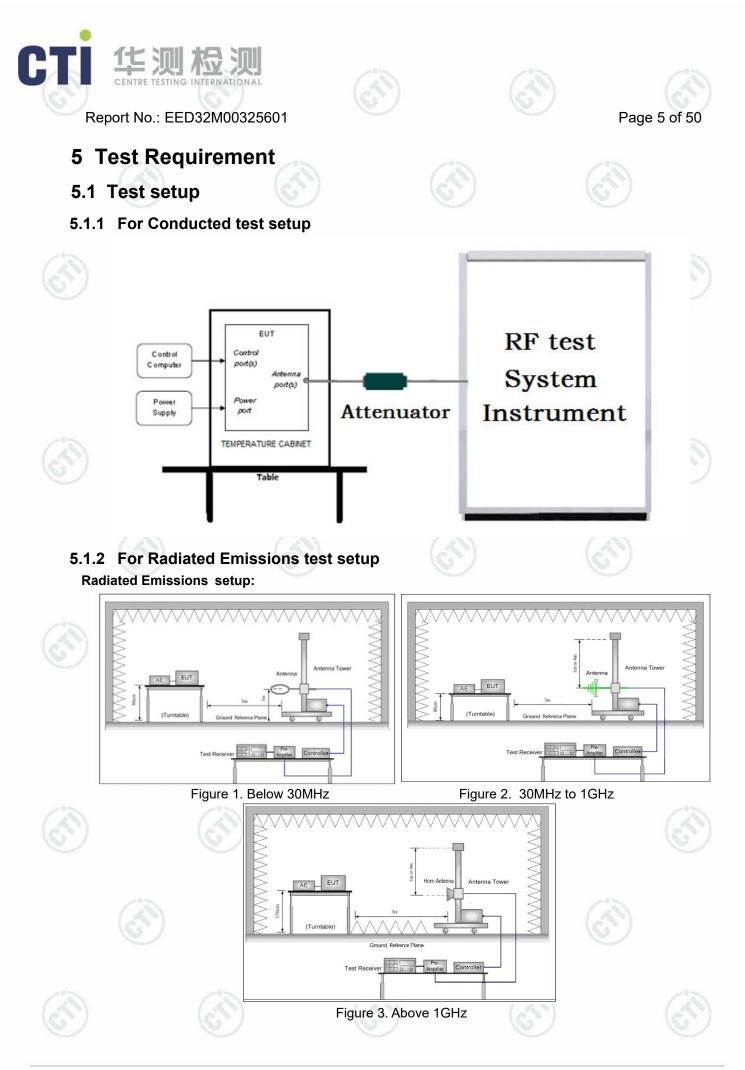
Ve	ersion No.		Date	(3)	Descript	ion	
	00	No	ov. 09, 2020	\bigcirc	Origina		
		Ì			Ì		



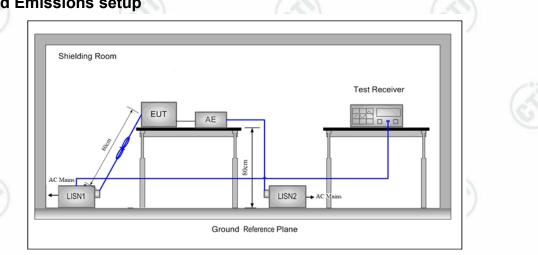
3 Test Summary

Test Item	Test Item Test Requirement		Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

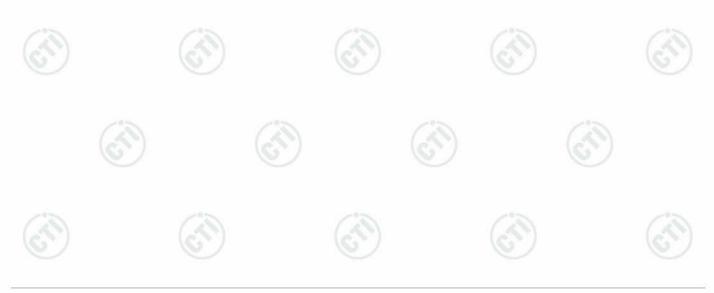
Test according to ANSI C63.4-2014 & ANSI C63.10-2013. Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.



4 Content 1 COVER PAGE 6.6 DEVIATION FROM STANDARDS. 6.9 Measurement Uncertainty (95% confidence levels, k=2)......9 PHOTOGRAPHS OF TEST SETUP......42



5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:	e la		e
Temperature:	23 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010mbar		
0.2	0.3	3 67	

5.3 Test Condition

Test channel:

12	Test Mode	Tx/Rx	RF Channel			
(AN	Test Mode		Low(L)	Middle(M)	High(H)	
C	050%		Channel 0	Channel 19	Channel 39	
GFSI	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	Keep the EUT in transmitting moder rate.	e with all kind of m	odulation and a	Ill kind of data	
	(\mathbb{C}^{n})	(67)	0	6	7	

Report No.: EED32M00325601

6 General Information

6.1 Client Information

Applicant:	Shenzhen Viatom Technology Co., Ltd.
Address of Applicant:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China.
Manufacturer:	Shenzhen Viatom Technology Co., Ltd.
Address of Manufacturer:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China.
Factory:	Shenzhen Viatom Technology Co., Ltd.
Address of Factory:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China.

6.2 General Description of EUT

Product Name:	Pulse Oximeter			
Model No.(EUT):	PO2			
Trade mark:	N/A			
EUT Supports Radios application:	2402MHz to 2480MHz	G		(C)
Power Supply:	DC 5V			
Sample Received Date:	Oct. 24, 2020		12	
Sample tested Date:	Oct. 24, 2020 to Nov. 5, 2020		(\mathcal{A})	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	BLE	6	1	
Modulation Technique:	DSSS	6	5)	(C)
Modulation Type:	GFSK			
Number of Channel:	40			
Test Power Grade:	Default	100	13	N
Test Software of EUT:	DTM Tester	(\mathcal{C})	6)
Antenna Type and Gain:	Chip antenna; 3.45dBi	\sim		
Test Voltage:	DC 5V			

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequenc
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MH
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MH
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MH
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MH:
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MH
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MH:
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	ociated nent name	Manufacture	model	S/N serial number	Supplied by	Certification
AE	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

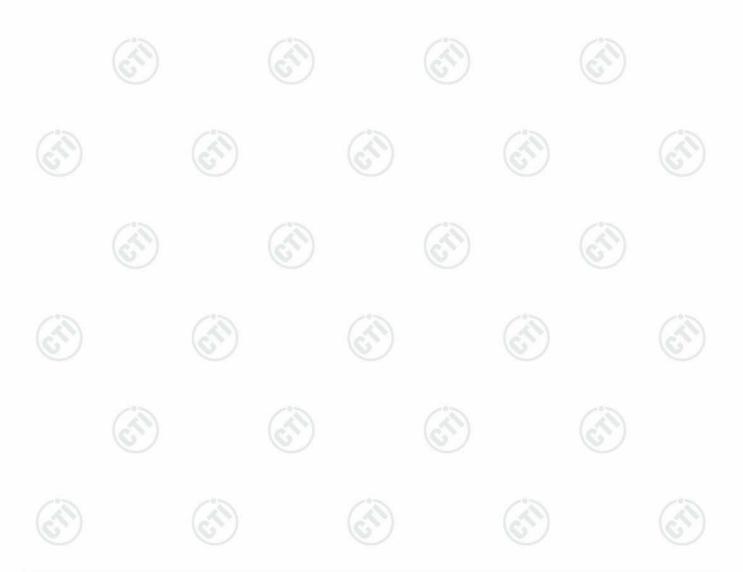
6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	$(\underline{\circ})$		9
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		07	(0)
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(C)	(9

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021	
Temperature/ Humidity Indicator	Defu	TH128		/	- 6	
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021	
Barometer	changchun	DYM3	1188			



Page 11 of 50

	3M 3	Semi/full-anecho	ic Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	трк	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021	
Receiver	R&S	ESCI7	100938- 003	10-16-2020	10-15-2021	
Multi device Controller	maturo	NCD/070/107 11112	(2 3)		(A)	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A			
Cable line	Fulai(3M)	SF106	5216/6A	1		
Cable line	Fulai(3M)	SF106	5217/6A	1		

Page 12 of 50

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		A
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		<u>e</u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		- /
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		10
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(6 ⁵)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

8 Radio Technical Requirements Specification

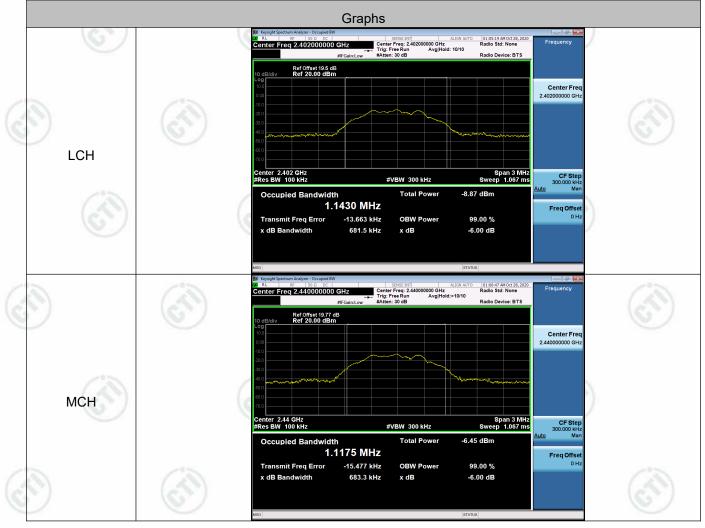
Reference documents for testing:

No.	Identity	Document Title	
1	FCC Part15C	Subpart C-Intentional Radiators	
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices	(2)
)	67		ST)

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Duty cycle Test Case: Duty Cycle Mode: BLE Ant: Ant1 Voltage: VN Channel: 2402 Temperature: TN **Result:PASS** Value:15%;0.0939999999375ms Start Time: 2020/10/27 22:41:39 End Time: 2020/10/27 22:41:47 📁 Keysight Spectrum Analyzer - Swept SA 01:21:42 AM Oct 28, 2020 RI SENSE:INT ALIGN AUTO Frequency Center Freq 2.402000000 GHz TRACE 1 2 3 4 5 6 TYPE WWWWW DET P P P P P P #Avg Type: RMS Trig: Free Run PNO: Fast IFGain:Low #Atten: 30 dB Auto Tune Mkr3 833.5 µs -33.73 dBm Ref 20.00 dBm 10 dB/div Log **Center Freq** 2.402000000 GHz Start Freq 32 2.402000000 GHz Stop Freq 2.402000000 GHz Span 0 Hz Sweep 50.13 ms (8001 pts) Center 2.402000000 GHz **CF** Step Res BW 1.0 MHz #VBW 1.0 MHz 1.000000 MHz Man <u>Auto</u> FUNCTION FUNCTION WIDTH FUNCTION VALUE (A) 94.00 us (Δ) 0.13 dB -33.75 dBm -33.73 dBm 206.8 µs 833.5 µs Freq Offset 0 Hz STATUS



Appendix A): 6dB Occupied Bandwidth

Test Resu	<u>t</u> ((2)
Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.6815	PASS
BLE	MCH	0.6833	PASS
BLE	НСН	0.6926	PASS

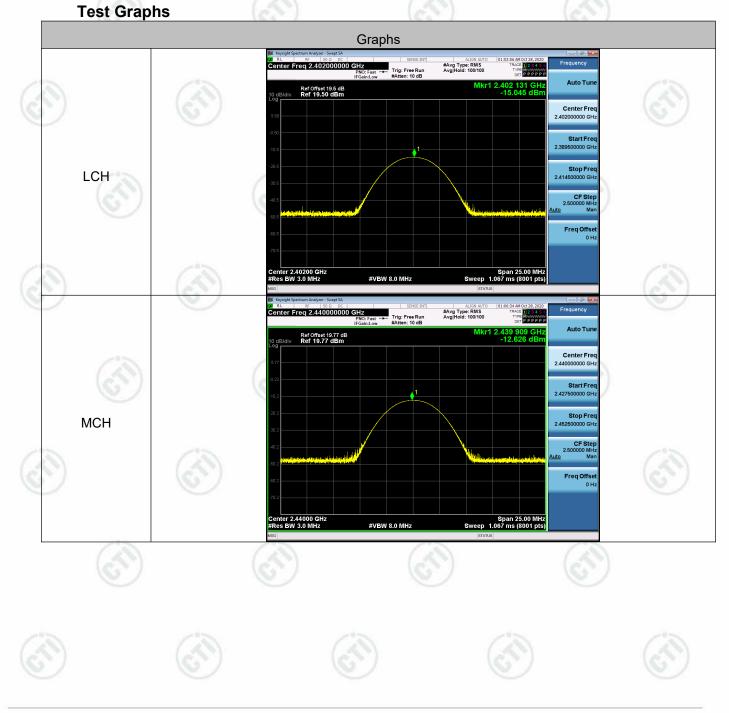
Test Graphs

Г

Page 16 of 50

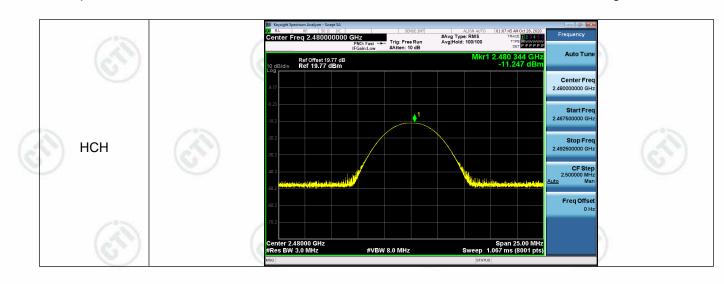
(1)	~~~~		480000000 GHz	stree Ford 2.48000000 GHz Free Ford Avg(Hold:> ten: 30 dB	191 M/TO 01-07-57 M/Oct 28, 2020 10/10 Radio Std: None Radio Device: BTS	Center Freq 2.48000000 GHz	
нсн		Center 2.48 GH #Res BW 100 k Occupied I Transmit Fr x dB Bandw	Bandwidth 1.1064 MHz eq Error -14.675 kHz	#VBW 300 kHz Total Power OBW Power x dB	Span 3 MHz Sweep 1.067 ms -4.95 dBm 99.00 % -6.00 dB	CF Step 300.000 KH2 Man Freq Offset 0 Hz	

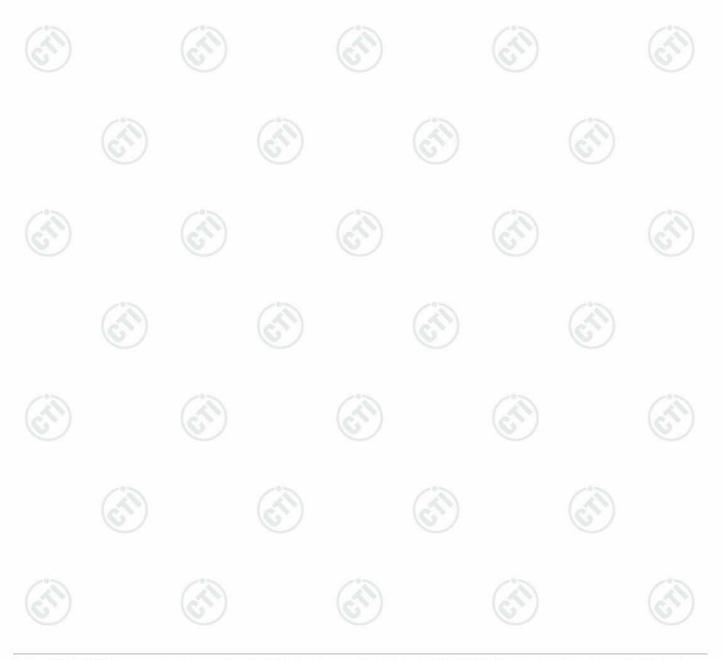
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Appendix B): Conducted Peak Output Power

	Test Result			
-	Mode	Channel	Conduct Peak Power[dBm]	Verdict
0	BLE	LCH	-15.045	PASS
\mathcal{V}	BLE	МСН	-12.626	PASS
	BLE	НСН	-11.247	PASS



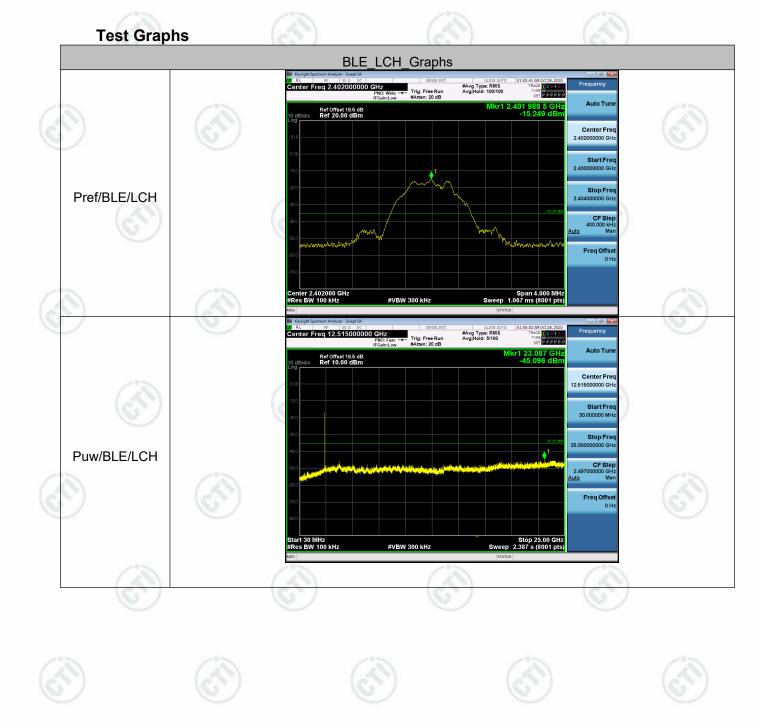


Pa

Appendix C): Band-edge for RF Conducted Emissions

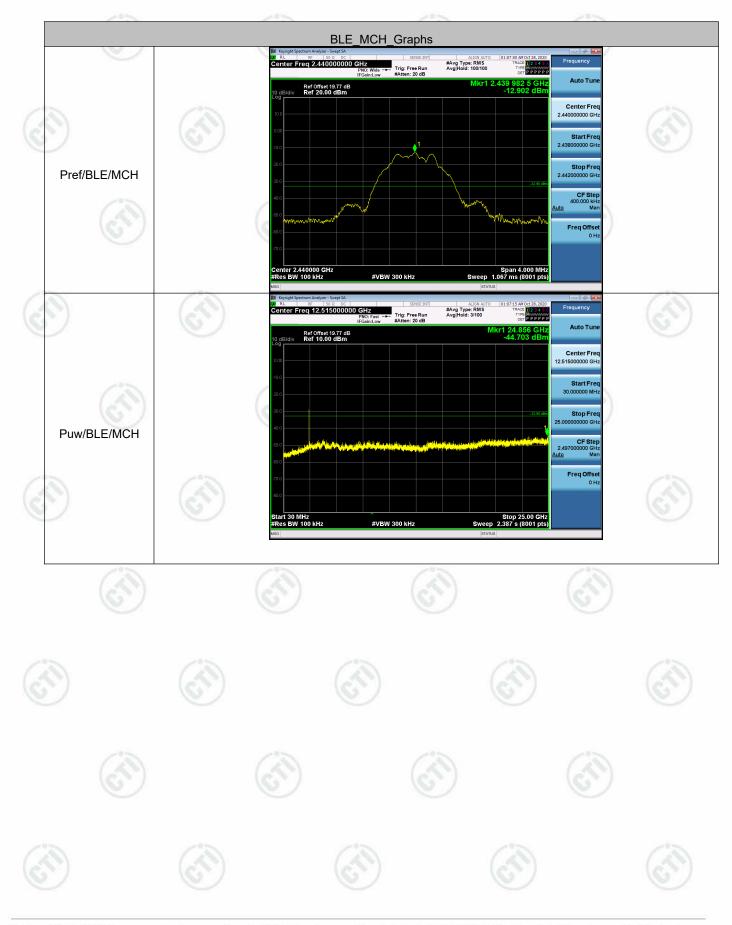
Resu	It Table	(c)	(C)	(S)	
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-15.156	-60.938	-35.16	PASS
BLE	нсн	-11.555	-59.743	-31.56	PASS

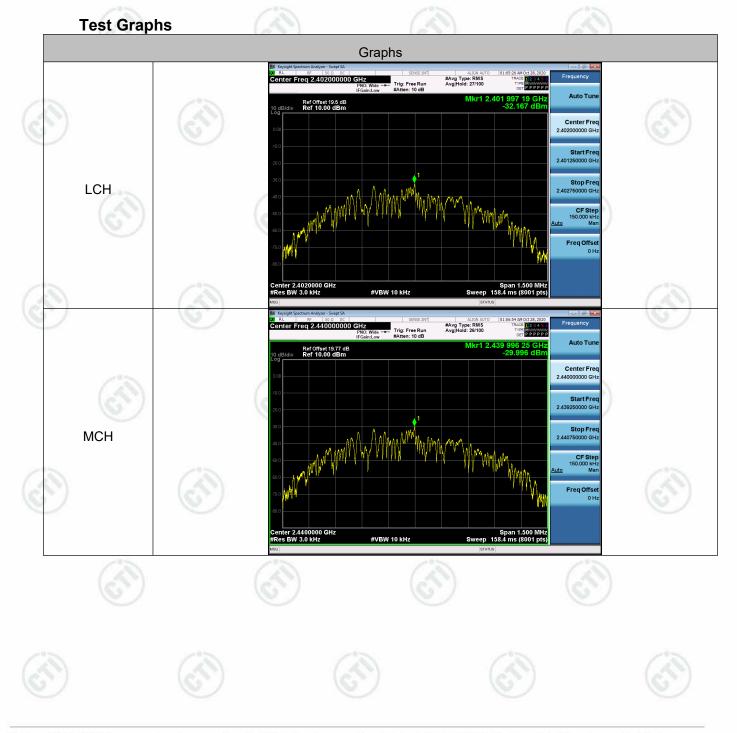
Test Graphs



Appendix D): RF Conducted Spurious Emissions

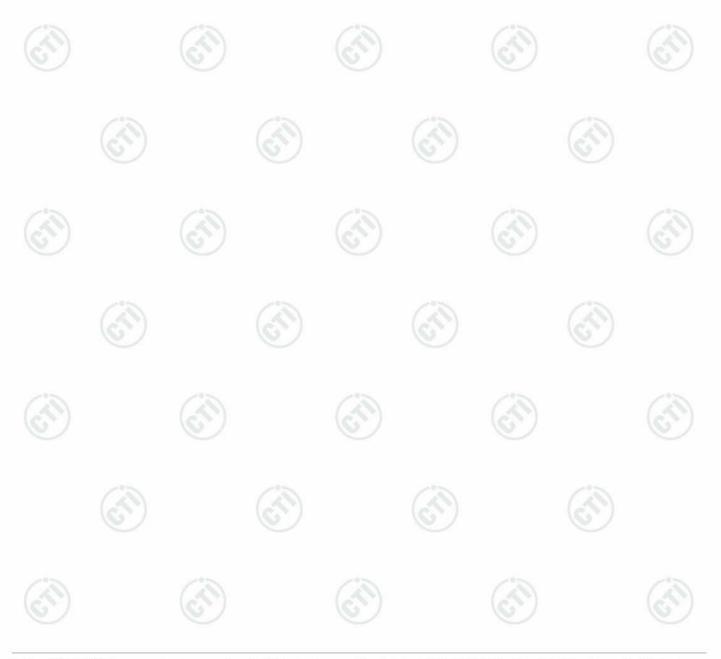
Result 1	[able					
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict		
BLE	LCH	-15.249	<limit< td=""><td>PASS</td></limit<>	PASS		
BLE	МСН	-12.902	<limit< td=""><td>PASS</td></limit<>	PASS		
BLE	НСН	-11.085	<limit< td=""><td>PASS</td></limit<>	PASS		





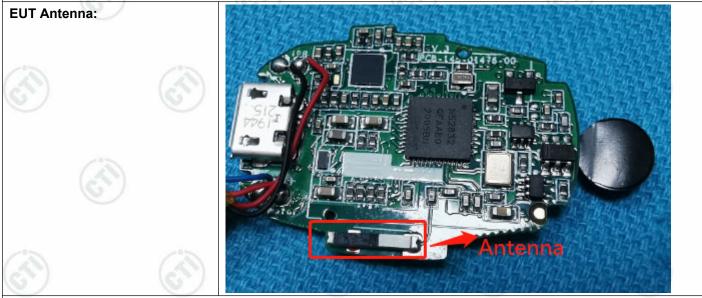
Appendix E): Power Spectral Density

_	Result Table)		
	Mode	Channel	PSD [dBm]	Verdict
13	BLE	LCH	-32.167	PASS
Ľ	BLE	МСН	-29.996	PASS
	BLE	НСН	-28.448	PASS

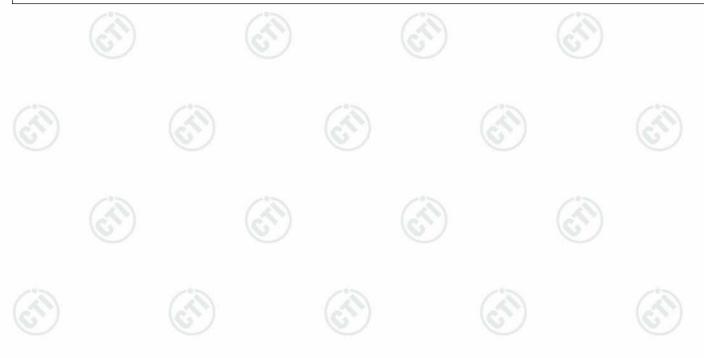


(A)

Page 24 of 50


Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

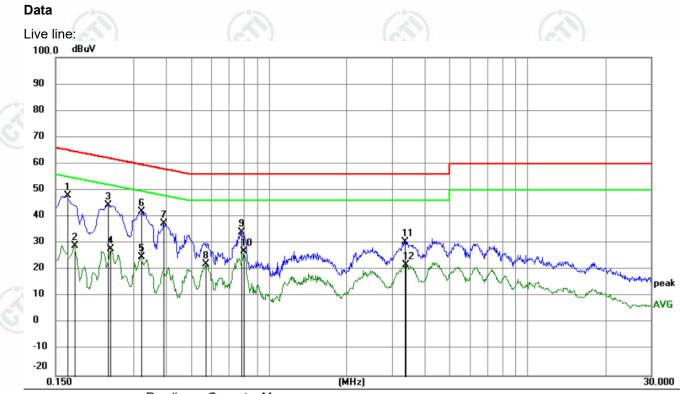
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.45dBi.

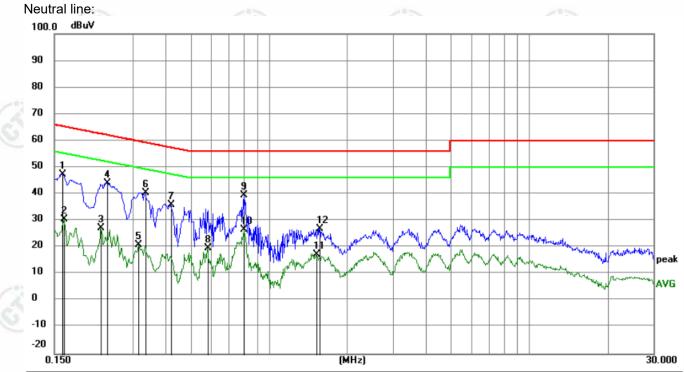
Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz					
	1)The mains terminal disturbar	ice voltage test was co	onducted in a shield	led room.			
	2) The EUT was connected to						
	Stabilization Network) whic						
	power cables of all other u						
	which was bonded to the graded for the unit being measured						
	multiple power cables to a s						
	exceeded.		-				
	3)The tabletop EUT was place						
	reference plane. And for flo horizontal ground reference		ent, the EUT was p	laced on			
	4) The test was performed with						
	EUT shall be 0.4 m from the						
	reference plane was bonde						
	1 was placed 0.8 m from the boundary of the unit under test and bonded to ground reference plane for LISNs mounted on top of the ground reference						
	plane. This distance was between the closest points of the LISN 1 and the EU						
	All other units of the EUT a LISN 2.	nd associated equipm	ent was at least 0.8	3 m from			
	5) In order to find the maximum						
(S^)	of the interface cables r conducted measurement.	nust be changed ad	ccording to ANSI	C63.10			
Limit:		Limit (d	BµV)	7			
	Frequency range (MHz)	Quasi-peak	Average	-			
		001 50*	501 40*	1000			
	0.15-0.5	66 to 56*	56 to 46*	(A)			
	0.15-0.5	56 to 56*	46	(A)			
		1.0.0		(T)			
	0.5-5	56 60 with the logarithm of t	46 50 he frequency in the	e range 0			


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

						• • • • •	-,			
-	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
	1 *	0.1666	37.95	9.87	47.82	65.13	-17.31	peak		
12	2	0.1768	19.06	9.87	28.93	54.63	-25.70	AVG		
6	3	0.2400	34.54	9.95	44.49	62.10	-17.61	peak		
S.	4	0.2444	17.92	9.96	27.88	51.95	-24.07	AVG		
-	5	0.3209	14.77	10.05	24.82	49.68	-24.86	AVG		
-	6	0.3234	31.90	10.05	41.95	59.62	-17.67	peak		
-	7	0.3930	27.33	9.98	37.31	58.00	-20.69	peak		
-	8	0.5728	12.05	10.04	22.09	46.00	-23.91	AVG		
-	9	0.7799	24.20	9.86	34.06	56.00	-21.94	peak		
-	10	0.8024	16.99	9.85	26.84	46.00	-19.16	AVG		
13	11	3.3494	20.69	9.79	30.48	56.00	-25.52	peak		
6	12	3.3809	12.17	9.79	21.96	46.00	-24.04	AVG		
-										

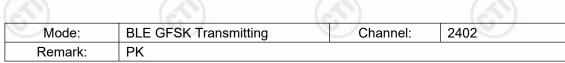


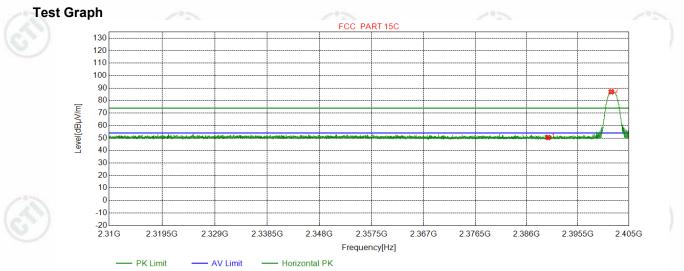
	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.1615	37.55	9.87	47.42	65.39	-17.97	peak	
	2	0.1635	20.81	9.87	30.68	55.28	-24.60	AVG	
Ť	3	0.2265	17.29	9.92	27.21	52.58	-25.37	AVG	
3	4	0.2403	34.16	9.95	44.11	62.09	-17.98	peak	
2	5	0.3165	10.79	10.05	20.84	49.80	-28.96	AVG	
	6	0.3345	30.55	10.04	40.59	59.34	-18.75	peak	
	7	0.4200	26.06	9.97	36.03	57.45	-21.42	peak	
	8	0.5818	9.64	10.05	19.69	46.00	-26.31	AVG	
	9 *	0.8024	29.69	9.85	39.54	56.00	-16.46	peak	
	10	0.8024	16.84	9.85	26.69	46.00	-19.31	AVG	
ľ	11	1.5268	7.59	9.81	17.40	46.00	-28.60	AVG	
2	12	1.5628	17.11	9.81	26.92	56.00	-29.08	peak	
5	J		(S)]			57			(G.) (G.)

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)


Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	ζ.
		Peak	1MHz	3MHz	Peak	
0	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	 Below 1GHz test proced Test method Refer as KDI a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximu polarizations of the ar d. For each suspected e the antenna was tune was turned from 0 deg e. The test-receiver syst 	ure as below: B 558074 D01 v0 on the top of a ro echoic camber. The of the highest ra- eters away from 5 op of a variable-h varied from one um value of the file thenna are set to mission, the EUT d to heights from grees to 360 degr	4, Section tating table table wa adiation. the interfer neight ante meter to for eld strengtl make the r was arran 1 meter to rees to find	12.1 e 0.8 meter as rotated 3 ence-recei nna tower. our meters h. Both hor neasureme aged to its 4 meters the maxin	rs above the g 360 degrees t iving antenna above the gra rizontal and v ent. worst case ar and the rotata num reading.	i, wl oun erti nd t able
	 Bandwidth with Maxin f. Place a marker at the frequency to show conbands. Save the spect 	num Hold Mode. end of the restric mpliance. Also m trum analyzer plo	easure any	emission	s in the restri	
	Bandwidth with Maxin f. Place a marker at the frequency to show co	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel dure as below: we is the test site mber change form a 1 meter and tab owest channel , the ements are perform of found the X ax	easure any ot. Repeat t e, change fi n table 0.8 le is 1.5 m the Highes rmed in X, tis position	rom Semi- meter to 1 eter). t channel Y, Z axis p ing which i	s in the restric ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas	dula nami ove
Limit:	 Bandwidth with Maxin f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Chana 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, and j. Repeat above proced 	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab owest channel , the ements are perform of found the X ax ures until all freque	easure any ot. Repeat t e, change fi n table 0.8 le is 1.5 m the Highes rmed in X, tis position uencies me	v emission for each po rom Semi- meter to 1 eter). t channel Y, Z axis p ing which i easured wa	s in the restric ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	dula nami ove
Limit:	 Bandwidth with Maxin f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proceding. Different between about to fully Anechoic Chara 18GHz the distance is h. Test the EUT in the lit. The radiation measure Transmitting mode, and 	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel dure as below: we is the test site mber change form a 1 meter and tab owest channel , the ements are perform of found the X ax	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 m the Highes rmed in X, tis position uencies me (m @3m)	v emission for each po rom Semi- meter to 1 eter). t channel Y, Z axis p ing which i easured wa Rei	s in the restrictower and mode Anechoic Ch .5 meter(Aborno and the second positioning for t is worse case as complete.	dula nami ove
Limit:	Bandwidth with Maxin f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Charan 18GHz the distance is h. Test the EUT in the lit. ii. The radiation measure Transmitting mode, and j. Frequency Frequency	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab owest channel , the ements are perform d found the X ax ures until all frequent Limit (dBµV/ 40.0	easure any ot. Repeat the c, change fin n table 0.8 le is 1.5 me the Highes rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 eter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	s in the restric ower and mod Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete. mark eak Value	dula nami ove
Limit:	Bandwidth with Maxin f. Place a marker at the frequency to show conbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Char 18GHz the distance is h. Test the EUT in the li. i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel ure as below: we is the test site mber change form a 1 meter and tab owest channel , the ements are perform of found the X ax ures until all frequency Limit (dBµV/	easure any ot. Repeat t e, change fi n table 0.8 le is 1.5 m the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 eter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	s in the restrictower and models of the second mode	dula nami ove
Limit:	Bandwidth with Maxin f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, an j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel nure as below: twe is the test site mber change form a 1 meter and tab owest channel , t ements are perfor and found the X ax ures until all freque Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 m the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 eter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	s in the restriction of the second se	dula nami ove
Limit:	Bandwidth with Maxin f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Chan 18GHz the distance is h Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel ure as below: ove is the test site mber change form a 1 meter and tab owest channel , t ements are perford found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5 46.0	easure any ot. Repeat the c, change fin n table 0.8 le is 1.5 me the Highes rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 eter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	s in the restrictower and mode Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete. mark eak Value eak Value eak Value eak Value	dula nami ove
Limit:	Bandwidth with Maxin f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, an j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	num Hold Mode. end of the restrict mpliance. Also m trum analyzer plot channel nure as below: twe is the test site mber change form a 1 meter and tab owest channel , t ements are perfor and found the X ax ures until all freque Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 m the Highes rmed in X, tis position uencies me (m @3m) 0	v emissions for each po rom Semi- meter to 1 eter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po Averag	s in the restriction of the second se	dula nami ove

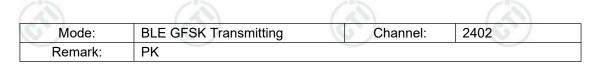


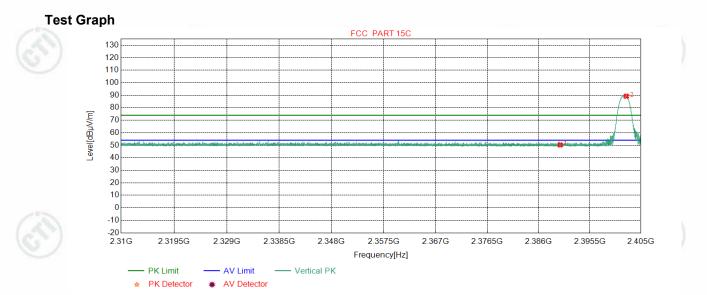
Test plot as follows:

★ PK Detector * AV Detector

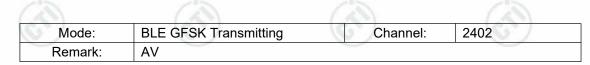
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.80	50.30	74.00	23.60	Pass	Horizontal
2	2401.7254	32.26	13.31	-43.12	84.10	86.55	74.00	-13.01	Pass	Horizontal
6	°)	6	S)	-	(\mathcal{E})		65)		(2)

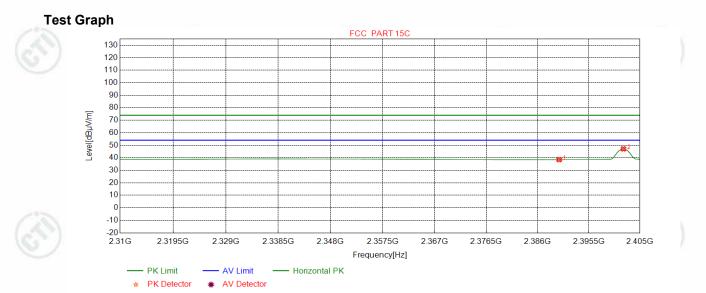
Hotline: 400-6788-333



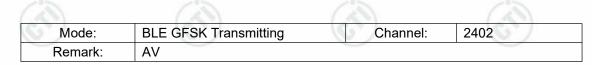


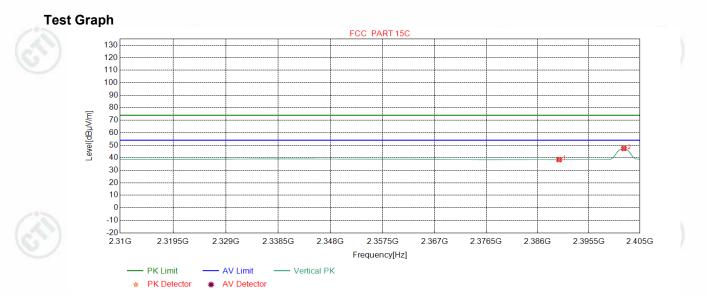
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.18	50.68	74.00	23.72	Pass	Vertical
2	2402.2765	32.26	13.31	-43.12	74.40	76.85	74.00	-15.21	Pass	Vertical
12	S	10	A							





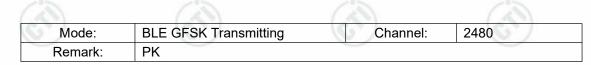
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.03	38.53	54.00	15.47	Pass	Horizontal
2	2401.9281	32.26	13.31	-43.12	44.63	47.08	54.00	6.92	Pass	Horizontal
12	S	10	~	•			(1)			

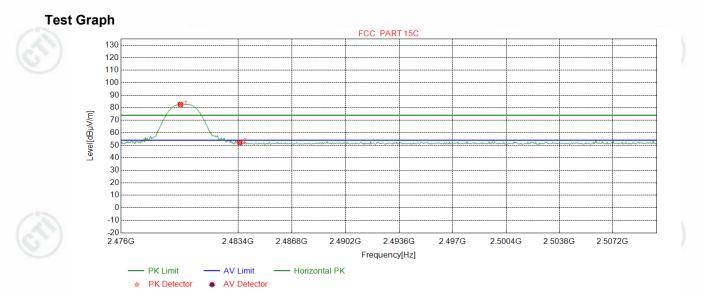




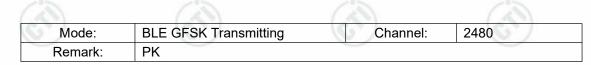
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.04	38.54	54.00	15.46	Pass	Vertical
2	2402.0295	32.26	13.31	-43.12	44.96	47.41	54.00	6.59	Pass	Vertical
12	N	64	A							

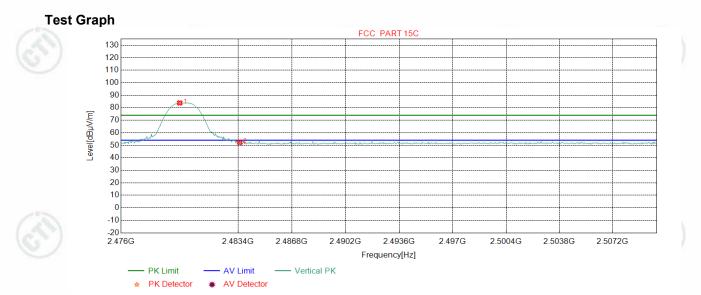
Hotline: 400-6788-333



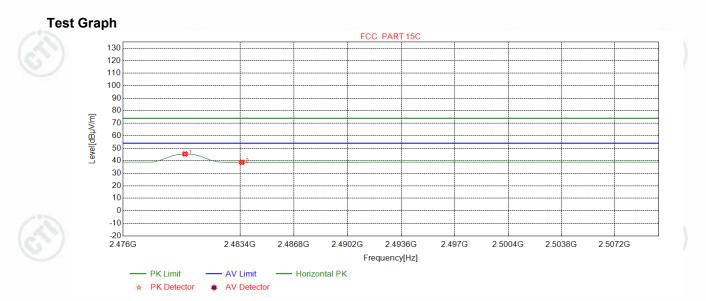


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	79.98	82.64	74.00	-8.64	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.48	52.13	74.00	21.87	Pass	Horizontal
12		1.1	- A.							



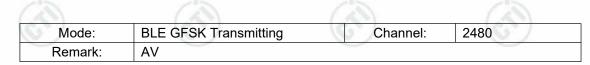


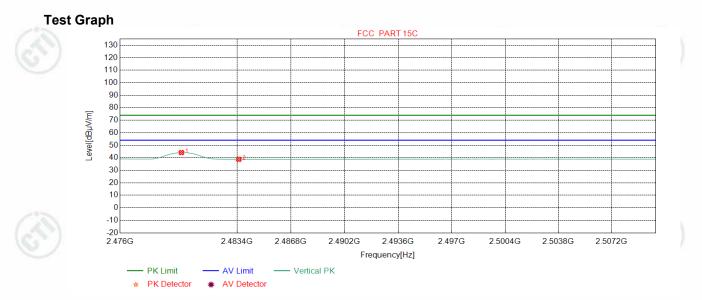
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7021	32.37	13.39	-43.10	81.15	83.81	74.00	-9.81	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.55	52.20	74.00	21.80	Pass	Vertical
12	0	1.1				•				



Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		\sim

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	43.47	46.13	54.00	7.87	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.09	38.74	54.00	15.26	Pass	Horizontal
12	2	10	1							





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	43.86	46.52	54.00	7.48	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.08	38.73	54.00	15.27	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
2	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
$(\mathcal{C}^{(n)})$		Peak	1MHz	3MHz	Peak	
\sim	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:			•		·	
Test method Refer a a. The EUT was pla	Tocedure as below: Is KDB 558074 D01 v04, Se Inced on the top of a rotating ta e was rotated 360 degrees to	able 0.8 meters a				iechoic
	t 3 meters away from the inte					top of a
of the field streng	t is varied from one meter t th. Both horizontal and vertic	al polarizations o	of the anten	na are set t	to make the mea	asuremen
d Ear agab cuchad	ad amiccian the LU was a	rranded to ite wa	ret ooco one	thon tho c	ntonno woo tun	od to

- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

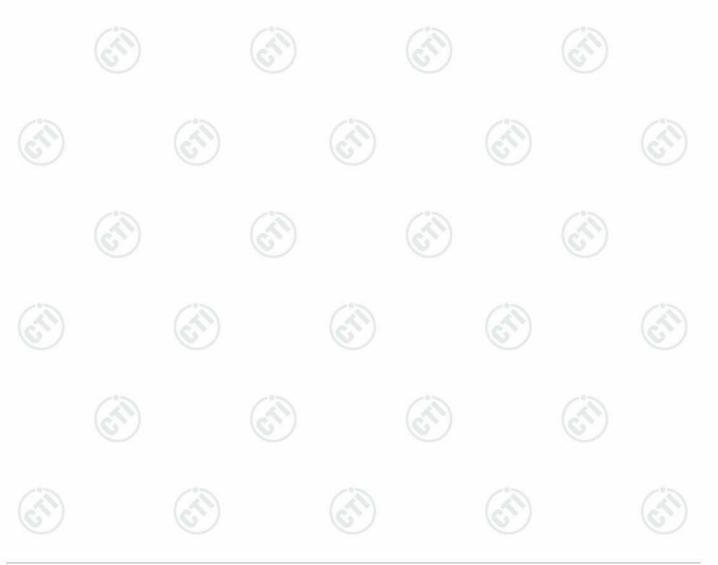
Above 1GHz test procedure as below:

Limit:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-	0	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode:			BLE GFSK Transmitting						Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	36.5967	11.21	0.67	-31.38	44.20	24.70	40.00	15.30	Pass	Н	PK	
2	120.6071	9.11	1.30	-32.07	61.03	39.37	43.50	4.13	Pass	Н	PK	
3	180.0740	9.01	1.58	-31.99	57.83	36.43	43.50	7.07	Pass	Н	PK	
4	334.6105	13.96	2.18	-31.79	45.54	29.89	46.00	16.11	Pass	Н	PK	
5	600.0290	19.00	2.96	-31.50	42.89	33.35	46.00	12.65	Pass	Н	PK	
6	960.1290	22.46	3.71	-31.09	35.49	30.57	54.00	23.43	Pass	Н	PK	
7	36.5967	11.21	0.67	-31.38	45.46	25.96	40.00	14.04	Pass	V	PK	
8	53.0883	12.71	0.82	-32.02	40.82	22.33	40.00	17.67	Pass	V	PK	
9	131.9572	7.60	1.34	-32.01	58.67	35.60	43.50	7.90	Pass	V	PK	
10	208.8859	11.13	1.71	-31.94	43.33	24.23	43.50	19.27	Pass	V	PK	
11	600.0290	19.00	2.96	-31.50	42.82	33.28	46.00	12.72	Pass	V	PK	
12	960.1290	22.46	3.71	-31.09	33.53	28.61	54.00	25.39	Pass	V	PK	

Page 40 of 50

Transmitter Emission above 1GHz

Mode:			BLE GF	SK Trans	mitting			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1378.0378	28.28	2.86	-42.70	52.09	40.53	74.00	33.47	Pass	Н	PK	
2	2658.3658	32.65	4.10	-43.10	54.07	47.72	74.00	26.28	Pass	Н	PK	
3	4804.1203	34.50	4.55	-42.80	51.45	47.70	74.00	26.30	Pass	Н	PK	
4	7206.0000	36.31	5.81	-42.16	48.32	48.28	74.00	25.72	Pass	Н	PK	
5	9608.0000	37.64	6.63	-42.10	46.96	49.13	74.00	24.87	Pass	Н	PK	
6	12010.0000	39.31	7.60	-41.90	47.04	52.05	74.00	21.95	Pass	Н	PK	
7	1634.6635	29.29	3.12	-42.82	51.03	40.62	74.00	33.38	Pass	V	PK	
8	3989.0659	33.79	4.33	-43.00	52.97	48.09	74.00	25.91	Pass	V	PK	
9	4803.1202	34.50	4.55	-42.80	52.75	49.00	74.00	25.00	Pass	V	PK	
10	7206.2804	36.31	5.81	-42.16	51.55	51.51	74.00	22.49	Pass	V	PK	
11	9608.0000	37.64	6.63	-42.10	45.55	47.72	74.00	26.28	Pass	V	PK	
12	12010.0000	39.31	7.60	-41.90	45.76	50.77	74.00	23.23	Pass	V	PK	
										100		

Mode:	Mode:			BLE GFSK Transmitting						2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1330.4330	28.23	2.79	-42.75	52.72	40.99	74.00	33.01	Pass	Н	PK
2	3073.0049	33.23	4.78	-43.10	50.65	45.56	74.00	28.44	Pass	Н	PK
3	4881.1254	34.50	4.80	-42.80	51.98	48.48	74.00	25.52	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	50.10	50.23	74.00	23.77	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	47.37	49.70	74.00	24.30	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	46.96	52.15	74.00	21.85	Pass	Н	PK
7	1362.6363	28.26	2.84	-42.72	51.25	39.63	74.00	34.37	Pass	V	AV
8	2131.3131	31.88	3.62	-43.17	55.03	47.36	74.00	26.64	Pass	V	PK
9	4880.1253	34.50	4.80	-42.80	54.56	51.06	74.00	22.94	Pass	V	PK
10	7320.2880	36.42	5.85	-42.14	52.59	52.72	74.00	21.28	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	47.37	49.70	74.00	24.30	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	45.86	51.05	74.00	22.95	Pass	V	PK
			S. 21		(2)		1e	51		(2)	3

Mode:			BLE GF	nitting		Channel:		2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1422.4422	28.32	2.92	-42.77	51.53	40.00	74.00	34.00	Pass	Н	PK
2	2124.3124	31.87	3.61	-43.17	60.09	52.40	74.00	21.60	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	51.42	47.94	74.00	26.06	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	48.83	49.11	74.00	24.89	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.80	48.26	74.00	25.74	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.22	51.72	74.00	22.28	Pass	Н	PK
7	1429.2429	28.33	2.93	-42.80	51.38	39.84	74.00	34.16	Pass	V	PK
8	2128.9129	31.88	3.62	-43.17	54.00	46.33	74.00	27.67	Pass	V	PK
9	4960.1307	34.50	4.82	-42.80	52.63	49.15	74.00	24.85	Pass	V	PK
10	7440.2960	36.54	5.85	-42.11	50.95	51.23	74.00	22.77	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	44.60	47.06	74.00	26.94	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	47.79	53.29	74.00	20.71	Pass	V	AV
21		1	1			/-	12	1.1		V	

Transmitter Emission above 18GHz

Mode:			BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	18407.1363	37.91	0.00	-63.90	69.82	43.83	74.00	30.17	Pass	н	PK
2	19275.4510	38.96	0.00	-63.15	68.51	44.32	74.00	29.68	Pass	Н	PK
3	20277.3311	38.87	0.00	-62.90	68.62	44.59	74.00	29.41	Pass	Н	PK
4	22027.1211	38.32	0.00	-63.37	69.45	44.40	74.00	29.60	Pass	Н	PK
5	22883.6753	38.78	0.00	-63.45	68.15	43.48	74.00	30.52	Pass	Н	PK
6	24427.3771	40.40	0.00	-60.22	66.13	46.31	74.00	27.69	Pass	Н	PK
7	19065.1626	38.96	0.00	-63.41	69.77	45.32	74.00	28.68	Pass	V	PK
8	20110.4444	38.93	0.00	-62.51	68.21	44.63	74.00	29.37	Pass	V	PK
9	21640.1456	38.42	0.00	-63.22	69.80	45.00	74.00	29.00	Pass	V	PK
10	22473.4589	38.56	0.00	-62.95	67.82	43.43	74.00	30.57	Pass	V	PK
11	23812.7525	39.92	0.00	-60.83	66.09	45.18	74.00	28.82	Pass	V	PK
12	24364.0946	40.37	0.00	-60.38	65.37	45.36	74.00	28.64	Pass	V	PK
N	ata.	1.4	100	I	1.43		1.1			1.2	1

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

