

Page 1 of 58

TEST REPORT

Product

٦	Trade mark
	Model/Type reference
ę	Serial Number
F	Report Number
F	FCC ID
[Date of Issue
٦	Test Standards
٦	Test result

- : Bluetooth Clinical Electrical
- Thermometer
- : N/A
- : DT1
- : N/A
- : EED32M00172401
- : 2ADXK-7600
- : Aug. 07, 2020
- : 47 CFR Part 15 Subpart C
- : PASS

Prepared for:

Shenzhen Viatom Technology Co., Ltd. 4E, Building 3, Tingwei Industrial Park, No.6 Liufang Road, Block 67, Xin'an Street, Baoan District, Shenzhen, 518101, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:	sunlight sun	Reviewed by:	Jole Yang	(F)
INTERNATION	Sunlight Sun		Jok Yang	
Approved by:	San Clust	Date:	Aug. 07, 2020	
Report Seal	Sam Chuang		Check No.:39703	54078
Report Seal				

Page 2 of 58

2 Version

Version No.			Date		(3)	Description			
-	00	Αι	Aug. 07, 2020		Original				
J.		I				Ì			

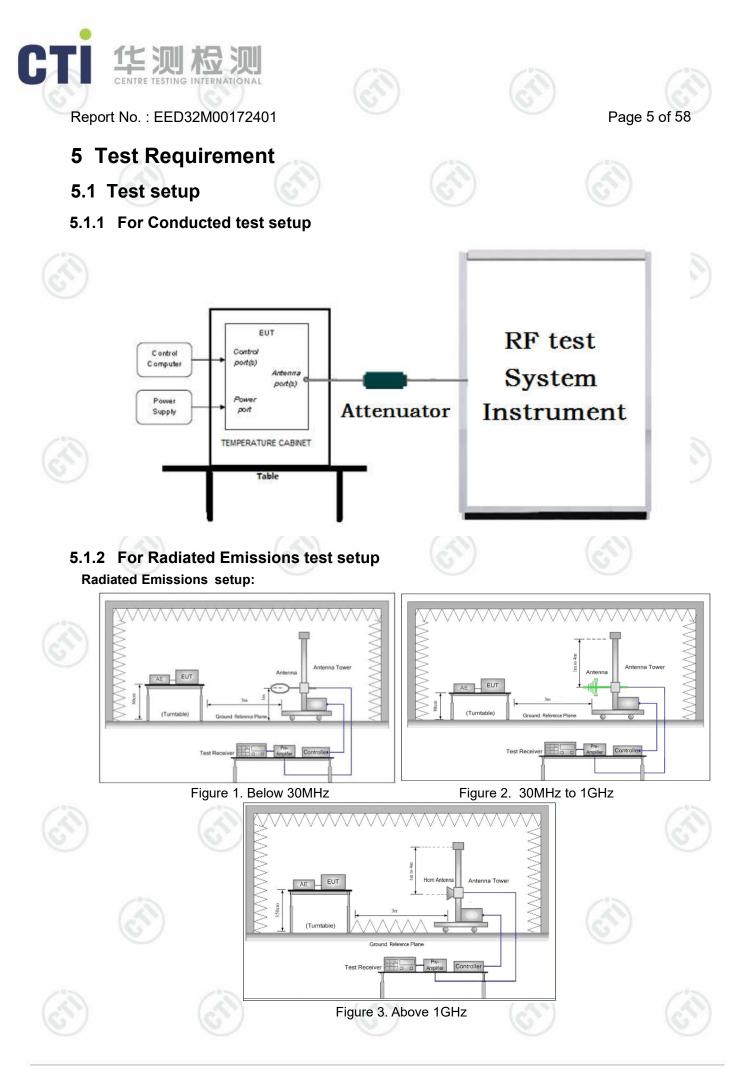
3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

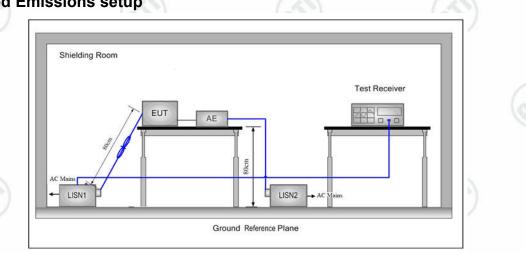
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

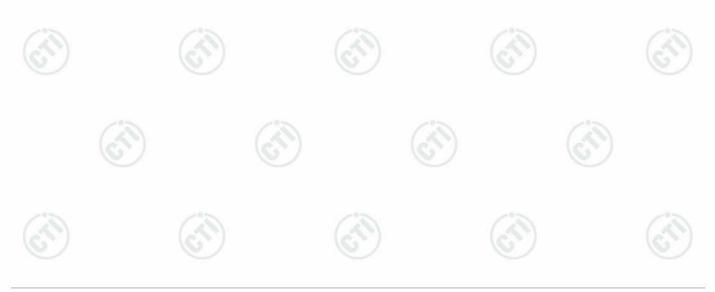
Hotline: 400-6788-333



4 Content				
1 COVER PAGE				1
2 VERSION	<u> </u>			2
3 TEST SUMMARY				3
4 CONTENT				4
5 TEST REQUIREMENT		<u>())) ())) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()</u>		5
5.1 TEST SETUP 5.1.1 For Conducted test setu 5.1.2 For Radiated Emissions 5.1.3 For Conducted Emission 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION	p test setup is test setup	2		5 5 6 6
6 GENERAL INFORMATION				-
 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EU 6.3 PRODUCT SPECIFICATION SUBJ 6.4 DESCRIPTION OF SUPPORT UN 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDA 6.8 OTHER INFORMATION REQUEST 6.9 MEASUREMENT UNCERTAINTY 	IT IECTIVE TO THIS STANDA ITS RD CONDITIONS TED BY THE CUSTOMER.	\RD		
7 EQUIPMENT LIST				
8 RADIO TECHNICAL REQUIREM				
Appendix A): 6dB Occupied Ba Appendix B): Conducted Peak Appendix C): Band-edge for R Appendix D): RF Conducted S Appendix E): Power Spectral I Appendix F): Antenna Require Appendix G): AC Power Line (Appendix H): Restricted bands Appendix I) Radiated Spurious	COutput Power F Conducted Emission Spurious Emissions Density ement Conducted Emission s around fundamental	frequency (Radiated)		
PHOTOGRAPHS OF TEST SETUP	•			47
PHOTOGRAPHS OF EUT CONST	RUCTIONAL DETAILS	S	•••••	50



5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

	(A S 1		
Operating Environment:	S	e	e
Temperature:	24.0 °C		
Humidity:	53 % RH	main the	Andre I
Atmospheric Pressure:	1010mbar		
	107.7		

5.3 Test Condition

Test channel:

12	Test Mode	Tx/Rx	1	RF Channel	100
(1)	Test Mode		Low(L)	Middle(M)	High(H)
C	0501/		Channel 0	Channel 19	Channel 39
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	Keep the EUT in transmitting mode rate.	e with all kind of m	odulation and a	all kind of data
	(57)	(67)	(GT)	G)

6 General Information

6.1 Client Information

Applicant:	Shenzhen Viatom Technology Co., Ltd.
Address of Applicant:	4E, Building 3, Tingwei Industrial Park, No.6 Liufang Road, Block 67, Xin'an Street, Baoan District, Shenzhen, 518101, Guangdong, China
Manufacturer:	Shenzhen Viatom Technology Co., Ltd.
Address of Manufacturer:	4E, Building 3, Tingwei Industrial Park, No.6 Liufang Road, Block 67, Xin'an Street, Baoan District, Shenzhen, 518101, Guangdong, China
Factory:	Shenzhen Viatom Technology Co., Ltd.
Address of Factory:	4E, Building 3, Tingwei Industrial Park, No.6 Liufang Road, Block 67, Xin'an Street, Baoan District, Shenzhen, 518101, Guangdong, China

6.2 General Description of EUT

Product Name:	Bluetooth C	linical Electrical Thermometer	-		
Model No.(EUT):	DT1	(°>)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	
Trade mark:	N/A	(25)	(25)	(25)	
EUT Supports Radios application:	5.0 BT Sing	5.0 BT Single mode, 2402MHz to 2480MHz			
Power Supply:	Potton	SH441718 90mAh			
	Battery	3.7V 0.333wh			
Sample Received Date:	Jun. 15, 202	20	(S))	
Sample tested Date:	Jun. 15, 202	20 to Jul. 17, 2020	\sim	0	

6.3 Product Specification subjective to this standard

-				
2402MHz~2480MHz				(\mathcal{A})
5.0		Ś		V
DSSS				
GFSK			-	
40				
Default	(e)		()	
NrF				
Type:Chip Antenna Gain: 0dBi				
DC 5V		6		67)
	5.0 DSSS GFSK 40 Default NrF Type:Chip Antenna Gain: 0dBi	5.0 DSSS GFSK 40 Default NrF Type:Chip Antenna Gain: 0dBi	5.0 DSSS GFSK 40 Default NrF Type:Chip Antenna Gain: 0dBi	5.0 DSSS GFSK 40 Default NrF Type:Chip Antenna Gain: 0dBi

Page 7 of 58

Page 8 of 58

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

1	sociated	Manufacturer	Model	S/N serial number	Certification	Supplied by
AE1	Notebook	DELL	DELL 3490	D245DX2	CE & FCC	DELL

6.5

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Page 9 of 58

6.9 Measurement Uncertainty (95% confidence levels, k=2)

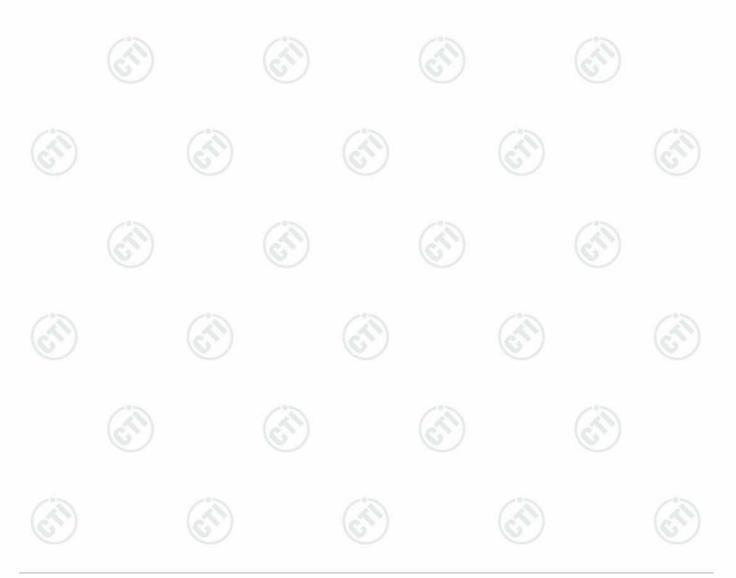
No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Country emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	O and the time and the time	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Hotline: 400-6788-333

7 Equipment List

		RF test s	vstem		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	$\underline{\circ}$		9
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		67	
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	S	(9

10	21	(Δ^{*})		(28)	6			
Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021			
Temperature/ Humidity Indicator	Defu	TH128		(S)			
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021			
Barometer	changchun	DYM3	1188					



Page 11 of 58

		3M Semi/full-anechoic Chamber								
	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
	3M Chamber & Accessory Equipment	ТDК	SAC-3		05-24-2019	05-23-2022				
	TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020				
	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021				
	Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020				
	Multi device Controller	maturo	NCD/070/107 11112	(2 5)		(\mathcal{A})				
	Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020				
	Cable line	Fulai(7M)	SF106	5219/6A						
	Cable line	Fulai(6M)	SF106	5220/6A						
2	Cable line	Fulai(3M)	SF106	5216/6A	<u></u>					
	Cable line	Fulai(3M)	SF106	5217/6A	(<u>-</u>					

Page 12 of 58

Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date
			Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		<u>e</u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710	(\mathbf{G})	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		28
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(6 ⁵)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
Toot D		

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

EUT DUTY CYCLE

		1		Duty Cyc	cle		
10	Configuration	1	TX ON(ms)	13	TX ALL(ms)	13	Duty Cycle(%)
(D)	BLE	(3)	0.094	(3)	0.40737		23.07%

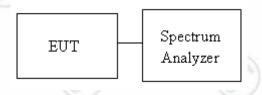
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth

	(C))
Shall be at least 500kHz	
	Shall be at least 500kHz


Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Page 16 of 58

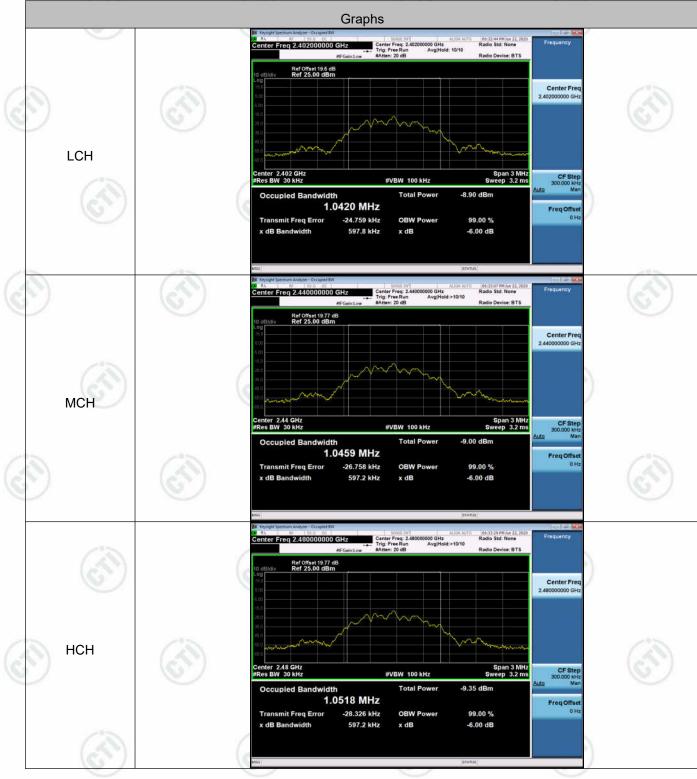
<u>Test Result</u>

6	dB Bandwidt	h	(A) (A))
	Mode	Channel	6dB Bandwidth [MHz]	Verdict
	BLE	LCH	0.6835	PASS
12	BLE	MCH	0.6879	PASS
	BLE	НСН	0.6888	PASS

99% OBW

Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0420	PASS
BLE	МСН	1.0459	PASS
BLE	НСН	1.0518	PASS

Test Graphs 6dB Bandwidth



Page 18 of 58

Appendix B): Conducted Peak Output Power

<u>Test Limit</u>

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

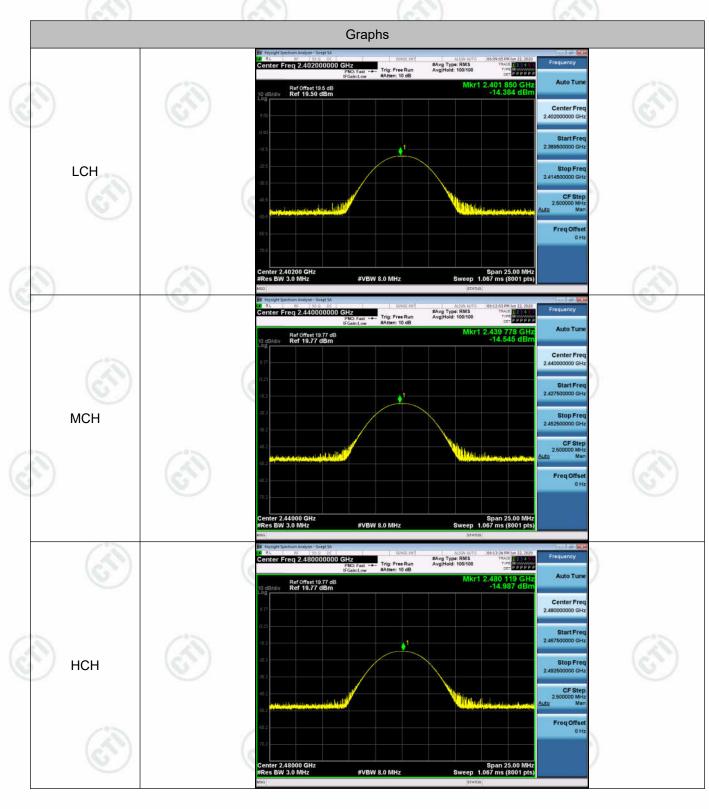
	⊠ Antenna not exceed 6 dBi ∶ 30dBm	(C)
Limit	Antenna with DG greater than 6 dBi [Limit = $30 - (DG - 6)$]	
0	Point-to-point operation	

Test Procedure

Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW \geq DTS bandwidth.
 - b) Set VBW≥[3×RBW].
 - c) Set span≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.
- Test Setup

<u>Test Result</u>


	Mode	С	hannel	 Conduct Pea	k Power[dBn	n]	Verdict
	BLE		LCH		.384		PASS
	BLE		МСН	-14	.545		PASS
a	BLE		НСН	-14	.987		PASS

Test Graphs

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Page 22 of 58

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

<u>Test Setup</u>

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-14.534	-60.208	-34.53	PASS
BLE	нсн	-15.156	-59.694	-35.16	PASS
Test Gra	phs				

			Graphs
	Ì		Mit Regret Seret 34. Mit Regret Seret 34. Mit Regret Seret 34. Mit Regret Seret 34. Center Frog 2.395000000 GHz; File: Frag Users 34. Mit Regret 19.6 dB Mit A distant 10 dB Mit A 2.388 4.37 5 GHz Center Frog
Ð	LCH		Start 2.38500 CHz ¥VBW 300 kHz Stop 2.40500 CHz CF Step 2.00000 MHz
	(A)		INFR MODE THC:SCL. X Y PUNCTION PUNCTION WDDH P
Ð		(A)	Center Freq 2.487500000 GHz File: 19 77 dB Center Freq 2.487500000 GHz
	нсн		302 302
			3 N 1 r 2500 000 GH2 653.472 dBm 6 1 1 2.409 191 GHz 59.694 dBm 0 Hz 6 1 1 2.409 191 GHz 59.694 dBm 0 Hz 10 1 1 1 1 0 Hz 10 1 1 1 1 0 Hz 10 1 1 1 1 10 1 1 1 1

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

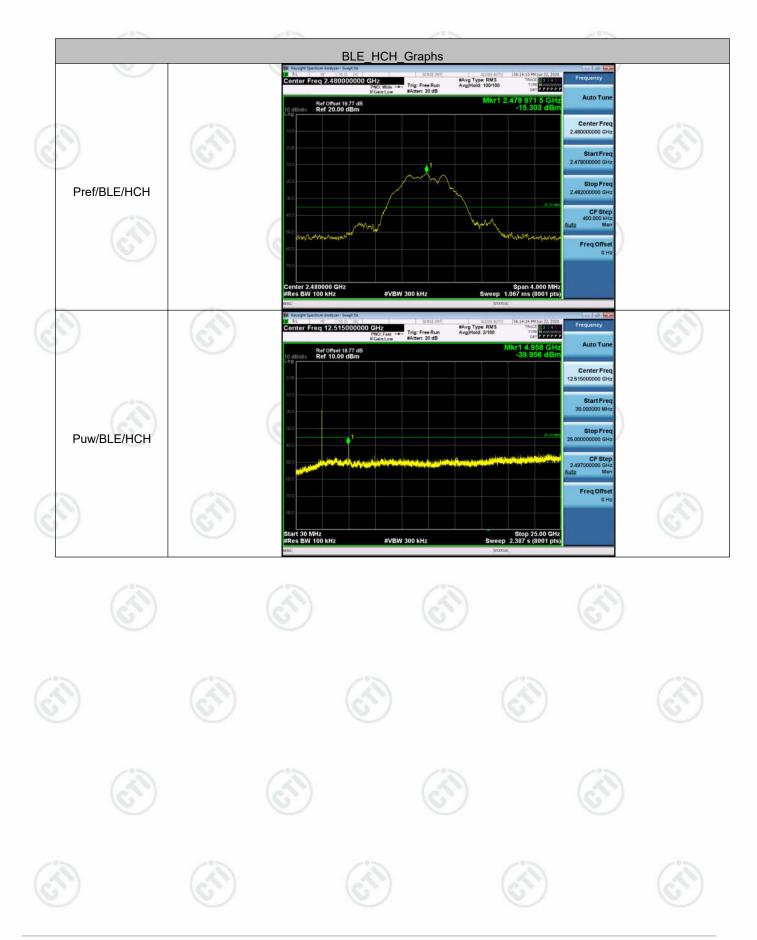
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

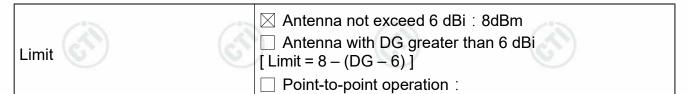
Page 25 of 58

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-14.642	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-14.834	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-15.303	<limit< td=""><td>PASS</td></limit<>	PASS
Test Gra	phs 🕥		<u>()</u>	(\mathcal{C})
		BLE_LCH_Graphs		
Pref/BLE/LCH		Ric W/W Dot 30 diagonal Mark Mark Mark Mark Mark August 40 Anno August 40 Anno	106-11 200 Min 22,200 The Barbar 22,200 107 Min 200 Min 200 Min 200 107 Min 200 Min 200 Min 200 107 Min	
	6	MAG Bit Register Spectrum Analyser - Sneet SA Dit R. A. Bit 1996 DOC Center Freq 12.5150000000 GHz PRO: Fast → Trig: Free Run IFGall.com Kittern: 20 dB	CF Step 400.000 MHz Auto Man Freq Offset 0 Hz 0 H	(C)
Puw/BLE/LCH	(STI)	100 308 309 309 309 409 409 409 409 409 500 500 500 500 500 500 500 5	Center Freq 12.51600000 GHz 30.00000 MHz 30.00000 MHz 250000000 GHz 2.50000000 GHz 2.497000000 GHz 2.497000000 GHz 2.497000000 GHz 2.497000000 GHz 0 Hz 5500 25.00 GHz 2.387 s (8001 pts)	
	(SI)			(cr)



S



Appendix E): Power Spectral Density

<u>Test Limit</u>

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.

5. Mark the maximum level.

Measure and record the result of power spectral density. in the test report.

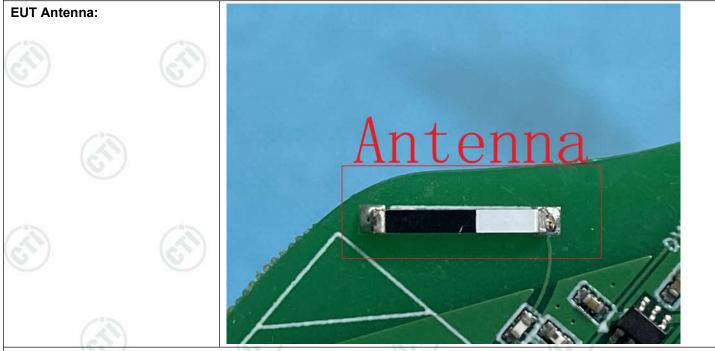
Test Setup

Page 29 of 58

Result Table

	Mode	Channel	PSD [dBm]	Verdict
	BLE	LCH	-32.123	PASS
	BLE	МСН	-32.232	PASS
12	BLE	НСН	-32.818	PASS
S Te	est Graphs	(31)		(67)
		Br. Far and Technol And Ar	Graphs	
	(A)	Center Freq 2.402 Center Freq 2.402 10 dB/d/w Ref 10.0	2000000 1962 1963 Trig: Free Run BrGaint.ow RAtter: 10 dB	quency Auto Tune enter Freq 500000 GHz 550000 GHz
	LCH		WWWWWWWWWWWWWWWWWWWWW	Stop Freq Stop Of Ha CF Step 50:000 Man Man req Offset 0 Ha
		Center 2.4020000 0 #Res BW 3.0 kHz	GHz Span 1.500 MHz #VBW 10 kHz Sweep 158.4 ms (8001 pts))
and a start of the	МСН	Center Freq 2.440	Microsoft Trig: Free Run Brainitow AvgiHeid: 27100 Trig: Microsoft M	Auto Tune enter Freq 500000 GHz Start Freq 550000 GHz Stop Freq 750000 GHz CF Step 50000 Hz Man
	HCH	Center 7.4400000 #Res BW 3.0 kHz 223 Center Freq 2.480 Center Freq	GHz Span 1.500 MHz FVBW 10 KHz Sweep 158.4 ms (8001 pts) Stand Sweep 158.4 ms (8001 pts)	enter Freq stoop Freq stoop Freq stoop Offset 0 Hz 0 Hz 0 Hz 0 Hz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com


Appendix F): Antenna Requirement

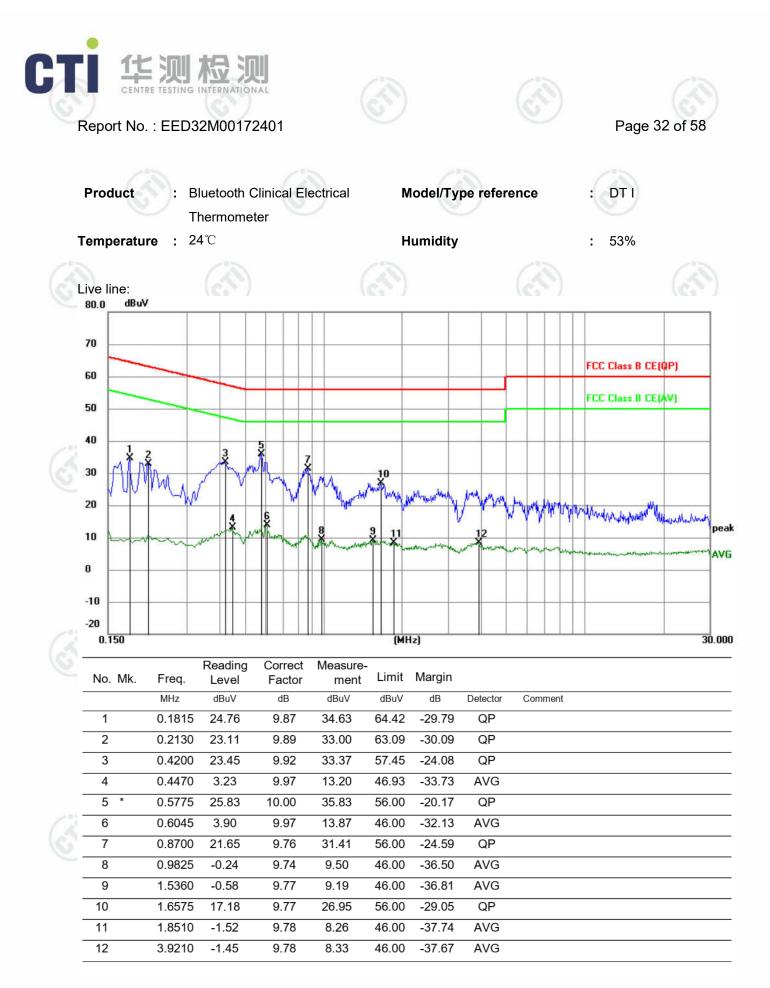
15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

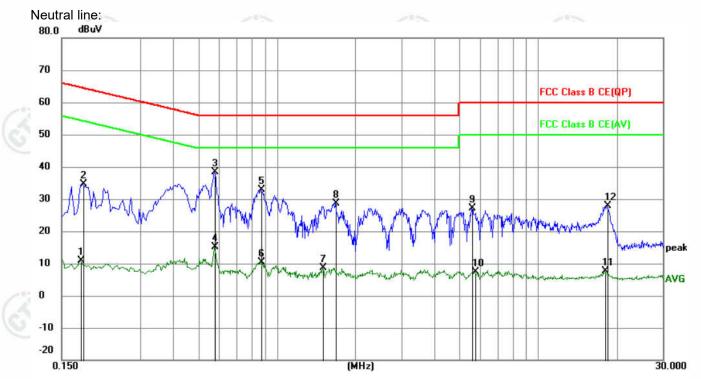
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi.


Appendix G): AC Power Line Conducted Emission

	Test frequency range :150KHz-			
	 The mains terminal disturban The EUT was connected to Stabilization Network) which power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a s exceeded. 	AC power source throu h provides a 50Ω/50µH hits of the EUT were co ound reference plane ir d. A multiple socket out	gh a LISN 1 (Line + 5Ω linear impe onnected to a sec the same way as let strip was used	Impedar edance. T ond LISN s the LISN d to conn
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangemer		
	 The test was performed wit EUT shall be 0.4 m from the reference plane was bonde 	e vertical ground referer	ice plane. The ve	rtical grou
	1 was placed 0.8 m from t ground reference plane fo plane. This distance was be All other units of the EUT a	r LISNs mounted on etween the closest point	top of the groun is of the LISN 1 a	d referer nd the El
	LISN 2.			
(ST)	LISN 2. 5) In order to find the maximum of the interface cables n conducted measurement.			ment and
Limit:	5) In order to find the maximum of the interface cables n conducted measurement.	nust be changed acc	ording to ANSI	ment and
Limit:	5) In order to find the maximum of the interface cables n		ording to ANSI	ment and
Limit:	5) In order to find the maximum of the interface cables n conducted measurement.	nust be changed acc Limit (dB	ording to ANSI	ment and
Limit:	5) In order to find the maximum of the interface cables n conducted measurement. Frequency range (MHz)	nust be changed acc Limit (dB Quasi-peak	uV) Average	ment and
Limit:	5) In order to find the maximum of the interface cables in conducted measurement. Frequency range (MHz) 0.15-0.5	Limit (dB Quasi-peak 66 to 56*	aV) Average 56 to 46*	ment and

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

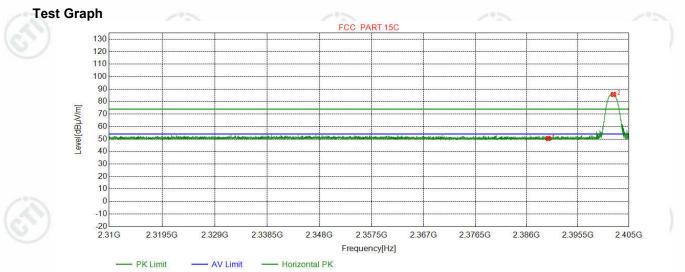
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1770	1.08	9.87	10.95	54.63	-43.68	AVG	
2	0.1815	24.64	9.87	34.51	64.42	-29.91	QP	
3 *	0.5775	28.46	10.00	38.46	56.00	-17.54	QP	
4	0.5775	5.14	10.00	15.14	46.00	-30.86	AVG	
5	0.8700	23.12	9.76	32.88	56.00	-23.12	QP	
6	0.8700	0.74	9.76	10.50	46.00	-35.50	AVG	
7	1.4955	-1.13	9.76	8.63	46.00	-37.37	AVG	
8	1.6800	18.87	9.77	28.64	56.00	-27.36	QP	
9	5.5725	17.36	9.78	27.14	60.00	-32.86	QP	
10	5.7390	-2.45	9.78	7.33	50.00	-42.67	AVG	
11	17.9475	-2.22	9.84	7.62	50.00	-42.38	AVG	
12	18.4245	17.95	9.84	27.79	60.00	-32.21	QP	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

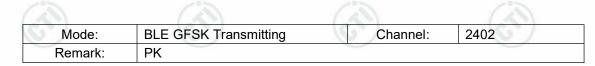
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	k
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	 Below 1GHz test proceder Test method Refer as KDE a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximul polarizations of the an d. For each suspected en the antenna was tuned was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim 	ure as below: 3 558074 D01, S on the top of a ro choic camber. Th of the highest ra eters away from to ters away from to p of a variable-h varied from one im value of the find tenna are set to mission, the EUT d to heights from prees to 360 degreen was set to Pe	Section 12. tating table ne table wa adiation. the interfer neight ante meter to for eld strengtl make the r was arran 1 meter to rees to find	1 e 0.8 meter as rotated 3 ence-receinna tower. our meters n. Both hor neasurement ged to its 4 meters the maxin	rs above the 360 degrees above the gr rizontal and v ent. worst case a and the rotat num reading.	to a, w rour vert nd able
	f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest	npliance. Also m trum analyzer plo	easure any	emission	s in the restri	
	frequency to show cor	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo ad found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highesi rmed in X, tis position	rom Semi- meter to 1 ter). Y, Z axis p ing which i	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca	nam oove or ise.
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax ures until all frequ	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highes rmed in X, tis position	v emission for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca	nam oove or ise.
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo ad found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	v emission for each po meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca as complete.	nam oove or ise.
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, ar j. Repeat above procedu Frequency	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax ures until all frequ Limit (dBµV/	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, dis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca as complete. mark	nam oove or ise.
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax ures until all frequ Limit (dBµV/ 40.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po	s in the restri ower and mo Anechoic Cf .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value	nam oove or ise.
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, ar j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	s in the restri ower and mo Anechoic Ch .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value	nam oove or ise.
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo ad found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5 46.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	s in the restri ower and mo Anechoic Cr .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value	nam oove or ise.
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h Test the EUT in the le i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tabl owest channel , t ements are perfo id found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5 46.0 54.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m))))	v emission for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po Averag	s in the restri ower and mo Anechoic Cf .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value eak Value	nam oove or ise.

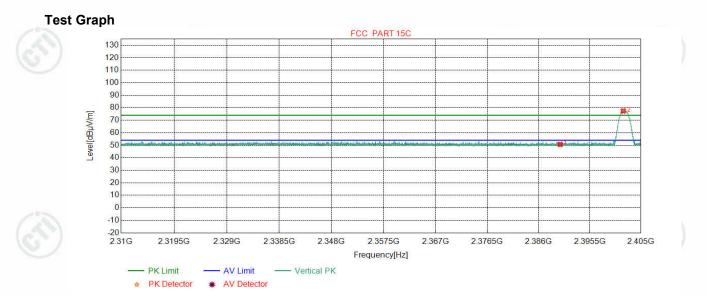


Test plot as follows:

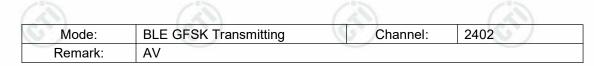
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK	·	·

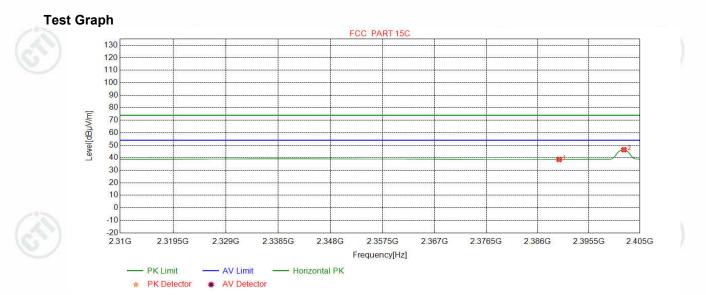
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.98	50.48	74.00	23.52	Pass	Horizontal
2	2402.1181	32.26	13.31	-43.12	83.25	85.70	74.00	-11.70	Pass	Horizontal
0	•)	6	57)		(\mathcal{A})		65)		$(c^{(n)})$



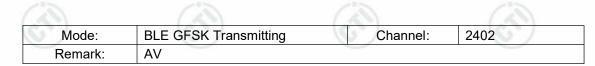


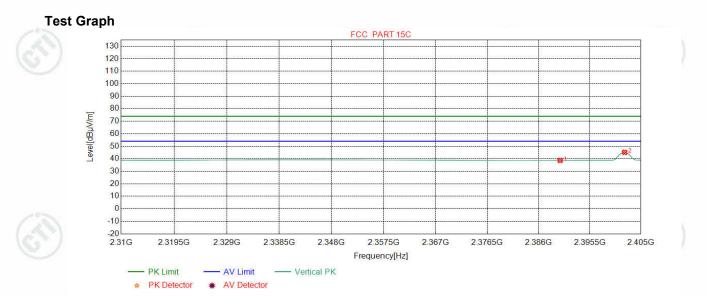
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.19	50.69	74.00	23.31	Pass	Vertical
2	2401.7254	32.26	13.31	-43.12	74.91	77.36	74.00	-3.36	Pass	Vertical
12	S	1.1	1							



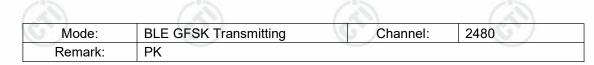


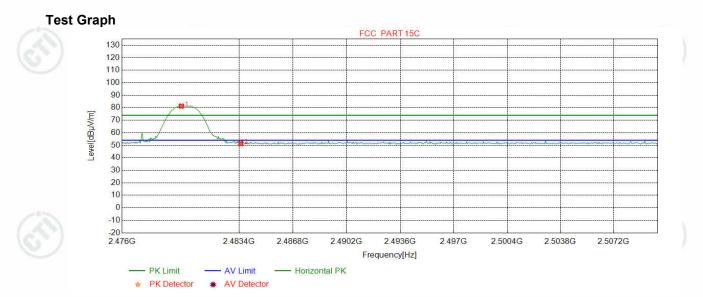
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.17	38.67	54.00	15.33	Pass	Horizontal
2	2402.0358	32.26	13.31	-43.12	43.99	46.44	54.00	7.56	Pass	Horizontal
12		1.1					(1)			





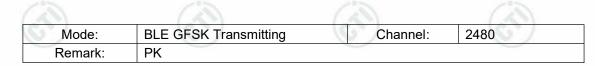
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.17	38.67	54.00	15.33	Pass	Vertical
2	2401.9725	32.26	13.31	-43.12	42.68	45.13	54.00	8.87	Pass	Vertical
12		1.1					(1)			

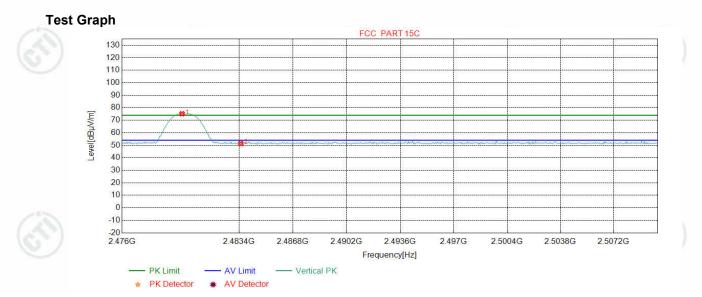




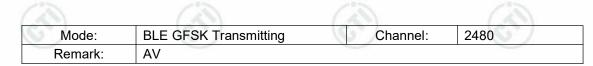
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	78.64	81.30	74.00	-7.30	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.78	51.43	74.00	22.57	Pass	Horizontal
12	S	12	10							

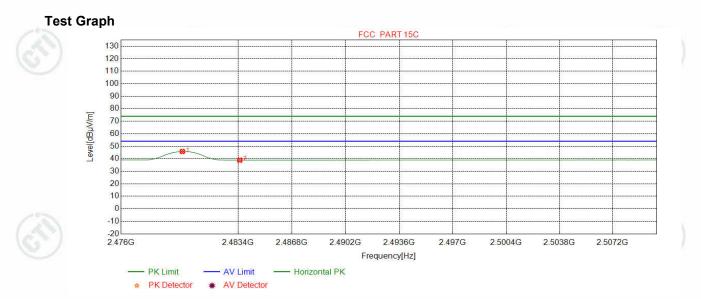
Hotline: 400-6788-333



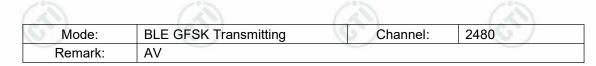


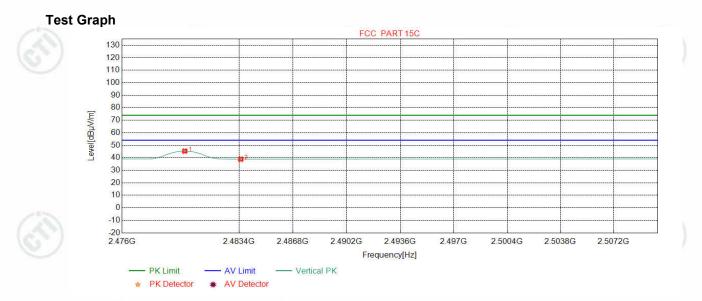
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	72.48	75.14	74.00	-1.14	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.71	51.36	74.00	22.64	Pass	Vertical
12	2	14	10			1				

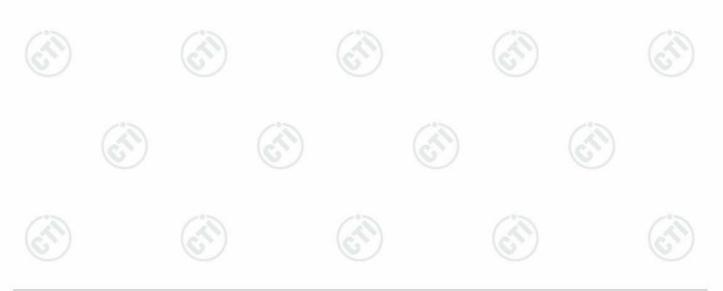




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8723	32.37	13.39	-43.10	43.16	45.82	54.00	8.18	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.24	38.89	54.00	15.11	Pass	Horizontal
12	N	12	10							






NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	42.66	45.32	54.00	8.68	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.25	38.90	54.00	15.10	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

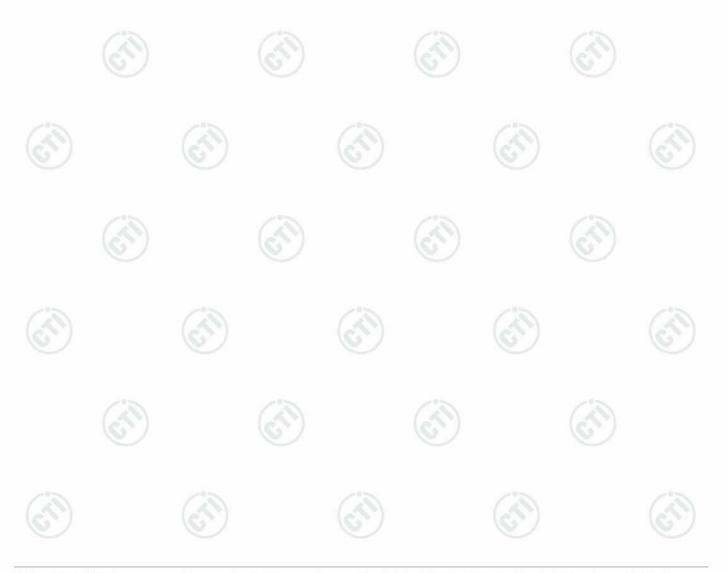
Appendix I) Radiated Spurious Emissions

	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:						
· · · · · · · · · · · · · · · · · · ·	rocedure as below:	25		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		25
Test method Refer	as KDB 558074 D01 , Sectio					
Test method Refer a. The EUT was pla	as KDB 558074 D01,Section aced on the top of a rotating ta	able 0.8 meters a				nechoic
Test method Refer a a. The EUT was pla camber. The tab	as KDB 558074 D01,Section aced on the top of a rotating ta le was rotated 360 degrees to	able 0.8 meters a determine the p	position of th	ne highest r	adiation.	
Test method Refer a a. The EUT was pla camber. The tab	as KDB 558074 D01, Section aced on the top of a rotating to le was rotated 360 degrees to t 3 meters away from the inte	able 0.8 meters a determine the p	position of th	ne highest r	adiation.	
 Test method Refer a. The EUT was placed and the camber. The tab b. The EUT was service variable-height and c. The antenna hei 	as KDB 558074 D01, Section aced on the top of a rotating to le was rotated 360 degrees to at 3 meters away from the inter intenna tower. ght is varied from one meter to	able 0.8 meters a determine the p rference-receivir o four meters ab	oosition of th ng antenna, ove the gro	he highest r whichwas und to dete	adiation. mounted on the rmine the maxii	top of a mum value
 Test method Refer a. The EUT was placed and the EUT was placed and the EUT was service wariable-height and the antenna height of the field strength 	as KDB 558074 D01, Section aced on the top of a rotating to le was rotated 360 degrees to at 3 meters away from the inter intenna tower. ght is varied from one meter to gth. Both horizontal and vertico	able 0.8 meters a o determine the p rference-receivir o four meters ab cal polarizations o	oosition of th ng antenna, ove the gro of the anten	he highest r whichwas und to dete na are set t	adiation. mounted on the rmine the maxin to make the me	top of a mum value asurement
 Test method Refer a. The EUT was placed and the camber. The tab b. The EUT was service wariable-height a c. The antenna heir of the field streng d. For each suspect 	as KDB 558074 D01, Section aced on the top of a rotating to le was rotated 360 degrees to the total and the sector of the sector internation to the sector ght is varied from one meter to gth. Both horizontal and vertice toted emission, the EUT was an	able 0.8 meters a o determine the p rference-receivir o four meters ab cal polarizations o rranged to its wo	oosition of th ng antenna, ove the gro of the anten rst case and	he highest r whichwas und to dete na are set t d then the a	adiation. mounted on the rmine the maxin to make the me antenna was tur	top of a mum value asurement ned to
 Test method Refer a. The EUT was placed and the EUT was placed and the EUT was servariable-height at a c. The antenna height field strenged. For each suspect heights from 1 m 	as KDB 558074 D01, Section aced on the top of a rotating to le was rotated 360 degrees to at 3 meters away from the inter- intenna tower. ght is varied from one meter to gth. Both horizontal and vertice ted emission, the EUT was an inter to 4 meters (for the test f	able 0.8 meters a o determine the p rference-receivir to four meters ab cal polarizations of rranged to its wo frequency of belo	oosition of the ng antenna, ove the gro of the anten rst case and ow 30MHz, t	ne highest r whichwas und to dete na are set d then the a the antenna	adiation. mounted on the rmine the maxin to make the me antenna was tur a was tuned to h	top of a mum value asurement ned to
 Test method Refer a. The EUT was placed and the EUT was placed and the EUT was service and the EUT was service and the test of the field strenged. For each suspect heights from 1 m meter) and the reference and	as KDB 558074 D01, Section aced on the top of a rotating to le was rotated 360 degrees to at 3 meters away from the inter- intenna tower. ght is varied from one meter to gth. Both horizontal and vertice ted emission, the EUT was an inter to 4 meters (for the test to botatable was turned from 0 de	able 0.8 meters a o determine the p rference-receiving to four meters ab cal polarizations of rranged to its wo frequency of belo ogrees to 360 deg	oosition of the ng antenna, ove the gro of the anten rst case and ow 30MHz, f grees to find	he highest r whichwas und to dete na are set t d then the a the antenna d the maxim	adiation. mounted on the rmine the maxin to make the me antenna was tur a was tuned to h num reading.	top of a mum value asurement ned to neights 1
 Test method Refer a. The EUT was placed and the EUT was placed and the EUT was set wariable-height at the end of the field strenged. For each suspect heights from 1 m meter) and the reference ward the test-receive 	as KDB 558074 D01, Section aced on the top of a rotating tail le was rotated 360 degrees to at 3 meters away from the inter- intenna tower. ght is varied from one meter to gth. Both horizontal and vertice the emission, the EUT was an inter to 4 meters (for the test to botatable was turned from 0 de r system was set to Peak Deter	able 0.8 meters a o determine the p rference-receiving to four meters ab cal polarizations of rranged to its wo frequency of belo grees to 360 deg ect Function and	oosition of the ng antenna, ove the gro of the anten rst case and ow 30MHz, the grees to find Specified E	ne highest r whichwas und to dete na are set f d then the a the antenna d the maxim Bandwidth v	adiation. mounted on the rmine the maxin to make the me antenna was tur a was tuned to h num reading. vith Maximum H	top of a mum value asurement ned to neights 1 fold Mode.
 Test method Refer a. The EUT was placed and the EUT was placed and the EUT was set wariable-height at a c. The antenna height of the field strenged. For each suspect heights from 1 m meter) and the reference of the test-receive f. If the emission left 	as KDB 558074 D01, Section aced on the top of a rotating tail le was rotated 360 degrees to at 3 meters away from the inter- intenna tower. ght is varied from one meter to gth. Both horizontal and vertice the emission, the EUT was an inter to 4 meters (for the test for totatable was turned from 0 dear r system was set to Peak Detrevel of the EUT in peak mode	able 0.8 meters a o determine the p rference-receiving o four meters ab cal polarizations of rranged to its wo frequency of belo egrees to 360 deg ect Function and was 10dB lower	oosition of the ng antenna, ove the gro of the anten rst case and ow 30MHz, f grees to find Specified E than the lin	ne highest r whichwas und to dete na are set f d then the a the antenna d the maxim Bandwidth w hit specified	adiation. mounted on the rmine the maxin to make the me- antenna was tur a was tuned to h num reading. vith Maximum H I, then testing co	top of a mum value asurement ned to neights 1 fold Mode. ould be
 Test method Refer a. The EUT was placed and the EUT was placed and the end of the field strength of the field strength of the field strength from 1 m meter) and the reference of the end of the end of the rest-receive f. If the emission less stopped and the stopped sto	as KDB 558074 D01, Section aced on the top of a rotating tail le was rotated 360 degrees to it 3 meters away from the inter- intenna tower. ght is varied from one meter to ght. Both horizontal and vertice the emission, the EUT was an inter to 4 meters (for the test to batable was turned from 0 dear r system was set to Peak Detail evel of the EUT in peak mode peak values of the EUT woul	able 0.8 meters a o determine the p rference-receiving to four meters ab cal polarizations of rranged to its wo frequency of belo grees to 360 deg ect Function and was 10dB lower d be reported. O	oosition of the ng antenna, ove the gro of the anten rst case and ow 30MHz, to grees to find Specified E than the lin therwise the	the highest r whichwas und to dete na are set to d then the a the antenna d the maxim Bandwidth whit specified e emissions	adiation. mounted on the rmine the maxin to make the me antenna was tur a was tuned to h num reading. with Maximum H l, then testing ca that did not ha	top of a mum value asurement ned to neights 1 fold Mode. ould be ve 10dB
 Test method Refer a. The EUT was placed and the EUT was placed and the end of the field strength of the field strength of the field strength from 1 m meter) and the reference of the end of the end of the stopped and the stopped stopped	as KDB 558074 D01, Section aced on the top of a rotating tail le was rotated 360 degrees to at 3 meters away from the inter- intenna tower. ght is varied from one meter to gth. Both horizontal and vertice the emission, the EUT was an inter to 4 meters (for the test for totatable was turned from 0 dear r system was set to Peak Detrevel of the EUT in peak mode	able 0.8 meters a o determine the p rference-receiving to four meters ab cal polarizations of rranged to its wo frequency of belo grees to 360 deg ect Function and was 10dB lower d be reported. O	oosition of the ng antenna, ove the gro of the anten rst case and ow 30MHz, to grees to find Specified E than the lin therwise the	the highest r whichwas und to dete na are set to d then the a the antenna d the maxim Bandwidth whit specified e emissions	adiation. mounted on the rmine the maxin to make the me antenna was tur a was tuned to h num reading. with Maximum H l, then testing ca that did not ha	top of a mum value asurement ned to neights 1 fold Mode. ould be ve 10dB


- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-	0	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

ote: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

		1113310		TOTIZ	51D	1.2	10 P. L	1.2		2.1.	
Mode	e:		BLE G	SK Trans	smitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	75.3035	7.99	1.01	-31.97	60.50	37.53	40.00	2.47	Pass	Н	PK
2	101.9812	10.98	1.18	-31.93	58.73	38.96	43.50	4.54	Pass	Н	PK
3	173.5744	8.65	1.55	-31.98	59.79	38.01	43.50	5.49	Pass	Н	PK
4	205.6846	11.05	1.70	-31.93	56.80	37.62	43.50	5.88	Pass	Н	PK
5	333.8344	13.94	2.18	-31.79	48.48	32.81	46.00	13.19	Pass	Н	PK
6	649.9890	19.40	3.10	-32.07	43.23	33.66	46.00	12.34	Pass	Н	PK
7	39.5070	12.14	0.71	-31.31	56.00	37.54	40.00	2.46	Pass	V	PK
8	81.8032	7.51	1.05	-31.93	60.15	36.78	40.00	3.22	Pass	V	PK
9	205.6846	11.05	1.70	-31.93	53.37	34.19	43.50	9.31	Pass	V	PK
10	331.2151	13.89	2.16	-31.77	47.74	32.02	46.00	13.98	Pass	V	PK
11	490.0200	16.84	2.65	-31.89	42.40	30.00	46.00	16.00	Pass	V	PK
12	837.7028	21.35	3.49	-31.90	47.00	39.94	46.00	6.06	Pass	V	PK
11	490.0200	16.84	2.65	-31.89	42.40	30.00	46.00	16.00	Pass	V	

Transmitter Emission above 1GHz

Mode	:		BLE GF	SK Transm	nitting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1327.4327	28.23	2.79	-42.76	60.10	48.36	74.00	25.64	Pass	Н	PK
2	3430.0287	33.37	4.48	-43.10	50.89	45.64	74.00	28.36	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	58.02	54.27	74.00	19.73	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	61.81	61.77	74.00	12.23	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.08	48.25	74.00	25.75	Pass	Н	PK
6	12010.000	39.31	7.60	-41.90	47.06	52.07	74.00	21.93	Pass	Н	PK
7	4805.1208	34.50	4.55	-42.80	35.69	31.94	54.00	22.06	Pass	Н	AV
8	7206.2811	36.31	5.81	-42.16	36.38	36.34	54.00	17.66	Pass	Н	AV
9	1329.4329	28.23	2.79	-42.75	65.14	53.41	74.00	20.59	Pass	V	PK
10	1996.0996	31.67	3.47	-43.19	59.59	51.54	74.00	22.46	Pass	V	PK
11	4804.0000	34.50	4.55	-42.80	53.16	49.41	74.00	24.59	Pass	V	PK
12	7206.0000	36.31	5.81	-42.16	54.10	54.06	74.00	19.94	Pass	V	PK
13	9608.0000	37.64	6.63	-42.10	46.54	48.71	74.00	25.29	Pass	V	PK
14	12010.000	39.31	7.60	-41.90	46.41	51.42	74.00	22.58	Pass	V	PK
15	7205.2808	36.31	5.82	-42.16	35.12	35.09	54.00	18.91	Pass	V	AV

Mode	:		BLE GF	SK Transm	nitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1329.0329	28.23	2.79	-42.75	61.73	50.00	74.00	24.00	Pass	Н	PK
2	1992.8993	31.65	3.46	-43.18	53.51	45.44	74.00	28.56	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	56.30	52.80	74.00	21.20	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	62.36	62.49	74.00	11.51	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.78	49.11	74.00	24.89	Pass	Н	PK
6	12200.000	39.42	7.67	-41.90	45.82	51.01	74.00	22.99	Pass	Н	PK
7	7320.2874	36.42	5.85	-42.14	37.39	37.52	54.00	16.48	Pass	Н	AV
8	1329.2329	28.23	2.79	-42.75	64.43	52.70	74.00	21.30	Pass	V	PK
9	1999.5000	31.70	3.47	-43.20	60.24	52.21	74.00	21.79	Pass	V	PK
10	4880.0000	34.50	4.80	-42.80	50.37	46.87	74.00	27.13	Pass	V	PK
11	7319.2880	36.42	5.85	-42.14	56.54	56.67	74.00	17.33	Pass	V	PK
12	9760.0000	37.70	6.73	-42.10	47.02	49.35	74.00	24.65	Pass	V	PK
13	12200.000	39.42	7.67	-41.90	46.27	51.46	74.00	22.54	Pass	V	PK
14	7319.2877	36.42	5.85	-42.14	36.12	36.25	54.00	17.75	Pass	V	AV
									and the second second		

Hotline: 400-6788-333

Mode	:		BLE GFSK Transmitting					Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1329.8330	28.23	2.79	-42.75	61.54	49.81	74.00	24.19	Pass	Н	PK
2	1998.0998	31.69	3.47	-43.20	54.63	46.59	74.00	27.41	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	55.94	52.46	74.00	21.54	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	62.73	63.01	74.00	10.99	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.77	49.23	74.00	24.77	Pass	Н	PK
6	12400.000	39.54	7.86	-41.90	46.97	52.47	74.00	21.53	Pass	Н	PK
7	7439.2966	36.54	5.85	-42.11	38.20	38.48	54.00	15.52	Pass	Н	AV
8	1328.6329	28.23	2.79	-42.76	63.01	51.27	74.00	22.73	Pass	V	PK
9	1997.2997	31.68	3.47	-43.19	60.28	52.24	74.00	21.76	Pass	V	PK
10	4960.0000	34.50	4.82	-42.80	54.73	51.25	74.00	22.75	Pass	V	PK
11	7440.0000	36.54	5.85	-42.11	54.87	55.15	74.00	18.85	Pass	V	PK
12	9920.0000	37.77	6.79	-42.10	45.89	48.35	74.00	25.65	Pass	V	PK
13	12400.000	39.54	7.86	-41.90	47.05	52.55	74.00	21.45	Pass	V	PK
14	7439.2958	36.54	5.85	-42.11	36.91	37.19	54.00	16.81	Pass	V	AV

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

