

Report No. : EED32L00368601 Page 1 of 55

TEST REPORT

Product : Portable ECG monitor

Trade mark : N/A

Model/Type reference : PB-20

Serial Number : N/A

Report Number : EED32L00368601

FCC ID : 2ADXK-6623

Date of Issue : Mar. 27, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Viatom Technology Co., Ltd.
4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road,
Baoan District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By: Compiled by: Sunlight Sun

Mark Chen

Sunlight Sun

Sunlight Sun San Cluery

Ware Xin

Sam Chuang

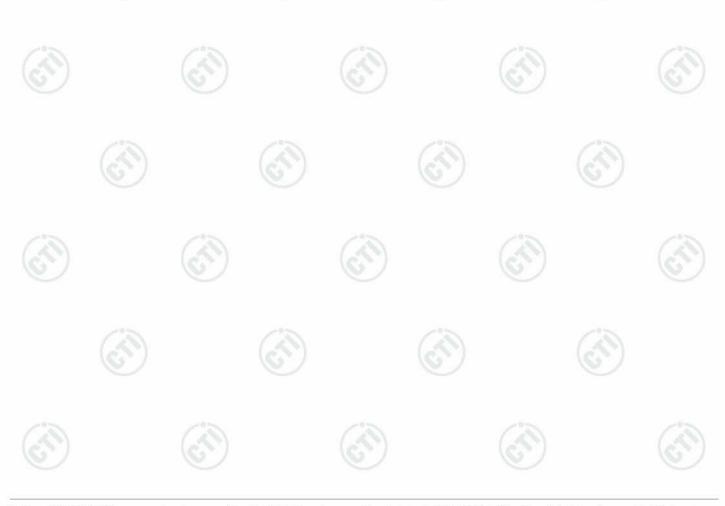
Date: Mar. 27, 2020

Check No.: 3970374309

Page 2 of 55

2 Version

Version No.	Date	(Description	7
00	Mar. 27, 2020		Original	
	*	/°>	75	/05
((%)	(642)	(6%)



Report No.: EED32L00368601 Page 3 of 55

3 Test Summary

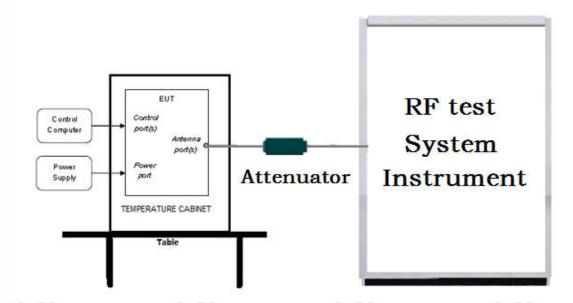
rest outilitially	381		
Test Item	Test Requirement	Test method	Result
Antenna Requirement	equirement 47 CFR Part 15Subpart C Section 15.203/15.247 (c)		PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No.: EED32L00368601 Page 4 of 55

4 Content

1 COVER PAGE				1
2 VERSION				2
TEST SUMMARY				3
4 CONTENT				4
5 TEST REQUIREMENT				5
5.1.1 For Conducted 5.1.2 For Radiated E 5.1.3 For Conducted 5.2 TEST ENVIRONMENT.	test setup missions test setup Emissions test setup			5
GENERAL INFORMATION	ON	•••••	•••••	7
6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICA 6.4 DESCRIPTION OF SUF 6.5 TEST LOCATION 6.6 DEVIATION FROM STA 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION	ON OF EUT TION SUBJECTIVE TO THIS STAPPORT UNITS ANDARDS M STANDARD CONDITIONS REQUESTED BY THE CUSTOLE ERTAINTY (95% CONFIDENCE	ANDARD		
7 EQUIPMENT LIST			•••••	10
RADIO TECHNICAL RE	QUIREMENTS SPECIFICA	ATION		13
EUT DUTY CYCLE				14
Appendix B): Conduct Appendix C): Band-e Appendix D): RF Cor Appendix E): Power S Appendix F): Antenna Appendix G): AC Power S Appendix H): Restrict	cupied Bandwidth cted Peak Output Power dge for RF Conducted Emis nducted Spurious Emissions Spectral Density a Requirement wer Line Conducted Emissions ted bands around fundaments	ssions sononon	d)	
PHOTOGRAPHS OF TES	T SETUP			45
PHOTOGRAPHS OF EUT	CONSTRUCTIONAL DET	AILS		48



Report No. : EED32L00368601 Page 5 of 55

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

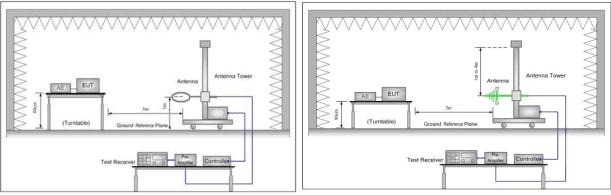


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

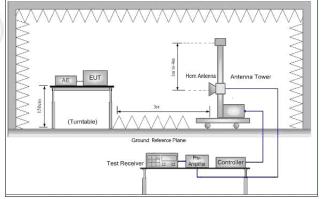
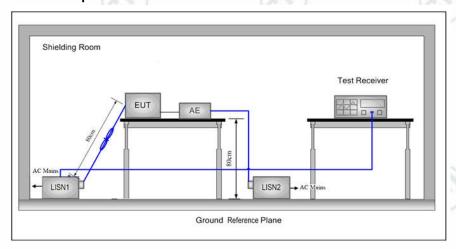



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

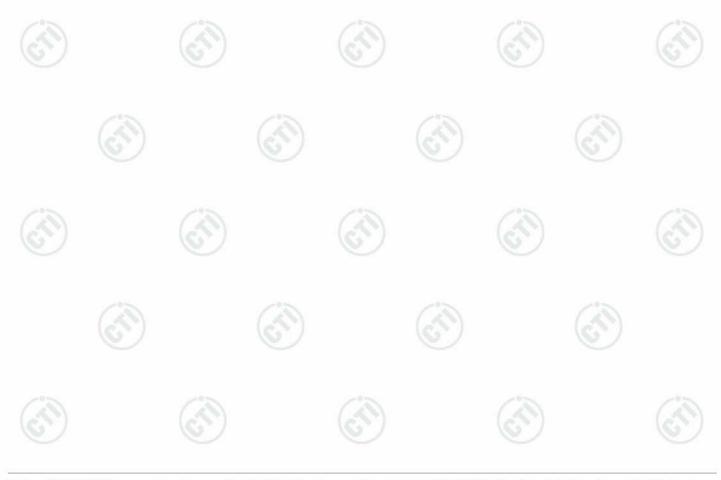

5.2 Test Environment

Operating Environment:	(0)		(0)
Temperature:	24.0 °C		
Humidity:	54 % RH	The state of the s	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel		200
rest wode	TX/FX	Low(L) Middle(M) High(H		
OFOK	04000411- 0400 0411-	Channel 1	Channel 20	Channel 40
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data


6 General Information

6.1 Client Information

Applicant:	Shenzhen Viatom Technology Co., Ltd.
Address of Applicant:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China
Manufacturer:	Shenzhen Viatom Technology Co., Ltd.
Address of Manufacturer:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China
Factory:	Shenzhen Viatom Technology Co., Ltd.
Address of Factory:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China

6.2 General Description of EUT

_				
Product Name:	Portable	ECG monitor		
Model No.(EUT):	PB-20			
Trade mark:	N/A			(2)
EUT Supports Radios application:	BT 4.0 S	ingle mode, 2402MHz to 2480MHz		0.
Power Supply:	Battery	DC 3.7V, 580mAh		
Sample Received Date:	Dec. 04,	2019	705	
Sample tested Date:	Dec. 04,	2019 to Jan. 07, 2020	(37)	

Report No.: EED32L00368601 Page 8 of 55

6.3 Product Specification subjective to this standard

Operation F	requency:	2402MH:	z~2480MHz				
Bluetooth Version: 4.0							
Modulation	Type:	GFSK	rice.		20		
Number of	Channel:	40					(2)
Test Power	Grade:	BLE Tx p	BLE Tx power:3				
Test Softwa	are of EUT:	Beken B	LE RF Test_v	1.0.exe			
Antenna Ty	/pe and Gain:	PCB Ant	enna,0dBi				
Test Voltag	je:	DC 3.7V	(13	\ \ \	13	A
Operation F	requency eac	h of channe	I	(6,0))	(6))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32L00368601 Page 9 of 55

6.4 Description of Support Units

	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
D	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC
9	(a)	(9)	(49)	1	341	(1)
/	6)	(6)	,		(6)

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

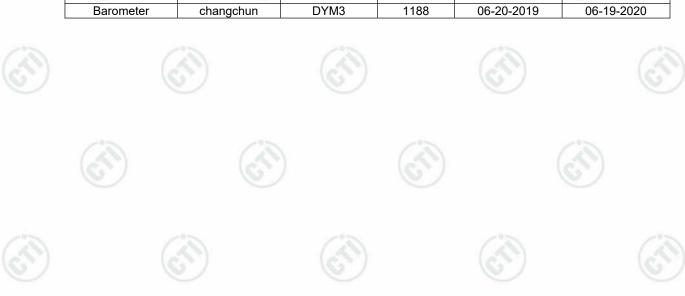
None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
67)	DE power conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
2	Dedicted Country aminaics test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	



Report No. : EED32L00368601 Page 10 of 55

7 Equipment List

100 /				- /	₩ . / /
		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY56376072	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	158060006	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(6.)	03-01-2019	02-29-2020

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020	
Temperature/ Humidity Indicator	Defu	TH128	I	06-14-2019	06-13-2020	
LISN	R&S	ENV216	100098	05-08-2019	05-07-2020	
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

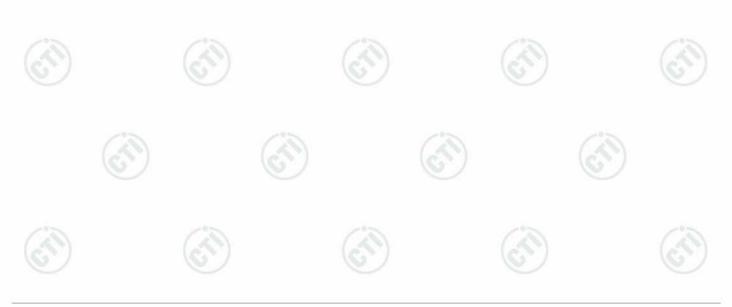
Rep

Page	11	of	55
------	----	----	----

t No. : EED32L003	368601			Р	age 11 of 55
	200	0	i- Ohh		
Equipment	Manufacturer	Semi/full-anecho Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	/35	01-09-2019	01-08-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line Cable line	Fulai(3M) Fulai(3M)	SF106 SF106	5216/6A 5217/6A	01-09-2019 01-09-2019	01-08-2020 01-08-2020

Report No. : EED32L00368601 Page 12 of 55

		3M full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software JS Tonscend JS36-RSE		10166	06-19-2019	06-18-2020	
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-21-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-16-2019	01-15-2020
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Fully Anechoic Chamber	TDK	FAC-3	/	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

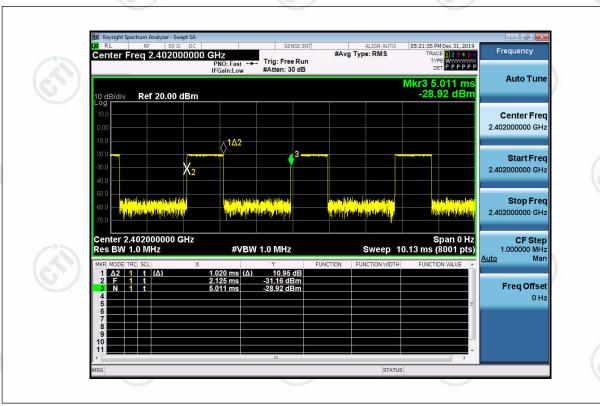

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity Document Title		
1	FCC Part15C	Subpart C-Intentional Radiators	
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices	

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)


 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32L00368601 Page 14 of 55

EUT Duty Cycle

Duty Cycle					
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)		
BLE	1.020	2.886	35.34%		

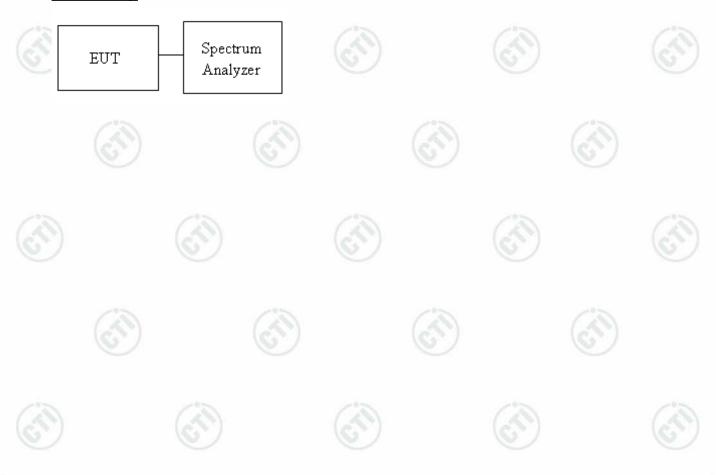
Report No. : EED32L00368601 Page 15 of 55

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth

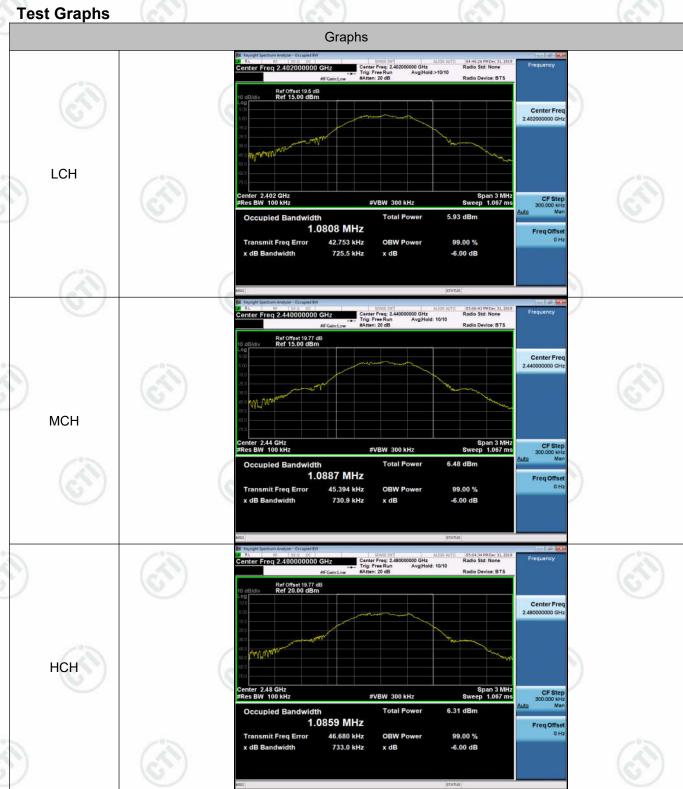

Limit	Shall be at least 500kHz

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report. **Test Setup**



Report No.: EED32L00368601 Page 16 of 55

Test Result

Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.7255	PASS
BLE	MCH	0.7309	PASS
BLE	HCH	0.7330	PASS



Test Result

1 Oot 1 toodit			
Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0517	PASS
BLE	MCH	1.0618	PASS
BLE	HCH	1.0551	PASS

Report No. : EED32L00368601 Page 18 of 55

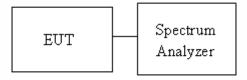
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

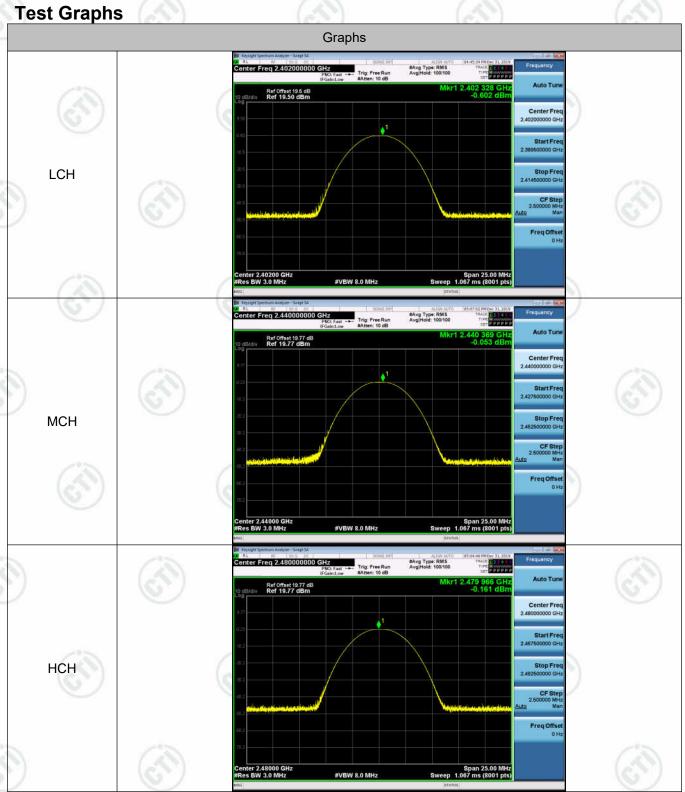

Limit Antenna not exceed 6 dBi : 30dBm Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)] Point-to-point operation	Limit	[Limit = $30 - (DG - 6)$]
--	-------	----------------------------

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW ≥ DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥ [3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup



Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-0.602	PASS
BLE	MCH	-0.053	PASS
BLE	HCH	-0.161	PASS

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

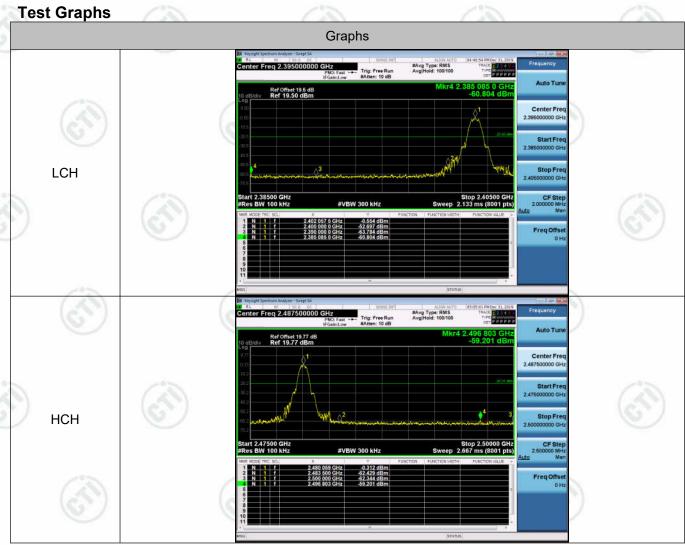
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

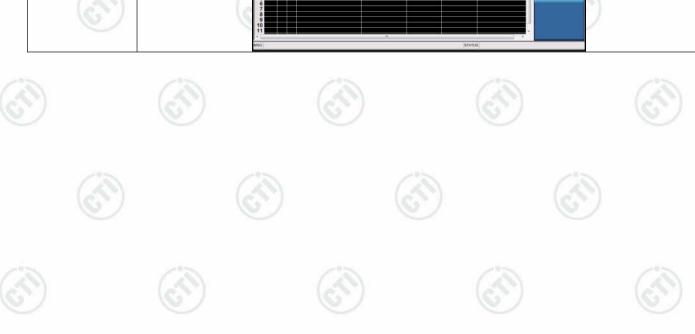
Test Procedure

Test method Refer as KDB 558074 D01.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup





Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-0.554	-60.804	-20.55	PASS
BLE	HCH	-0.312	-59.201	-20.31	PASS

Report No. : EED32L00368601 Page 22 of 55

Appendix D): RF Conducted Spurious Emissions Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

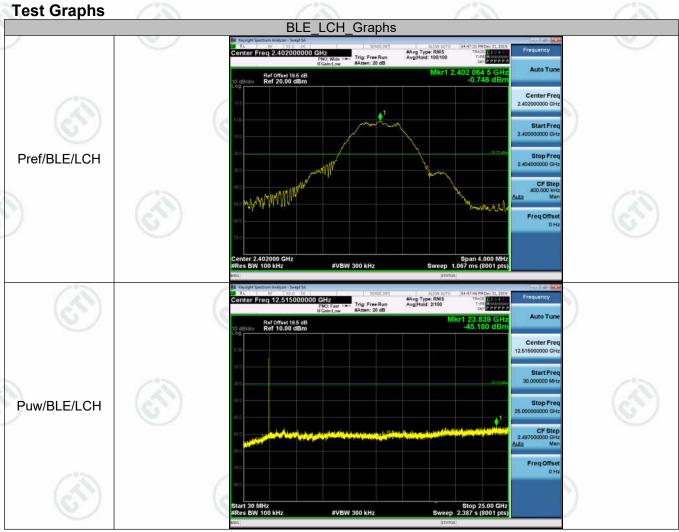
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

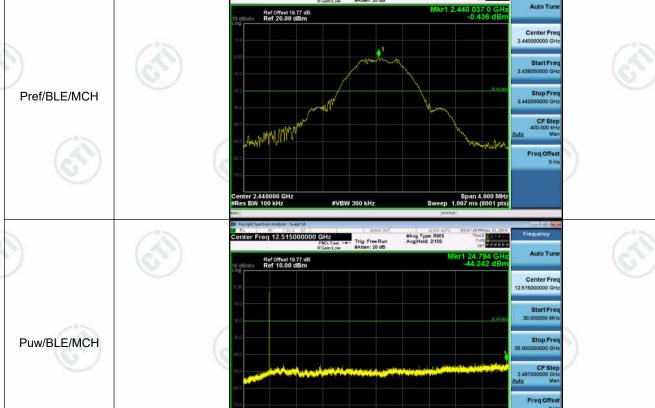


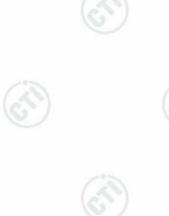
Page 23 of 55

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-0.746	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-0.436	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-0.337	<limit< td=""><td>PASS</td></limit<>	PASS







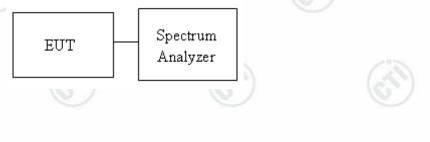
Page 25 of 55

Report No. : EED32L00368601 Page 26 of 55

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

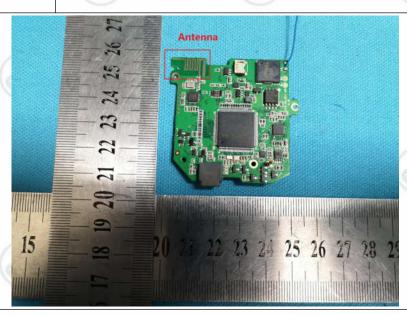
Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-14.794	PASS
BLE	MCH	-14.470	PASS
BLE	HCH	-14.207	PASS

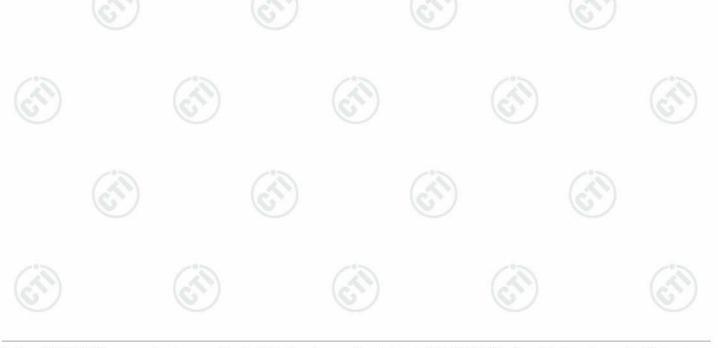
Test Graphs Graphs Ref Offset 19.5 dB Ref 10.00 dBm LCH MCH #Avg Type: RMS AvgiHold: 31/100 Ref Offset 19.77 dB Ref 10.00 dBm

Report No.: EED32L00368601 Page 28 of 55

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

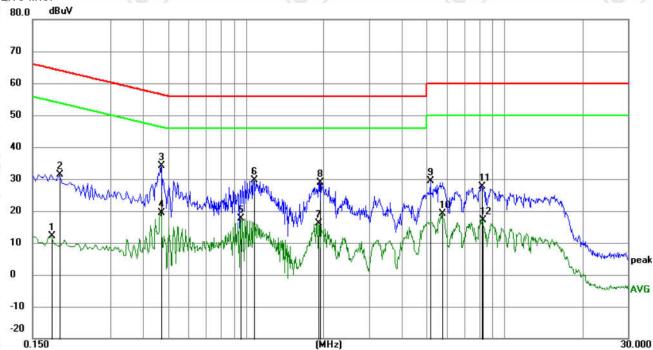
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi.

Report No.: EED32L00368601 Page 29 of 55

Test Procedure:	Test frequency range :150KHz-	-30MHz							
	1)The mains terminal disturbance voltage test was conducted in a shielded room.								
	2) The EUT was connected to	•	•	•					
	Stabilization Network) whic								
6)	power cables of all other u								
	which was bonded to the gr for the unit being measured multiple power cables to a s exceeded.	d. A multiple socket	outlet strip was use	d to connect					
(17)	3)The tabletop EUT was place reference plane. And for flo	or-standing arrangem		_					
	horizontal ground reference		ofonomos mlams. Th	f 4h-					
	4) The test was performed wit EUT shall be 0.4 m from the								
	reference plane was bonde		•	•					
	1 was placed 0.8 m from the boundary of the unit under test and								
)	ground reference plane for								
	plane. This distance was be All other units of the EUT a LISN 2.	<u>-</u>							
	5) In order to find the maximun	n emission, the relativ	e positions of equip	ment and all					
(c11)	of the interface cables r conducted measurement.	nust be changed a	according to ANSI	C63.10 on					
Limit:									
	Frequency range (MHz)	Limit (d	dBµV)						
	1 requeries range (iviliz)	Quasi-peak	Average	~0~					
6)	0.15-0.5	66 to 56*	56 to 46*	(1)					
/	0.5-5	56	46						
	5-30	60	50						
	* The limit decreases linearly v	with the logarithm of	the frequency in the	e range 0.15					
	MHz to 0.50 MHz. NOTE : The lower limit is applic								


Measurement Data

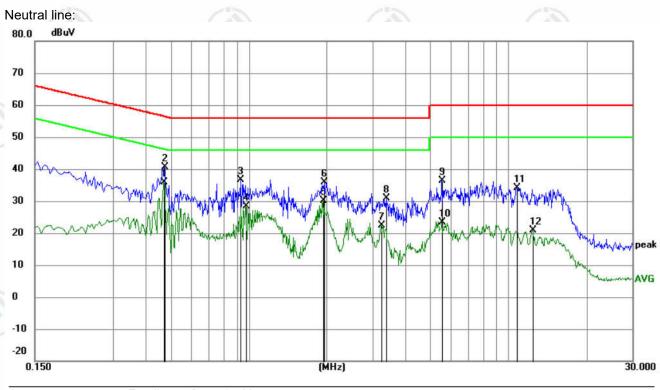
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Temperature: 24°C Humidity : 52%

Live line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1770	2.11	10.00	12.11	54.63	-42.52	AVG	
2	0.1905	21.34	10.01	31.35	64.01	-32.66	QP	
3 *	0.4695	24.02	10.00	34.02	56.52	-22.50	QP	
4	0.4695	9.26	10.00	19.26	46.52	-27.26	AVG	
5	0.9555	7.72	9.91	17.63	46.00	-28.37	AVG	
6	1.0725	19.75	9.90	29.65	56.00	-26.35	QP	
7	1.9095	6.35	9.84	16.19	46.00	-29.81	AVG	
8	1.9320	19.06	9.84	28.90	56.00	-27.10	QP	
9	5.1675	19.64	9.83	29.47	60.00	-30.53	QP	
10	5.7210	9.39	9.84	19.23	50.00	-30.77	AVG	
11	8.1735	17.69	9.89	27.58	60.00	-32.42	QP	
12	8.2410	7.26	9.90	17.16	50.00	-32.84	AVG	



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.4695	25.88	10.00	35.88	46.52	-10.64	AVG	
2		0.4740	30.57	10.00	40.57	56.44	-15.87	QP	
3		0.9285	26.60	9.92	36.52	56.00	-19.48	QP	
4		0.9780	18.56	9.91	28.47	46.00	-17.53	AVG	
5		1.9320	20.40	9.84	30.24	46.00	-15.76	AVG	
6		1.9500	26.03	9.83	35.86	56.00	-20.14	QP	
7		3.2325	12.58	9.83	22.41	46.00	-23.59	AVG	
8		3.3945	21.11	9.83	30.94	56.00	-25.06	QP	
9		5.5635	26.64	9.84	36.48	60.00	-23.52	QP	
10		5.5635	13.58	9.84	23.42	50.00	-26.58	AVG	
11		10.7610	24.07	9.96	34.03	60.00	-25.97	QP	
12		12.4260	10.94	9.97	20.91	50.00	-29.09	AVG	

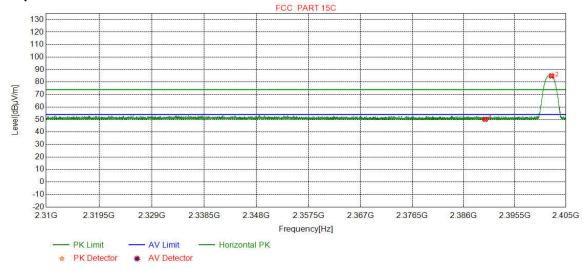
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Naulateu)	(60)	(60)	ï		10.1	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	AL 4011-	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu	ire as below:	6			6
	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 meters was mounted on the total control of the antenna height is a determine the maximum polarizations of the antenna was turned was turned from 0 deg. c. The antenna was tuned was turned from 0 deg. The test-receiver system Bandwidth with Maximm. f. Place a marker at the effrequency to show combands. Save the spectrol of lowest and highest.	on the top of a rotal choic camber. The of the highest raceters away from the pof a variable-her waried from one man value of the field enna are set to man ission, the EUT of the heights from 1 to heights from	ating table te table wa liation. te interfere eight anter neter to fo d strength nake the n was arran meter to tes to find ak Detect I ted band c asure any	ence-receinna tower. ur meters n. Both horneasuremeged to its v 4 meters a the maxin -unction a	ving antenna, above the groizontal and vent. worst case an and the rotata num reading. nd Specified he transmit is in the restricts.	o whice ound the ertical d then ble
	g. Different between above to fully Anechoic ChammatsGHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedure.	ve is the test site, wher change form meter and table west channel, th ments are perforr d found the X axis	table 0.8 is 1.5 met e Highest med in X, s positioni	meter to 1 er). channel Y, Z axis p ng which i	.5 meter(Abo positioning for t is worse cas	ve
Limit:	Frequency	Limit (dBµV/n			mark	
	30MHz-88MHz	40.0			eak Value	
	88MHz-216MHz	43.5	516		eak Value	
	216MHz-960MHz	46.0		- ·	eak Value	
	(///)	-	-6	-		
	960MHz-1GHz	54.0		Quasi-pe	eak Value	
			Average Value			
	Above 1GHz	54.0		_		
	Above 1GHz	54.0 74.0		_	le Value Value	

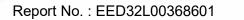
(i)


Report No.: EED32L00368601

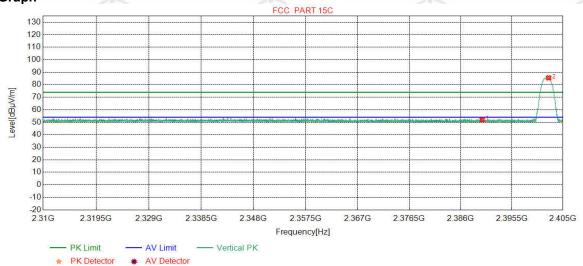
Page 33 of 55

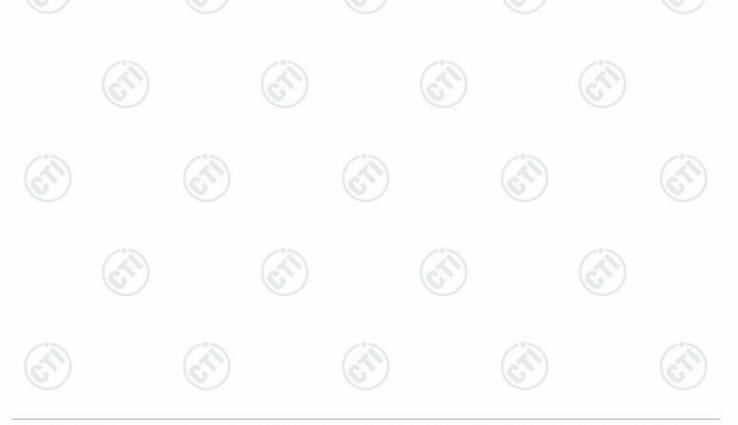
Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.68	50.18	74.00	23.82	Pass	Horizontal
2	2402.3272	32.26	13.31	-43.12	82.45	84.90	74.00	-10.90	Pass	Horizontal

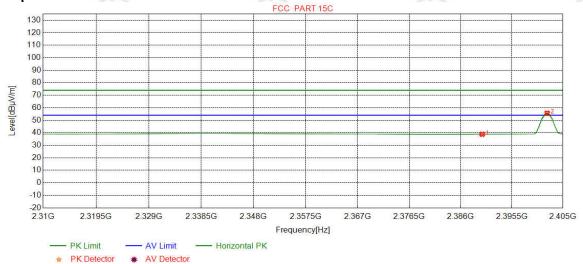


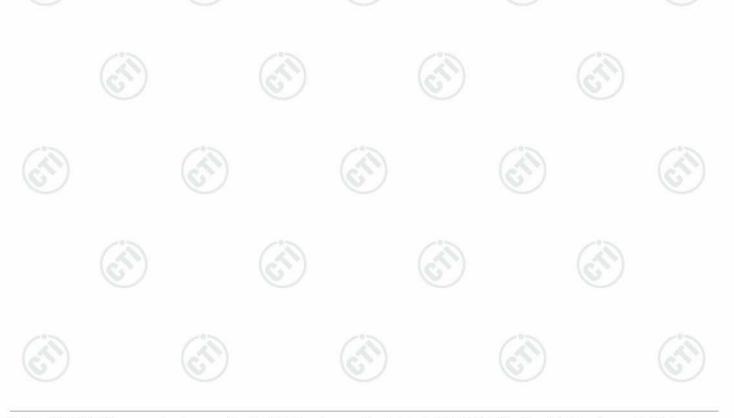

Page	34	of	55

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		'

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	49.47	51.97	74.00	22.03	Pass	Vertical
Ī	2	2402.3462	32.26	13.31	-43.12	83.04	85.49	74.00	-11.49	Pass	Vertical

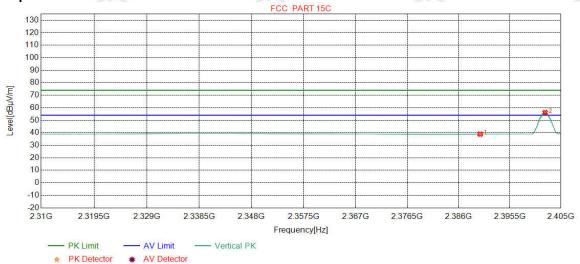


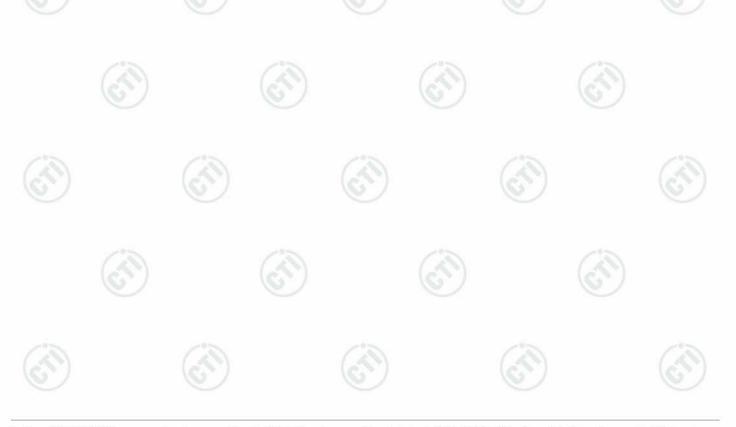

Report No. : EED32L00368601 Page 35 of 55

2000	120.75	P. 79 1	1.60
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.33	38.83	54.00	15.17	Pass	Horizontal
2	2402.0675	32.26	13.31	-43.12	53.23	55.68	54.00	-1.68	Pass	Horizontal

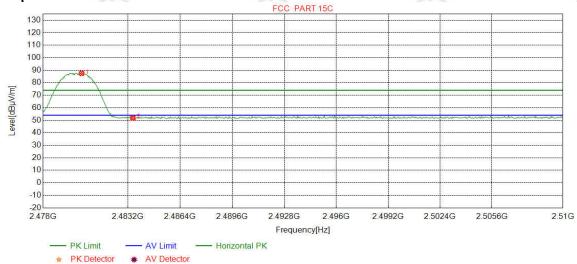


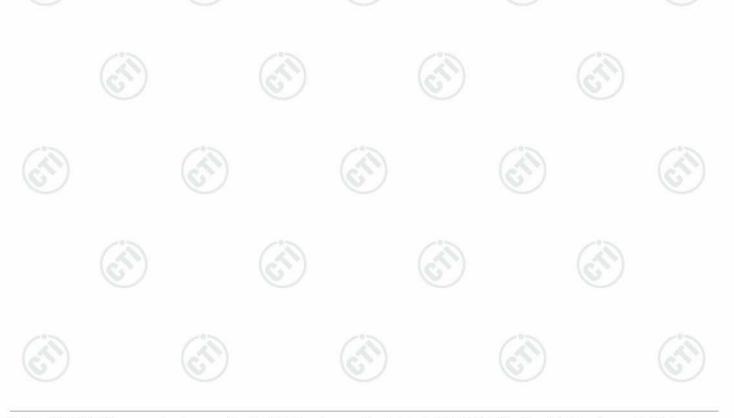

Report No. : EED32L00368601 Page 36 of 55

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV	·	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.42	38.92	54.00	15.08	Pass	Vertical
2	2402.0611	32.26	13.31	-43.12	53.68	56.13	54.00	-2.13	Pass	Vertical

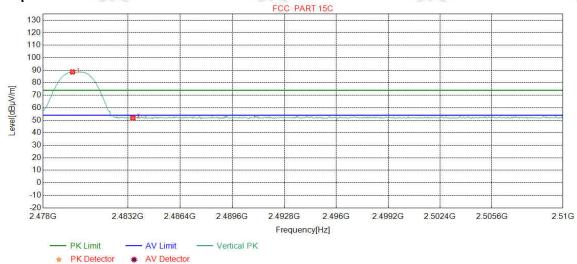


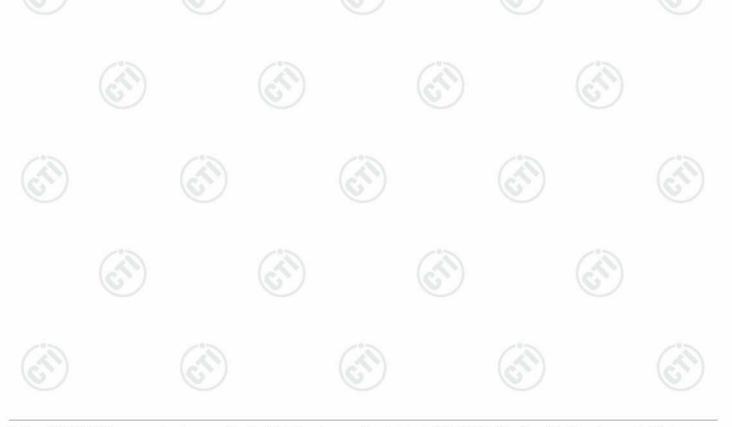


Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.3630	32.37	13.39	-43.10	84.81	87.47	74.00	-13.47	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.19	51.84	74.00	22.16	Pass	Horizontal

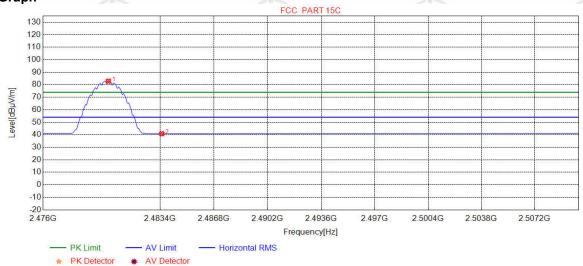


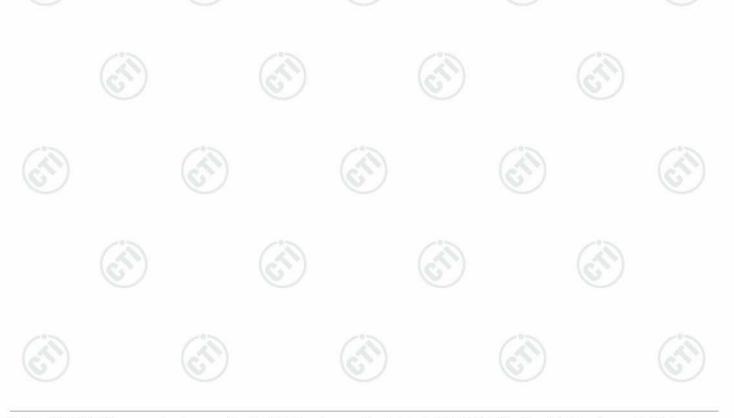

Page 38 of 55

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8023	32.37	13.39	-43.10	85.97	88.63	74.00	-14.63	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.22	51.87	74.00	22.13	Pass	Vertical

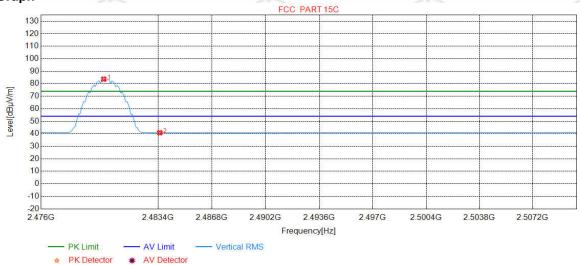



Page 39 of 55

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1277	32.37	13.39	-43.10	80.15	82.81	54.00	-28.81	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	38.21	40.86	54.00	13.14	Pass	Horizontal



Report No.: EED32L00368601 Page 40 of 55

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	81.04	83.70	54.00	-29.70	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	38.17	40.82	54.00	13.18	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
(0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(3)	Ab 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

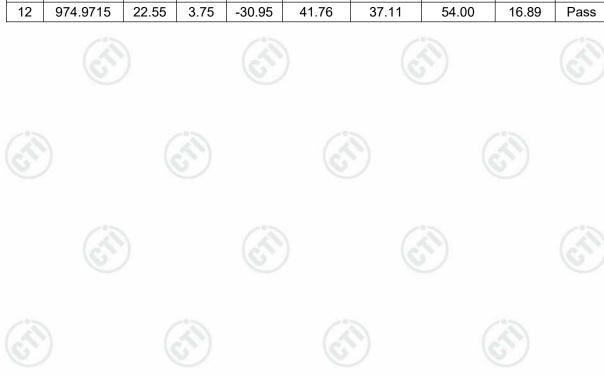
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

			٠.	
ı	_ir	n	ıτ	•
L	_!!		ıι	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(3)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(6.5)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

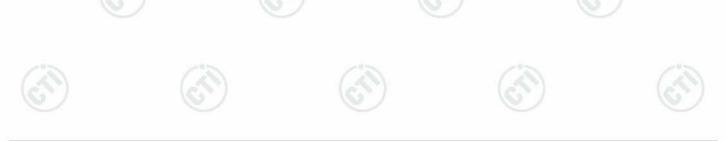
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Page 42 of 55

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode:			BLE G	SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	35.9176	10.99	0.66	-31.40	44.41	24.66	40.00	15.34	Pass	Н	PK
2	180.4620	9.04	1.58	-31.98	54.52	33.16	43.50	10.34	Pass	Н	PK
3	299.9780	13.20	2.06	-31.40	53.83	37.69	46.00	8.31	Pass	Н	PK
4	484.0054	16.74	2.63	-31.90	50.11	37.58	46.00	8.42	Pass	Н	PK
5	584.0224	18.68	2.91	-31.95	42.81	32.45	46.00	13.55	Pass	Н	PK
6	974.9715	22.55	3.75	-30.95	40.67	36.02	54.00	17.98	Pass	Н	PK
7	54.8345	12.43	0.84	-31.97	41.04	22.34	40.00	17.66	Pass	V	PK
8	345.7666	14.21	2.22	-31.86	54.01	38.58	46.00	7.42	Pass	V	PK
9	484.0054	16.74	2.63	-31.90	51.32	38.79	46.00	7.21	Pass	V	PK
10	553.1733	18.06	2.80	-31.96	45.93	34.83	46.00	11.17	Pass	V	PK
11	750.0060	20.35	3.29	-32.04	41.41	33.01	46.00	12.99	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	41.76	37.11	54.00	16.89	Pass	V	PK



Report No. : EED32L00368601 Page 43 of 55

Transmitter Emission above 1GHz

Mode:			BLE G	SK Trans	smitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3188.0125	33.28	4.63	-43.10	50.54	45.35	74.00	28.65	Pass	Н	PK
2	3947.0631	33.76	4.34	-43.01	49.12	44.21	74.00	29.79	Pass	Н	PK
3	4821.1214	34.50	4.60	-42.80	49.92	46.22	74.00	27.78	Pass	Н	PK
4	7230.2820	36.33	5.80	-42.16	47.77	47.74	74.00	26.26	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	47.15	49.32	74.00	24.68	Pass	Н	PK
6	11987.599	39.29	7.58	-41.90	48.68	53.65	74.00	20.35	Pass	Н	PK
7	3187.0125	33.27	4.63	-43.10	50.75	45.55	74.00	28.45	Pass	V	PK
8	3859.0573	33.69	4.36	-43.03	50.00	45.02	74.00	28.98	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	48.59	44.84	74.00	29.16	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	48.91	48.87	74.00	25.13	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	46.37	48.54	74.00	25.46	Pass	V	PK
12	12017.601	39.31	7.60	-41.90	48.35	53.36	74.00	20.64	Pass	V	PK

Mode:			BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3690.0460	33.55	4.26	-43.06	49.58	44.33	74.00	29.67	Pass	Н	PK
2	4880.0000	34.50	4.80	-42.80	47.91	44.41	74.00	29.59	Pass	Н	PK
3	6106.2071	35.82	5.26	-42.58	49.73	48.23	74.00	25.77	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	46.56	46.69	74.00	27.31	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.84	49.17	74.00	24.83	Pass	Н	PK
6	12200.000	39.42	7.67	-41.90	46.35	51.54	74.00	22.46	Pass	Н	PK
7	2946.7947	33.11	4.40	-43.10	51.36	45.77	74.00	28.23	Pass	V	PK
8	4880.0000	34.50	4.80	-42.80	49.50	46.00	74.00	28.00	Pass	V	PK
9	6101.2067	35.82	5.26	-42.58	48.59	47.09	74.00	26.91	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	47.54	47.67	74.00	26.33	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	46.22	48.55	74.00	25.45	Pass	V	PK
12	12200.000	39.42	7.67	-41.90	46.70	51.89	74.00	22.11	Pass	V	PK

Report No.: EED32L00368601 Page 44 of 55

		20%			160	20%						
Mode	Mode:			BLE GFSK Transmitting			Channel:			2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	3764.0509	33.61	4.36	-43.05	50.58	45.50	74.00	28.50	Pass	Н	PK	
2	4960.0000	34.50	4.82	-42.80	48.27	44.79	74.00	29.21	Pass	Н	PK	
3	6755.2504	36.00	5.69	-42.35	49.58	48.92	74.00	25.08	Pass	Н	PK	
4	7440.0000	36.54	5.85	-42.11	47.96	48.24	74.00	25.76	Pass	Н	PK	
5	9920.0000	37.77	6.79	-42.10	46.66	49.12	74.00	24.88	Pass	Н	PK	
6	12400.000	39.54	7.86	-41.90	45.96	51.46	74.00	22.54	Pass	Н	PK	
7	2798.3798	32.88	4.24	-43.11	54.87	48.88	74.00	25.12	Pass	V	PK	
8	4960.0000	34.50	4.82	-42.80	47.90	44.42	74.00	29.58	Pass	V	PK	
9	7440.0000	36.54	5.85	-42.11	49.00	49.28	74.00	24.72	Pass	V	PK	
10	9920.0000	37.77	6.79	-42.10	46.40	48.86	74.00	25.14	Pass	V	PK	
11	11474.565	38.88	7.57	-42.00	49.49	53.94	74.00	20.06	Pass	V	PK	
12	12400.000	39.54	7.86	-41.90	45.47	50.97	74.00	23.03	Pass	V	PK	

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

