

2 Version

	Version No.		Date	(2)	Descript	ion	
-	00	No	v. 09, 2020		Origina		
()	Ì			Ì		

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 3 of 52

3 Test Summary

Test Item	Test Requirement	Test method	Result PASS	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013		
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. Model No.: PO6, PO6A

Only the model PO6 was tested, Their electrical circuit design, layout, components used and internal wiring are identical only the color of silicon finger-cot appearance is different.

4 Content 1 COVER PAGE 6.6 DEVIATION FROM STANDARDS. 6.9 Measurement Uncertainty (95% confidence levels, k=2)......9 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION......11 PHOTOGRAPHS OF TEST SETUP......42

5.1.3 For Conducted Emissions test setup

5.2 Test Environment

Operating Environment:	C	9	<u> </u>	e e	D
Temperature:	23 °C				
Humidity:	51 % RH			1000	
Atmospheric Pressure:	1010mbar				
100.00		100 100		100.00	

5.3 Test Condition

Test channel:

Ì	Test Mede		RF Channel			
	Test Mode		Low(L)	Middle(M)	High(H)	
			Channel 0	Channel 19	Channel 39	
	GFSK	2402MHZ ~2480 MHZ	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	Ill kind of data	
	(67)	(67)	(GT)	G	7	

Report No.: EED32M00324201

6 General Information

6.1 Client Information

Applicant:	Shenzhen Viatom Technology Co., Ltd.
Address of Applicant:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China.
Manufacturer:	Shenzhen Viatom Technology Co., Ltd.
Address of Manufacturer:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China.
Factory:	Shenzhen Viatom Technology Co., Ltd.
Address of Factory:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China.

6.2 General Description of EUT

Product Name:	Pulse Oximeter		
Model No.(EUT):	PO6, PO6A		
Test Model No.:	P06		
Trade mark:	N/A	(\mathbf{c})	(c)
EUT Supports Radios application:	2402MHz to 2480MHz		
Power Supply:	DC 5V		1
Sample Received Date:	Oct. 22, 2020		(3)
Sample tested Date:	Oct. 22, 2020 to Oct. 30, 2020		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		(A	0
Bluetooth Version:	BLE	(C)	Q.	2
Modulation Technique:	DSSS			
Modulation Type:	GFSK			
Number of Channel:	40			
Test Power Grade:	Default	(67)	(\mathbb{C}^{n})	
Test Software of EUT:	DTM Tester	\sim	\smile	
Antenna Type and Gain:	Chip antenna; 3.45dBi			
Test Voltage:	DC 5V	60	13	5
	(AN)	(AN)	6	

operation				6		6	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name		Manufacture	model S/N serial num		Supplied by	Certification
AE	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 3368385

No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

and the second se		
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
	Dedicted Crusicus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3	/	05-24-2019	05-23-2022		
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021		
Receiver	R&S	ESCI7	100938-003	10-21-2019 10-16-2020	10-20-2020 10-15-2021		
Multi device Controller	maturo	NCD/070/10711 112	9				
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021		
Cable line	Fulai(7M)	SF106	5219/6A	- B			
Cable line	Fulai(6M)	SF106	5220/6A	s)			
Cable line	Fulai(3M)	SF106	5216/6A				
Cable line	Fulai(3M)	SF106	5217/6A	-00			
(C) - 1	6.2		Con I	(CC)			

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021		
Temperature/ Humidity Indicator	Defu	TH128	1				
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021		
Barometer	changchun	DYM3	1188		y		

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
7	(ST)	

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

(3)	Test Case: Duty	Cycle	(3)
Vode: BLE	Ant:	Ant1	\odot
Channel: 2402	Volta	age: VN	
Femperature: TN	Res	ult: PASS	
	Valu	e:15%;0.093999999993	75ms
Start Time: 2020/10/23 22:52	2:46 End	Time: 2020/10/23 22:52:	53
Reysign: Spectral manager swept SR X RF 50 Ω Center Freq 2.402000000 GHz PNo: F IFGain: IFGain:	ast →→ Trig: Free Run Low #Atten: 30 dB	ALIGN AUTO 01:32:54 AM Oct 24, 202 Type: RMS TRACE 2 4 5 TYPE WWWWW DET P P P P	Frequency
10 dB/div Ref 20 00 dBm		Mkr3 902.4 μ -27.52 dBn	Auto Tune
			Center Freq
-10.0			2.402000000 GHz
-20.0 <mark>w13 2</mark>			Start Freq
-30.0 12 11 11 11 11 11 11 11 11 11 11 11 11			2.402000000 GHz
			Stop Freq
-70.0			2.402000000 GHz
Center 2.402000000 GHz	4)/DW/ 4 0 MILI-	Span 0 H:	CF Step
	Y FUNCTION	FUNCTION WIDTH FUNCTION VALUE	Auto Man
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	μs (Δ) -0.23 dB μs -27.59 dBm μs -27.52 dBm		Freq Offset
4 5 6			0 Hz
7			
10			-
ISG	m	STATUS	
$\langle \mathcal{O} \rangle$			G

Appendix A): 6dB Occupied Bandwidth

Test Result		(\mathcal{A})		{
Mode		Channel	6dB Bandwidth [MHz]	Verdict
BLE		LCH	0.6829	PASS
BLE	12	МСН	0.6870	PASS
BLE	68	НСН	0.6867	PASS

Test Graphs

Γ

📕 Keysight Sj

Page 14 of 52

(A)		Center Freq 2.	1800 000 GHz #IFGain:Low #A Offset 19.77 dB f 20.00 dBm	SDISECTIVI Freq: 248000000 GHz ;: Free Run AvgiHold>1 ten: 20 dB	01 AUTO (01 2310 AMOC 24, 2020) 10/10 Radio Std: None Radio Device: BTS	Frequency Center Freq 2.480000000 GHz	
нсн		Center 2.48 GH #Res BW 100 k Occupied I Transmit Fre x dB Bandw	z Hz Bandwidth 1.0729 MHz eq Error -17.649 kHz idth 686.7 kHz	#VBW 300 kHz Total Power OBW Power x dB	Span 3 MHz Sweep 1.007 ms -1.43 dBm 99.00 % -6.00 dB	CF Step 300.000 KHz Auto Man Freq Offset 0 Hz	
	(SI)		(S)		(ST)		

Page 15 of 52

OBD99%			25 25	
Mode		Channel	99% OBW[MHz]	Verdict
BLE		LCH	1.0706	PASS
BLE		MCH	1.0728	PASS
BLE	12	НСН	1.0729	PASS

Test Graphs

Pa

Page 16 of 52

Appendix B): Conducted Peak Output Power

Test Result	S	G G	9
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-8.062	PASS
BLE	МСН	-7.546	PASS
BLE	нсн	-7.582	PASS

Test Graphs

Page 18 of 52

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix C): Band-edge for RF Conducted Emissions

	Result Ta	able	(C)		()	
	Mode Channel		Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
	BLE	LCH	-8.095	-60.983	-28.1	PASS
6	BLE	нсн	-7.582	-57.485	-27.58	PASS

Test Graphs

Appendix D): RF Conducted Spurious Emissions

esult Tabl	e 🥥		<u> </u>	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-8.28	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	МСН	-7.733	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-7.781	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix E): Power Spectral Density

Result Table			
Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-25.523	PASS
BLE	мсн	-25.206	PASS
BLE	НСН	-25.261	PASS

Pa

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.45dBi.

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz	(\mathbf{c})	
	1)The mains terminal disturbar	ice voltage test was c	onducted in a shiel	ded room.
	 2) The EUT was connected to Stabilization Network) which power cables of all other unit which was bonded to the graph of the unit being measure multiple power cables to a start exceeded. 	AC power source thr h provides a $50\Omega/50$ nits of the EUT were round reference plane d. A multiple socket of single LISN provided t	ough a LISN 1 (Lin uH + 5Ω linear imp connected to a se in the same way a putlet strip was use the rating of the LIS	e Impedance bedance. The cond LISN 2, as the LISN 1 ed to connect SN was not
(A)	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	ed upon a non-metall or-standing arrangem plane,	ic table 0.8m abov nent, the EUT was	e the ground placed on the
	 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 	th a vertical ground r e vertical ground refer d to the horizontal ground he boundary of the u or LISNs mounted o etween the closest poor nd associated equipn	eference plane. The rence plane. The ve ound reference pla unit under test and n top of the grou pints of the LISN 1 ment was at least 0	ne rear of the ertical ground ne. The LISN bonded to a nd reference and the EUT. .8 m from the
(T)	5) In order to find the maximum of the interface cables r conducted measurement.	n emission, the relativ nust be changed a	e positions of equi ccording to ANS	pment and all C63.10 on
Limit:				
	Frequency range (MHz)	Limit (c	звил)	
		Quasi-peak	Average	13
) (0.15-0.5	66 to 56*	56 to 46*	$(c^{(n)})$
/	0.5-5	56	46	
	5-30	60	50	
	* The limit decreases linearly	with the logarithm of	the frequency in th	ne range 0.15

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1680	37.60	9.87	47.47	65.06	-17.59	peak	
2	2		0.1770	19.56	9.87	29.43	54.63	-25.20	AVG	
2	3		0.2400	34.54	9.95	44.49	62.10	-17.61	peak	
	4		0.2445	17.92	9.96	27.88	51.94	-24.06	AVG	
-	5		0.3209	14.27	10.05	24.32	49.68	-25.36	AVG	
-	6		0.3255	31.15	10.04	41.19	59.57	-18.38	peak	
-	7		0.3930	27.33	9.98	37.31	58.00	-20.69	peak	
	8		0.4110	10.91	9.97	20.88	47.63	-26.75	AVG	
	9	*	0.8025	19.99	9.85	29.84	46.00	-16.16	AVG	
-	10		0.8070	27.07	9.85	36.92	56.00	-19.08	peak	
2	11		1.4325	9.85	9.81	19.66	46.00	-26.34	AVG	
	12		1.5405	18.09	9.81	27.90	56.00	-28.10	peak	

Page 28 of 52

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
-			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1635	37.15	9.87	47.02	65.28	-18.26	peak	
	2		0.1635	20.81	9.87	30.68	55.28	-24.60	AVG	
1	3		0.2445	34.45	9.96	44.41	61.94	-17.53	peak	
1	4		0.2445	17.09	9.96	27.05	51.94	-24.89	AVG	
1	5		0.3165	30.97	10.05	41.02	59.80	-18.78	peak	
	6		0.3165	11.29	10.05	21.34	49.80	-28.46	AVG	
	7		0.5730	25.32	10.04	35.36	56.00	-20.64	peak	
	8		0.5820	10.14	10.05	20.19	46.00	-25.81	AVG	
	9	*	0.8025	29.19	9.85	39.04	56.00	-16.96	peak	
	10		0.8025	16.34	9.85	26.19	46.00	-19.81	AVG	
	11		1.2795	17.77	9.82	27.59	56.00	-28.41	peak	
1	12		1.4595	7.37	9.81	17.18	46.00	-28.82	AVG	

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

		and the second sec								
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak					
		Peak	1MHz	3MHz	Peak					
(2)	Above IGHZ	Peak	1MHz	10Hz	Average					
Test Procedure:	Below 1GHz test procedu	ire as below:	Q		4	V				
	Test method Refer as KDB	558074 D01 v0	4, Section	12.1						
	 a. The EUT was placed of at a 3 meter semi-anexi determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is a determine the maximum polarizations of the antenna was tuned was turned from 0 deg e. The test-receiver system Bandwidth with Maxim f. Place a marker at the expression of the spectation of the spectat	In the top of a ro choic camber. The of the highest ra- eters away from op of a variable-hower of a variable-hower of the renna are set to nission, the EUT to heights from rees to 360 degrees to 360 de	tating table table wa adiation. the interfer neight ante meter to for eld strengtl make the r was arran 1 meter to rees to find eak Detect ted band of easure any ot. Repeat	e 0.8 meter as rotated 3 ence-receinna tower. bur meters h. Both hor neasurement ged to its 4 meters the maxin Function a closest to the emission for each point	rs above the g 360 degrees to aving antenna, above the gro rizontal and ve ent. worst case an and the rotata num reading. nd Specified ne transmit s in the restric ower and mod	round which und to ertical d then ble ted ulation				
	Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, and	 Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. 								
Limit:					mork					
20-		40.0		Quasi-p						
		43.0		Quasi-p						
	960MH7_1CH7	54 (Ouasi-p	eak Value					
		54.0 Quasi-peak Va			e Value					
- 0.1	Above 1GHz	74.0 Average			Value					
		14.0								
		6	/	67						

Test plot as follows:

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.80	50.30	74.00	23.70	Pass	Horizontal
2	2402.1308	32.26	13.31	-43.12	84.10	86.55	74.00	-12.55	Pass	Horizontal
68	•)	6	S)		(\mathcal{A})		(5))		(A)

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.18	50.68	74.00	23.32	Pass	Vertical
2	2401.7254	32.26	13.31	-43.12	74.40	76.85	74.00	-2.85	Pass	Vertical
10	N	1.1	1	•			(1)	6		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.05	38.55	54.00	15.45	Pass	Horizontal
2	2401.9471	32.26	13.31	-43.12	43.15	45.60	54.00	8.40	Pass	Horizontal
1 0	N	1.1	1				1	6		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.08	38.58	54.00	15.42	Pass	Vertical
2	2401.9408	32.26	13.31	-43.12	42.60	45.05	54.00	8.95	Pass	Vertical
1 0	N	1.	1					6		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	74.78	77.44	74.00	-3.44	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.33	50.98	74.00	23.02	Pass	Horizontal
12	N	1.1	A				(1)			

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6596	32.37	13.39	-43.10	69.19	71.85	74.00	2.15	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.09	51.74	74.00	22.26	Pass	Vertical
10	N	1.	1				(1)	6		

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	42.76	45.42	54.00	8.58	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.12	38.77	54.00	15.23	Pass	Horizontal
1 0	N	1.	1		10		1	6		

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8723	32.37	13.39	-43.10	41.48	44.14	54.00	9.86	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.11	38.76	54.00	15.24	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	Average 10kHz		Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	1
9	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	67)
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHZ	Peak	1MHz	10Hz	Average	
Test Procedure:			•			
Below 1GHz test p	rocedure as below:			-		
Test method Refer a	as KDB 558074 D01 v04, Se	ection 12.1				
a. The EUT was pla	nced on the top of a rotating ta	able 0.8 meters a	above the g	round at a 3	3 meter semi-ar	nechoic
camber. The tabl	e was rotated 360 degrees to	determine the p	osition of th	e highest r	adiation.	
b. The EUT was se	t 3 meters away from the inte	rference-receivir	ng antenna,	whichwas	mounted on the	top of a
variable-height a	ntenna tower.					
c. The antenna heig of the field streng	ght is varied from one meter t th. Both horizontal and vertic	o four meters ab al polarizations o	ove the grou of the anten	und to dete na are set f	rmine the maxin to make the me	mum value asurement.

- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Limit:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-	0	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Iote: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	i taai			01011			1.23	2251		1.2		
	Mode	:		BLE GFSK Transmitting					Channel:		2440	
g	NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margi n [dB]	Resul t	Polarit y	Remar k
ŝ	1	36.5967	11.21	0.67	-31.38	43.20	23.70	40.00	16.30	Pass	Н	PK
	2	89.5640	9.30	1.10	-32.09	56.04	34.35	43.50	9.15	Pass	Н	PK
	3	252.5403	12.25	1.89	-31.89	49.34	31.59	46.00	14.41	Pass	Н	PK
	4	383.4063	15.03	2.33	-31.86	40.09	25.59	46.00	20.41	Pass	Н	PK
	5	600.0290	19.00	2.96	-31.50	40.39	30.85	46.00	15.15	Pass	Н	PK
	6	844.9785	21.44	3.50	-31.82	38.10	31.22	46.00	14.78	Pass	Н	PK
	7	36.5967	11.21	0.67	-31.38	43.76	24.26	40.00	15.74	Pass	V	PK
	8	95.9666	10.35	1.13	-31.97	53.50	33.01	43.50	10.49	Pass	V	PK
ė	9	195.0135	10.43	1.64	-31.94	45.64	25.77	43.50	17.73	Pass	V	PK
ć	10	411.4421	15.58	2.42	-31.83	38.45	24.62	46.00	21.38	Pass	V	PK
ų	11	600.0290	19.00	2.96	-31.50	41.22	31.68	46.00	14.32	Pass	V	PK
	12	875.0515	21.80	3.55	-31.70	36.41	30.06	46.00	15.94	Pass	V	PK

Report No.: EED32M00324201

Transmitter Emission above 1GHz

	Mode	:		BLE G	FSK Tran	smitting	Channel:		2402			
	NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margi n [dB]	Resul t	Polarit y	Remar k
1	1	1993.499	31.66	3.46	-43.18	52.99	44.93	74.00	29.07	Pass	Н	PK
1	2	3181.012	33.27	4.62	-43.10	50.85	45.64	74.00	28.36	Pass	Н	PK
1	3	4804.000	34.50	4.55	-42.80	48.91	45.16	74.00	28.84	Pass	Н	PK
	4	7206.280	36.31	5.81	-42.16	54.34	54.30	74.00	19.70	Pass	Н	PK
	5	9608.000	37.64	6.63	-42.10	46.67	48.84	74.00	25.16	Pass	Н	PK
	6	12010.00	39.31	7.60	-41.90	46.35	51.36	74.00	22.64	Pass	Н	PK
	7	7205.840	36.31	5.82	-42.16	36.01	35.98	54.00	18.02	Pass	Н	AV
	8	1990.699	31.64	3.46	-43.18	56.65	48.57	74.00	25.43	Pass	V	PK
	9	3794.052	33.64	4.37	-43.05	49.78	44.74	74.00	29.26	Pass	V	PK
4	10	4804.000	34.50	4.55	-42.80	46.53	42.78	74.00	31.22	Pass	V	PK
į	11	7205.280	36.31	5.82	-42.17	52.14	52.10	74.00	21.90	Pass	V	PK
	12	9608.000	37.64	6.63	-42.10	46.61	48.78	74.00	25.22	Pass	V	PK
	13	12010.00	39.31	7.60	-41.90	46.66	51.67	74.00	22.33	Pass	V	PK

Mode:			BLE G	FSK Tran	smitting	Channel:		2440			
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margi n [dB]	Resul t	Polarit y	Remar k
1	1807.880	30.43	3.33	-42.73	51.54	42.57	74.00	31.43	Pass	Н	PK
2	3189.012	33.28	4.63	-43.10	50.12	44.93	74.00	29.07	Pass	Н	PK
3	4880.000	34.50	4.80	-42.80	47.22	43.72	74.00	30.28	Pass	Н	PK
4	7320.288	36.42	5.85	-42.14	55.69	55.82	74.00	18.18	Pass	Н	PK
5	9760.000	37.70	6.73	-42.10	48.07	50.40	74.00	23.60	Pass	Н	PK
6	12200.00	39.42	7.67	-41.90	48.67	53.86	74.00	20.14	Pass	Н	PK
7	7319.823	36.42	5.85	-42.14	36.84	36.97	54.00	17.03	Pass	V	AV
8	1798.879	30.37	3.32	-42.71	56.05	47.03	74.00	26.97	Pass	V	PK
9	3055.003	33.22	4.82	-43.10	50.90	45.84	74.00	28.16	Pass	V	PK
10	4880.000	34.50	4.80	-42.80	47.02	43.52	74.00	30.48	Pass	V	PK
11	7320.000	36.42	5.85	-42.14	52.03	52.16	74.00	21.84	Pass	V	PK
12	9760.000	37.70	6.73	-42.10	47.32	49.65	74.00	24.35	Pass	V	PK
13	12200.00	39.42	7.67	-41.90	45.75	50.94	74.00	23.06	Pass	V	PK

Page 41 of 52

Mode	:		BLE G	FSK Tran	smitting		Channel:		2480		
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margi n [dB]	Resul t	Polarit y	Remar k
1	1470.847	28.37	2.97	-42.98	51.51	39.87	74.00	34.13	Pass	Н	PK
2	1996.499	31.68	3.47	-43.20	52.23	44.18	74.00	29.82	Pass	Н	PK
3	4960.000	34.50	4.82	-42.80	49.25	45.77	74.00	28.23	Pass	Н	PK
4	7440.296	36.54	5.85	-42.11	53.45	53.73	74.00	20.27	Pass	Н	PK
5	9920.000	37.77	6.79	-42.10	46.12	48.58	74.00	25.42	Pass	Н	PK
6	12400.00	39.54	7.86	-41.90	48.14	53.64	74.00	20.36	Pass	Н	PK
7	1800.480	30.38	3.32	-42.71	53.86	44.85	74.00	29.15	Pass	V	PK
8	3842.056	33.67	4.36	-43.03	50.48	45.48	74.00	28.52	Pass	V	PK
9	4960.000	34.50	4.82	-42.80	49.53	46.05	74.00	27.95	Pass	V	PK
10	7440.296	36.54	5.85	-42.11	54.53	54.81	74.00	19.19	Pass	V	PK
11	9920.000	37.77	6.79	-42.10	45.69	48.15	74.00	25.85	Pass	V	PK
12	12400.00	39.54	7.86	-41.90	47.14	52.64	74.00	21.36	Pass	V	PK
13	7439.830	36.54	5.85	-42.11	36.70	36.98	54.00	17.02	Pass	V	AV

Transmitter Emission above 18GHz

Mode:			BLE G	FSK Tran	smitting	Channel:		2440			
NO	Freq. [MHz]	Ant Facto r [dB]	Cabl e loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margi n [dB]	Resul t	Polarit y	Remar k
1	18311.93	37.74	0.00	-64.02	70.25	43.97	74.00	30.03	Pass	Н	PK
2	19473.69	38.96	0.00	-62.90	68.90	44.96	74.00	29.04	Pass	Н	PK
3	21260.45	38.54	0.00	-63.24	68.48	43.78	74.00	30.22	Pass	Н	PK
4	22488.29	38.57	0.00	-62.95	69.97	45.59	74.00	28.41	Pass	Н	PK
5	23763.19	39.86	0.00	-60.97	66.34	45.23	74.00	28.77	Pass	Н	PK
6	24589.50	40.49	0.00	-60.34	64.77	44.92	74.00	29.08	Pass	Н	PK
7	18627.50	38.30	0.00	-63.83	70.14	44.61	74.00	29.39	Pass	V	PK
8	19902.67	38.97	0.00	-62.30	68.42	45.09	74.00	28.91	Pass	V	PK
9	20995.83	38.62	0.00	-63.39	68.94	44.17	74.00	29.83	Pass	V	PK
10	22174.68	38.40	0.00	-63.15	69.18	44.43	74.00	29.57	Pass	V	PK
11	23595.18	39.63	0.00	-61.51	66.97	45.09	74.00	28.91	Pass	V	PK
12	24817.15	40.61	0.00	-60.41	65.21	45.41	74.00	28.59	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.