

Page 1 of 57

- : Dynamic ECG recorder
- Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards

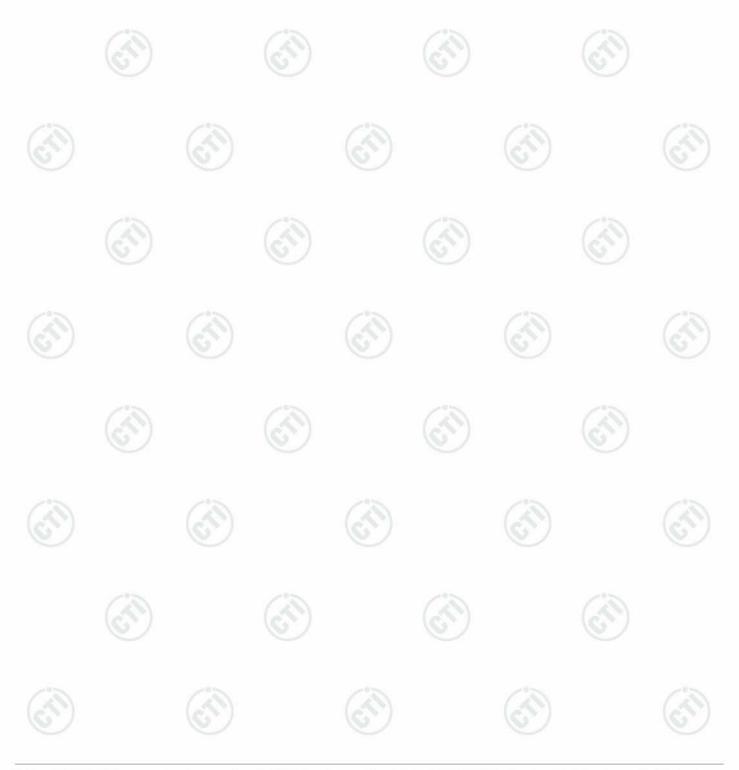
Test result

- N/A
- : ER1
- : N/A
- EED32M00166301
- : 2ADXK-3613
- : Aug. 05, 2020
- : 47 CFR Part 15 Subpart C

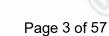
Prepared for:

: PASS

Shenzhen Viatom Technology Co., Ltd. 4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China


> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

2 Version


Version No.	Date	<u> </u>	Description	9
00	Aug. 05, 2020		Original	
	100	12	15	12
		(cS)		

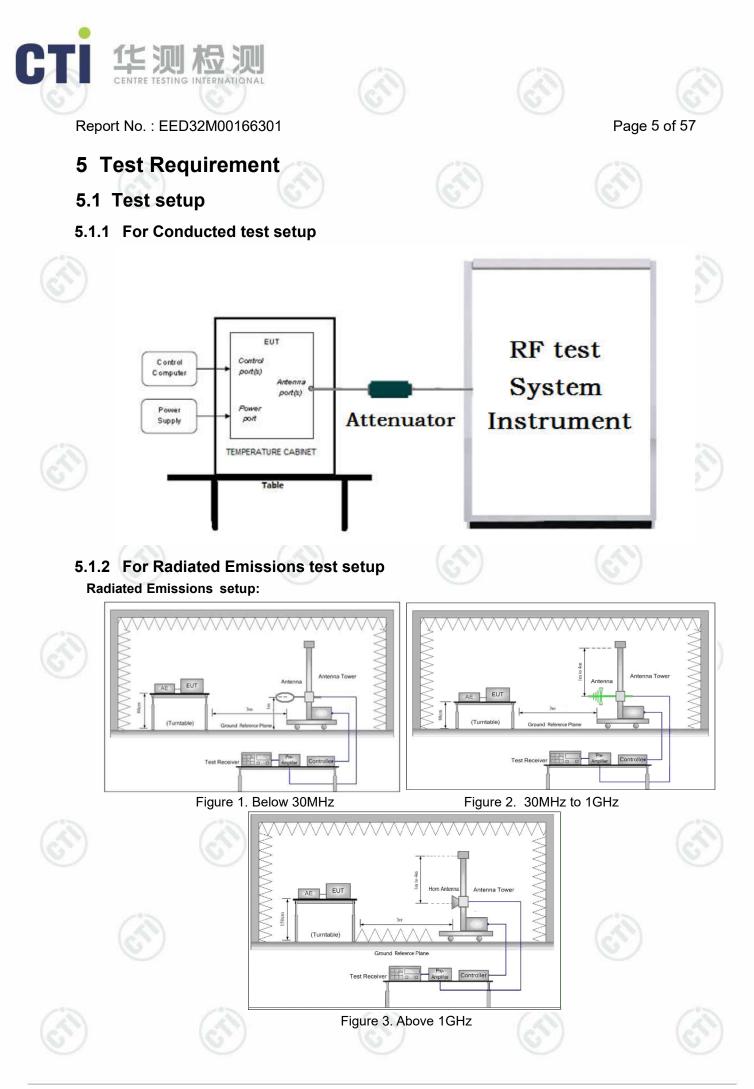
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

et Summ

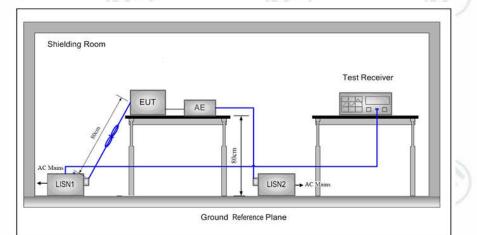
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.



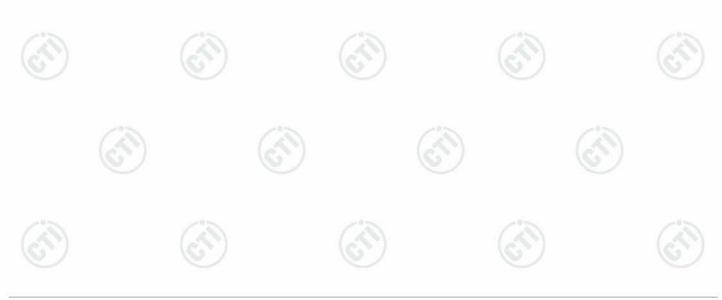
2 VERSION 3 TEST SUMMARY 4 CONTENT 5 TEST REQUIREMENT 5 TEST REQUIREMENT 5 1.1 For Conducted test setup	COVER PAGE			•••••
CONTENT	2 VERSION			
5.1 TEST REQUIREMENT	B TEST SUMMARY			
5.1 TEST SETUP	CONTENT	<u></u>	<u></u>	
5.1.1 For Conducted test setup	TEST REQUIREMENT			
5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup	5.1 Test setup	~	~	
5.1.3 For Conducted Emissions test setup	5.1.1 For Conducted test setup			
5.2 TEST ENVIRONMENT 5.3 TEST CONDITION				
5.3 TEST CONDITION				
 GENERAL INFORMATION				
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST 7 EQUIPMENT LIST 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 6dB Occupied Bandwidth Appendix B): Conducted Peak Output Power Appendix C): Band-edge for RF Conducted Emissions. Appendix D): RF Conducted Spurious Emissions Appendix E): Power Spectral Density Appendix F): Antenna Requirement. Appendix F): Antenna Requirement. Appendix G): AC Power Line Conducted Emission. Appendix J): Restricted bands around fundamental frequency (Radiated) Appendix I) Radiated Spurious Emissions.				
 6.2 GENERAL DESCRIPTION OF EUT				
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 DEVIATION FROM STANDARDS. 6.7 ABNORMALITIES FROM STANDARD CONDITIONS. 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2). 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 6dB Occupied Bandwidth. Appendix B): Conducted Peak Output Power. Appendix C): Band-edge for RF Conducted Emissions. Appendix D): RF Conducted Spurious Emissions. Appendix E): Power Spectral Density. Appendix F): Antenna Requirement. Appendix G): AC Power Line Conducted Emission. Appendix H): Restricted bands around fundamental frequency (Radiated). Appendix I) Radiated Spurious Emissions.				
6.4 DESCRIPTION OF SUPPORT UNITS				
 6.5 TEST LOCATION				
 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)				
 6.7 ABNORMALITIES FROM STANDARD CONDITIONS 6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST				
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 7 EQUIPMENT LIST. 7 EQUIPMENT LIST. 8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 6dB Occupied Bandwidth. Appendix B): Conducted Peak Output Power. Appendix B): Conducted Peak Output Power. Appendix C): Band-edge for RF Conducted Emissions. Appendix D): RF Conducted Spurious Emissions. Appendix E): Power Spectral Density. Appendix F): Antenna Requirement. Appendix G): AC Power Line Conducted Emission. Appendix G): AC Power Line Conducted Emission. Appendix H): Restricted bands around fundamental frequency (Radiated). Appendix I) Radiated Spurious Emissions.				
Y EQUIPMENT LIST B RADIO TECHNICAL REQUIREMENTS SPECIFICATION Appendix A): 6dB Occupied Bandwidth Appendix B): Conducted Peak Output Power Appendix C): Band-edge for RF Conducted Emissions. Appendix D): RF Conducted Spurious Emissions Appendix E): Power Spectral Density Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted Emission Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I) Radiated Spurious Emissions.				
B RADIO TECHNICAL REQUIREMENTS SPECIFICATION. Appendix A): 6dB Occupied Bandwidth. Appendix B): Conducted Peak Output Power. Appendix C): Band-edge for RF Conducted Emissions. Appendix D): RF Conducted Spurious Emissions. Appendix E): Power Spectral Density. Appendix F): Antenna Requirement. Appendix G): AC Power Line Conducted Emission. Appendix H): Restricted bands around fundamental frequency (Radiated). Appendix I) Radiated Spurious Emissions.	6.9 MEASUREMENT UNCERTAINTY (95% CONFID	ENCE LEVELS, K=2)		
Appendix A): 6dB Occupied Bandwidth Appendix B): Conducted Peak Output Power Appendix C): Band-edge for RF Conducted Emissions. Appendix D): RF Conducted Spurious Emissions. Appendix E): Power Spectral Density Appendix F): Antenna Requirement. Appendix G): AC Power Line Conducted Emission. Appendix G): AC Power Line Conducted Emission. Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I) Radiated Spurious Emissions.	ZEQUIPMENT LIST			•••••
Appendix B): Conducted Peak Output Power Appendix C): Band-edge for RF Conducted Emissions Appendix D): RF Conducted Spurious Emissions Appendix E): Power Spectral Density Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted Emission Appendix G): AC Power Line Conducted Emission Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I) Radiated Spurious Emissions				
Appendix B): Conducted Peak Output Power Appendix C): Band-edge for RF Conducted Emissions Appendix D): RF Conducted Spurious Emissions Appendix E): Power Spectral Density Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted Emission Appendix G): AC Power Line Conducted Emission Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I) Radiated Spurious Emissions	Appendix A): 6dB Occupied Bandwidth			
Appendix D): RF Conducted Spurious Emissions. Appendix E): Power Spectral Density. Appendix F): Antenna Requirement. Appendix G): AC Power Line Conducted Emission. Appendix H): Restricted bands around fundamental frequency (Radiated). Appendix I) Radiated Spurious Emissions.	Appendix B): Conducted Peak Output Pov	ver		
Appendix E): Power Spectral Density Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted Emission Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I) Radiated Spurious Emissions				
Appendix F): Antenna Requirement. Appendix G): AC Power Line Conducted Emission. Appendix H): Restricted bands around fundamental frequency (Radiated). Appendix I) Radiated Spurious Emissions.	,			
Appendix G): AC Power Line Conducted Emission Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I) Radiated Spurious Emissions	·· / · ·			
Appendix H): Restricted bands around fundamental frequency (Radiated) Appendix I) Radiated Spurious Emissions	Appendix F): Antenna Requirement	mission		
Appendix I) Radiated Spurious Emissions	Appendix G). AC FOWER Line Conducted E Appendix H): Restricted bands around fund	amental frequency (Radiate	d)	



Page 6 of 57

Report No. : EED32M00166301

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

	-			
Operating Environment:		S	V	e
Temperature:	23.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010mbar	(2)		0
10.2	10.7	100		

5.3 Test Condition

Test channel:

10-00	Test Mode	Tx/Rx		RF Channel	10
1	Test Mode		Low(L)	Middle(M)	High(H)
5	0501/		Channel 0	Channel 19	Channel 39
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	Keep the EUT in transmitting more rate.	de with all kind of r	nodulation and a	all kind of data

6 General Information

6.1 Client Information

Applicant:	Shenzhen Viatom Technology Co., Ltd.
Address of Applicant:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China
Manufacturer:	Shenzhen Viatom Technology Co., Ltd.
Address of Manufacturer:	4E, 3#, Tingwei Industrial Pa
Factory:	Shenzhen Viatom Technology Co., Ltd.
Address of Factory:	4E, 3#, Tingwei Industrial Park, Honglang North 2nd Road, Baoan District, Shenzhen, China

Page 7 of 57

6.2 General Description of EUT

Product Name:	Dynamic	ECG recorder	
Model No.(EUT):	ER1		1
Trade mark:	N/A		3
EUT Supports Radios application:	4.0 BT S	ingle mode, 2402MHz to 2480MHz	\sim
Power Supply:	Battery	SH441718 90mAh 3.7V 0.333wh	
Sample Received Date:	Jun. 10,	2020	
Sample tested Date:	Jun. 10,	2020 to Jul. 30, 2020	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(C)	(S)
Bluetooth Version:	4.0		
Modulation Technique:	DSSS		
Modulation Type:	GFSK		A
Number of Channel:	40	S) (6	S7)
Test Power Grade:	Default		
Test Software of EUT:	NrF		
Antenna Type and Gain:	Type: Chip Antenna Gain:0 dBi		(B
Test Voltage:	DC 5V		e

	_		_				/
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Page 9 of 57

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

support equipment	
-------------------	--

	sociated	Manufacture	model	S/N serial number	Supplied by	Certification
D	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC
	0.03		6.2		6.3	10.2

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

6.7 Abnormalities from Standard Conditions

None.

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

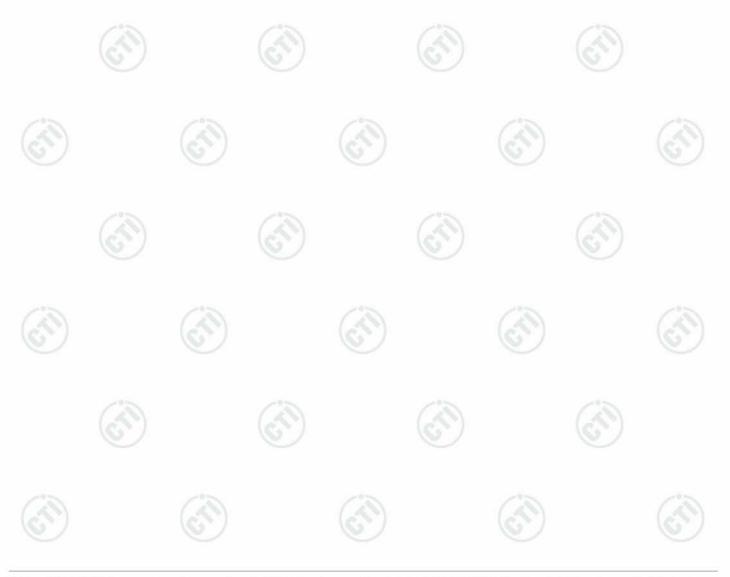
No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spundus emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 10 of 57

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019 06-29-2020	07-25-2020 06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002			9
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		0	
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	$\underline{\circ}$		<u></u>

Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021
Temperature/ Humidity Indicator	Defu	TH128			(I)
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021
Barometer	changchun	DYM3	1188		


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 11 of 57

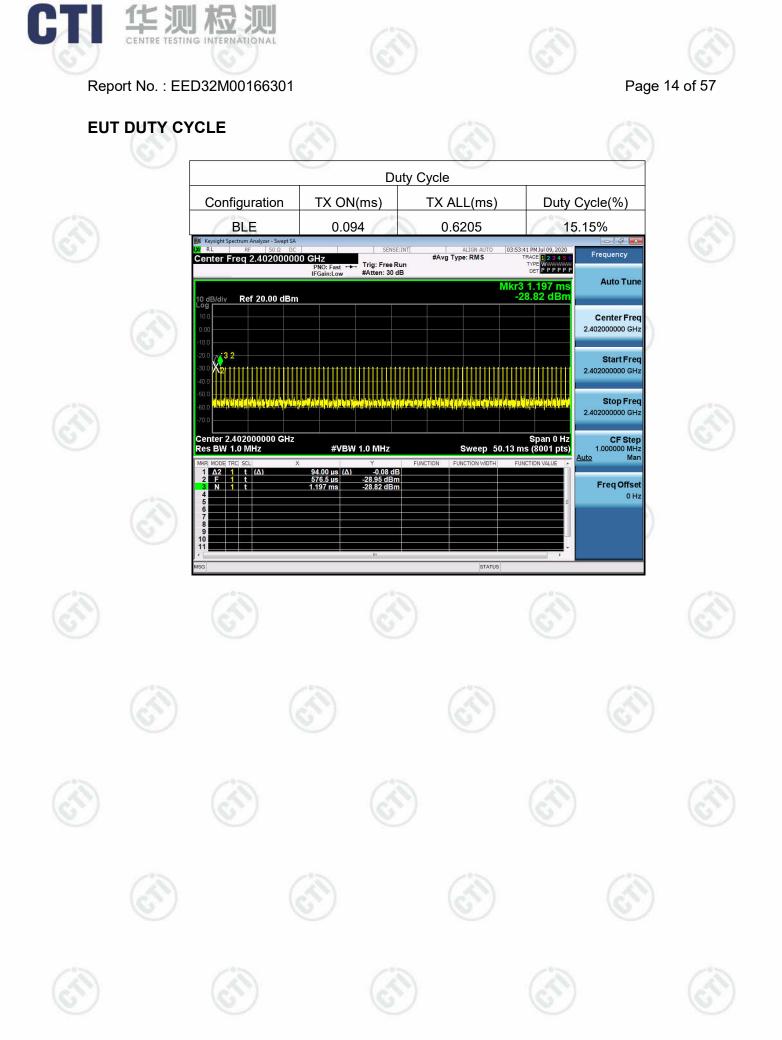
	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	ток	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112			
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019 06-29-2020	07-25-2020 06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A	(a.)	
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A		

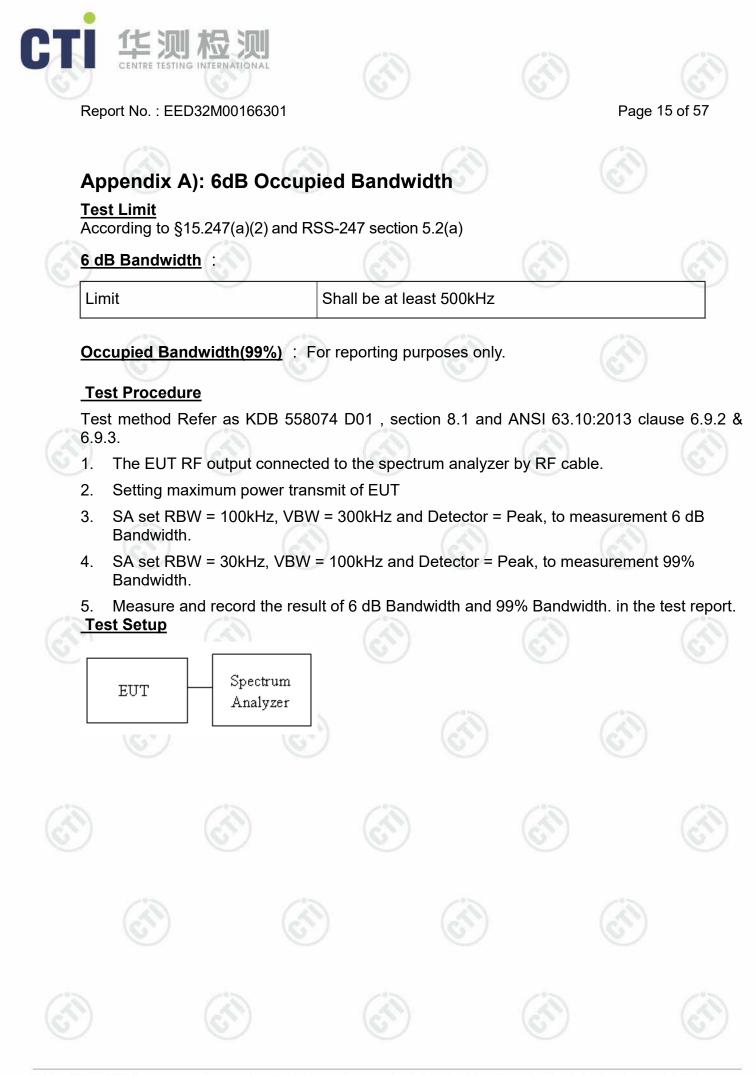
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 12 of 57

212		OM full an a sha	a Ohamhan		245
		3M full-anecho	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	1	
Cable line	Times	EMC104-NMNM- 1000	SN160710	(\mathbf{G})	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		25
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		$\left(\mathcal{S}^{2} \right)$
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		\odot

Page 13 of 57


Report No. : EED32M00166301


8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
Test R	lesults List:	(I) (I) (I)

Test Requiremen	t Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c	ANSI (63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)
			12	61

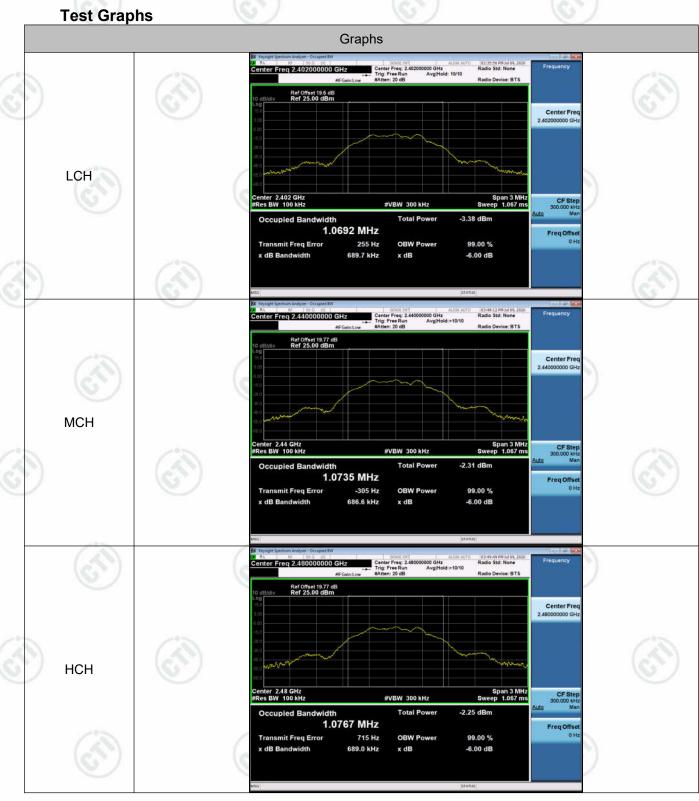
<u>Test Result</u>

Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.6897	PASS
BLE	MCH	0.6866	PASS
BLE	HCH	0.6890	PASS

99% Bandwidth

Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0413	PASS
BLE	MCH	1.0424	PASS
BLE	HCH	1.0460	PASS

Page 16 of 57



Page 17 of 57

6dB OBW

Page 18 of 57

Appendix B): Conducted Peak Output Power

<u>Test Limit</u>

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Antenna not exceed 6 dBi : 30dBm
 Antenna with DG greater than 6 dBi
 [Limit = 30 - (DG - 6)]
 Point-to-point operation

Test Procedure

Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW≥DTS bandwidth.
 - b) Set VBW≥[3×RBW].
 - c) Set span≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup



Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-9.614	PASS
BLE	MCH	-8.526	PASS
BLE	НСН	-8.422	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 21 of 57

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

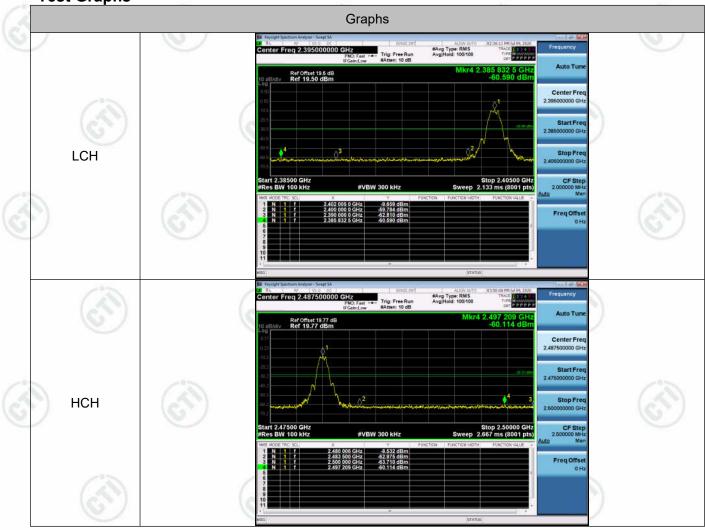
Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Page 22 of 57

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-9.659	-60.590	-29.66	PASS
BLE	HCH	-8.532	-60.114	-28.53	PASS

Test Graphs

Appendix D): RF Conducted Spurious Emissions

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Page 24 of 57

Result Table

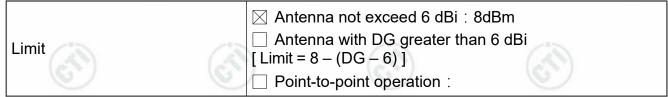
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-9.799	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-8.728	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-8.738	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Page 25 of 57

Page 26 of 57

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

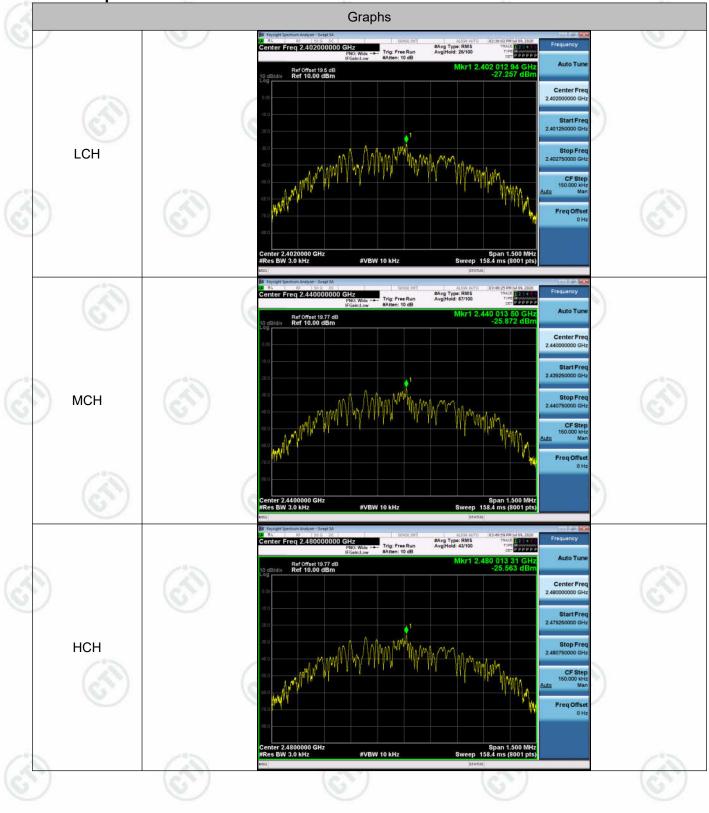
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Page 27 of 57

Test Procedure

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level. Measure and record the result of power spectral density. in the test report.



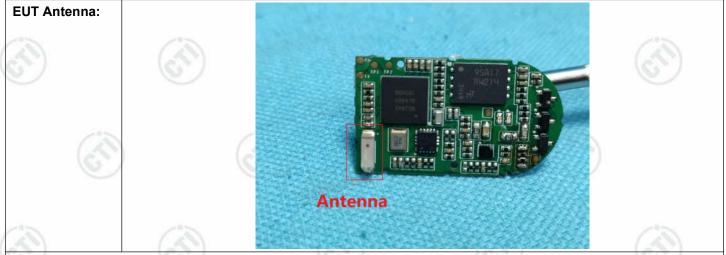
Page 28 of 57

Result Table

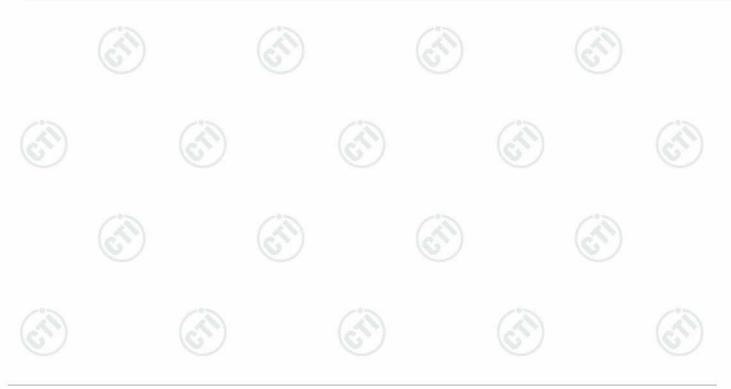
Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-27.257	PASS
BLE	MCH	-25.872	PASS
BLE	HCH	-25.563	PASS

Test Graphs

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com


Appendix F): Antenna Requirement

15.203 requirement:

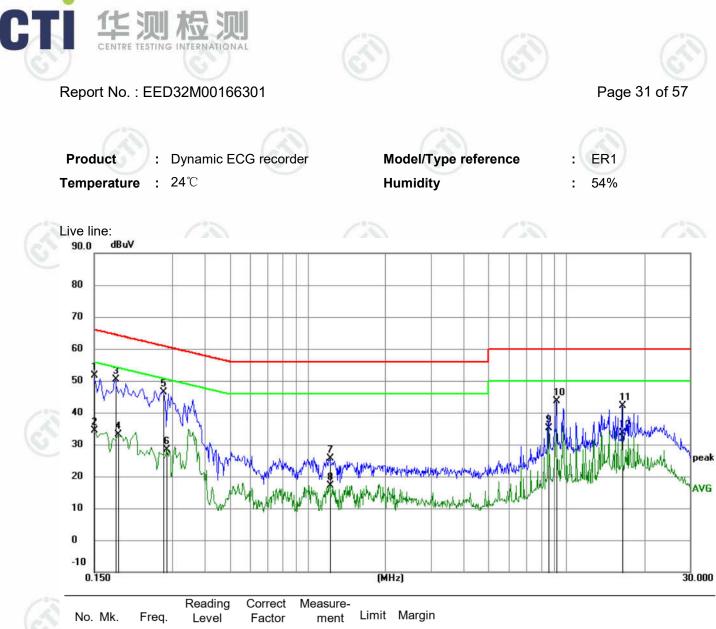

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

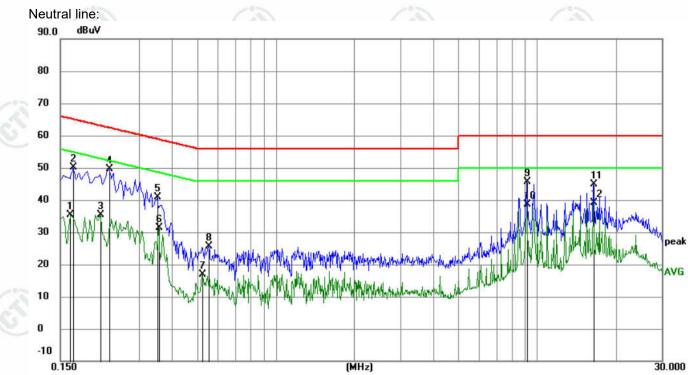
Page 30 of 57


Appendix G): AC Power Line Conducted Emission

 Test frequency range :150KHz- 1)The mains terminal disturban 2) The EUT was connected to Stabilization Network) whic power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a s exceeded. 3)The tabletop EUT was place reference plane. And for flo horizontal ground reference 4) The test was performed wit EUT shall be 0.4 m from the 	AC power source through a source through a source through provides a 50Ω/50µ nits of the EUT were round reference plane d. A multiple socket of single LISN provided the source through a non-metalling plane, the a vertical ground reference and the source of the source	bugh a LISN 1 (Line uH + 5Ω linear imper connected to a seco in the same way as butlet strip was used the rating of the LISN c table 0.8m above ent, the EUT was pla	Impedan dance. T and LISN the LISN to conne was not the grou aced on t
 2) The EUT was connected to Stabilization Network) which power cables of all other und which was bonded to the graphic for the unit being measured multiple power cables to a selected. 3) The tabletop EUT was placed reference plane. And for flothorizontal ground reference 4) The test was performed with 	AC power source thro th provides a $50\Omega/50\mu$ nits of the EUT were round reference plane d. A multiple socket of single LISN provided t ed upon a non-metallin por-standing arrangem e plane, th a vertical ground ro	bugh a LISN 1 (Line uH + 5Ω linear imper connected to a seco in the same way as butlet strip was used the rating of the LISN c table 0.8m above ent, the EUT was pla	Impedar edance. T ond LISN the LISI to conn I was not the grou aced on
reference plane. And for flo horizontal ground reference 4) The test was performed wit	or-standing arrangem plane, th a vertical ground ro	ent, the EUT was pla	aced on
		ference plane The	-
	e vertical ground refered to the horizontal gro	ence plane. The ver	tical grou
ground reference plane for plane. This distance was be	or LISNs mounted or etween the closest po	n top of the ground ints of the LISN 1 ar	d referer nd the El
5) In order to find the maximun			
	Limit (d	BuV)	1
Frequency range (MHz)		. ,	-
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
MHz to 0.50 MHz.	13	12	range 0.
	1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables in conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly mHz to 0.50 MHz.	1 was placed 0.8 m from the boundary of the u ground reference plane for LISNs mounted or plane. This distance was between the closest po All other units of the EUT and associated equipm LISN 2. 5) In order to find the maximum emission, the relative of the interface cables must be changed as conducted measurement. Limit (d Limit (d Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56 5-30 60 * The limit decreases linearly with the logarithm of the MHz to 0.50 MHz.	5) In order to find the maximum emission, the relative positions of equipr of the interface cables must be changed according to ANSI conducted measurement. Frequency range (MHz) Limit (dBμV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

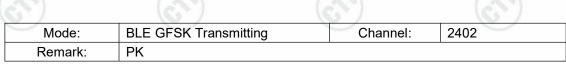
	No. Mk.	Freq.	Level	Factor	ment	Limit	wargin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
-	1	0.1500	41.85	9.88	51.73	66.00	-14.27	QP	
-	2	0.1500	24.55	9.88	34.43	56.00	-21.57	AVG	
-	3 *	0.1815	40.58	9.87	50.45	64.42	-13.97	QP	
	4	0.1860	23.28	9.87	33.15	54.21	-21.06	AVG	
	5	0.2760	36.22	10.04	46.26	60.94	-14.68	QP	
	6	0.2850	18.30	10.06	28.36	50.67	-22.31	AVG	
1	7	1.2164	15.83	9.75	25.58	56.00	-30.42	QP	
1	8	1.2164	7.40	9.75	17.15	46.00	-28.85	AVG	
Ĩ	9	8.5290	25.42	9.80	35.22	50.00	-14.78	AVG	
	10	9.1365	33.90	9.80	43.70	60.00	-16.30	QP	
-	11	16.4355	32.29	9.84	42.13	60.00	-17.87	QP	
-	12	16.4355	23.90	9.84	33.74	50.00	-16.26	AVG	
-									

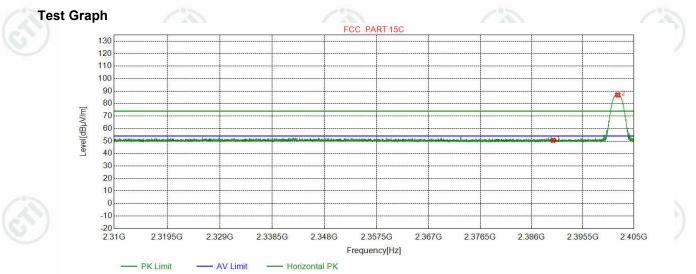
Page 32 of 57

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1635	25.44	9.87	35.31	55.28	-19.97	AVG		
2	0.1680	40.20	9.87	50.07	65.06	-14.99	QP		
3	0.2130	25.44	9.89	35.33	53.09	-17.76	AVG		
4	0.2310	39.59	9.93	49.52	62.41	-12.89	QP		
5	0.3525	30.87	9.98	40.85	58.90	-18.05	QP		
6	0.3570	21.38	9.98	31.36	48.80	-17.44	AVG		
7	0.5235	6.86	10.03	16.89	46.00	-29.11	AVG		
8	0.5550	15.60	10.01	25.61	56.00	-30.39	QP		
9	9.1320	35.79	9.80	45.59	60.00	-14.41	QP		
10	9.1320	28.86	9.80	38.66	50.00	-11.34	AVG		
11	16.4444	35.14	9.84	44.98	60.00	-15.02	QP		
12 *	16.4444	29.19	9.84	39.03	50.00	-10.97	AVG		
7		13.9.7			S			10.0 7	13.9.1

Notes:

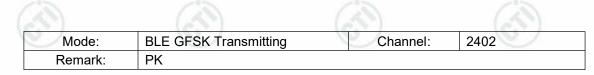
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

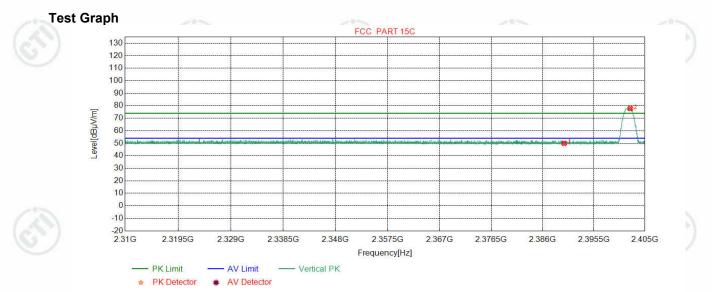

Appendix H): Restricted bands around fundamental frequency (Radiated)


Receiver Setup:		Detector DDW		
Receiver Setup.	Frequency	Detector RBW	VBW Remark	
	30MHz-1GHz	Quasi-peak 120kHz	· · ·	ак
	Above 1GHz	Peak 1MHz	3MHz Peak	-12
9	(J) (G)	Peak 1MHz	10Hz Average	e
Test Procedure:	 at a 3 meter semi-aned determine the position b. The EUT was set 3 meters was mounted on the to was mounted on the to c. The antenna height is determine the maximu polarizations of the anten d. For each suspected en the antenna was tuned was turned from 0 deg e. The test-receiver system Bandwidth with Maxim f. Place a marker at the end of the system and the	558074 D01, Section 12 on the top of a rotating tab choic camber. The table w of the highest radiation. eters away from the interfe op of a variable-height ant varied from one meter to m value of the field streng enna are set to make the nission, the EUT was arra to heights from 1 meter to rees to 360 degrees to fin em was set to Peak Detect	le 0.8 meters above th vas rotated 360 degree erence-receiving anten enna tower. four meters above the th. Both horizontal and measurement. anged to its worst case to 4 meters and the rota d the maximum readin t Function and Specifie closest to the transmit	na, which ground d vertica and the atable g. ed
	bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo	rum analyzer plot. Repear channel ure as below: /e is the test site, change aber change form table 0. 1 meter and table is 1.5 m owest channel , the Highe ments are performed in X	for each power and m from Semi- Anechoic (8 meter to 1.5 meter(A eter). st channel (, Y, Z axis positioning)	nodulatio Chambe Above
Limit:	j. Repeat above procedu	res until all frequencies n	neasured was complete	
Limit:	j. Repeat above procedu Frequency	res until all frequencies n Limit (dBµV/m @3m)	Remark	
Limit:	j. Repeat above procedu Frequency 30MHz-88MHz	res until all frequencies n Limit (dBµV/m @3m) 40.0	Remark Quasi-peak Value	
Limit:	j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	res until all frequencies n Limit (dBµV/m @3m) 40.0 43.5	Remark Quasi-peak Value Quasi-peak Value	
Limit:	j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	res until all frequencies n Limit (dBµV/m @3m) 40.0 43.5 46.0	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value	
Limit:	j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	res until all frequencies n Limit (dBµV/m @3m) 40.0 43.5 46.0 54.0	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value	
Limit:	j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	res until all frequencies n Limit (dBµV/m @3m) 40.0 43.5 46.0 54.0 54.0	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Average Value	
Limit:	j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	res until all frequencies n Limit (dBµV/m @3m) 40.0 43.5 46.0 54.0	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value	

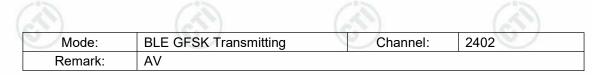
Test plot as follows:

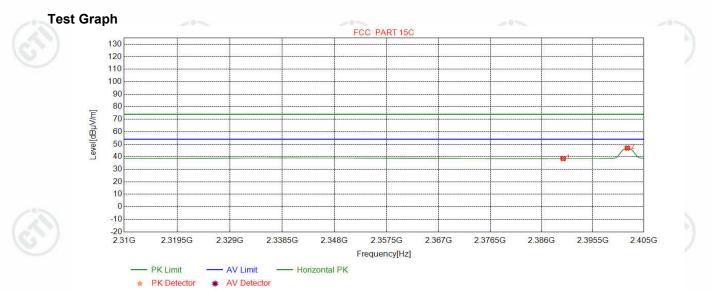
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.11	50.61	74.00	23.39	Pass	Horizontal
2	2401.9978	32.26	13.31	-43.12	84.47	86.92	74.00	-12.92	Pass	Horizontal
~		65			(Δ)		(2)			(2)



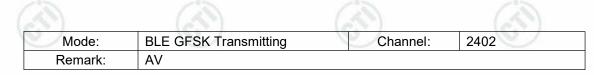


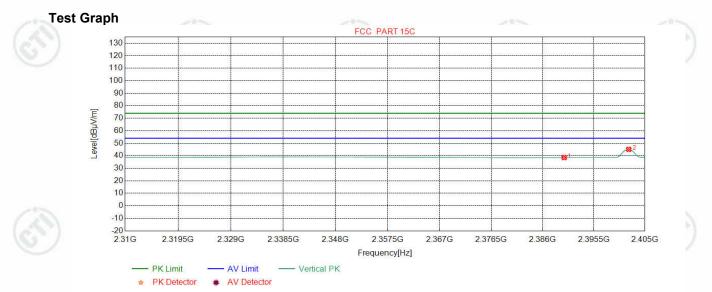
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.43	49.93	74.00	24.07	Pass	Vertical
2	2402.2638	32.26	13.31	-43.12	75.30	77.75	74.00	-3.75	Pass	Vertical
12		1.4					12			1



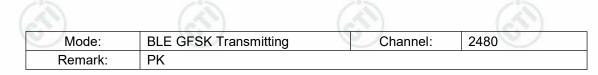


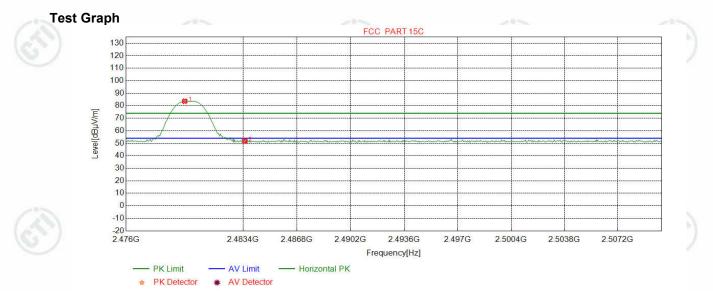
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.05	38.55	54.00	15.45	Pass	Horizontal
2	2401.9218	32.26	13.31	-43.12	44.50	46.95	54.00	7.05	Pass	Horizontal
1		14					68			



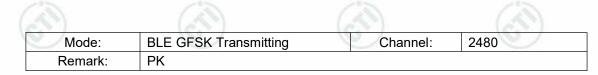


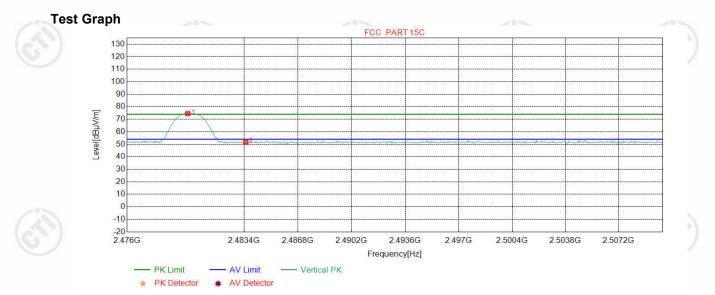
NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.06	38.56	54.00	15.44	Pass	Vertical
2	2401.9978	32.26	13.31	-43.12	42.66	45.11	54.00	8.89	Pass	Vertical
10		1.	0							



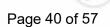


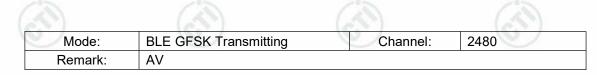
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7021	32.37	13.39	-43.10	80.93	83.59	74.00	-9.59	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.20	51.85	74.00	22.15	Pass	Horizontal
12	\	12	0				(2)	1		(A)

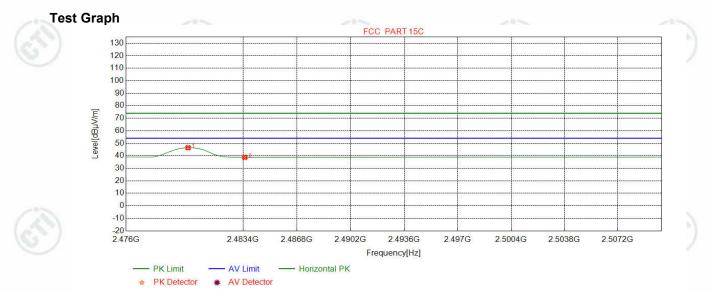




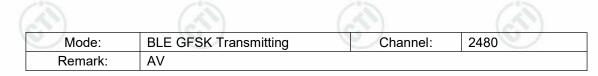
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8298	32.37	13.39	-43.10	71.87	74.53	74.00	-0.53	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.15	51.80	74.00	22.20	Pass	Vertical
12		12					68			

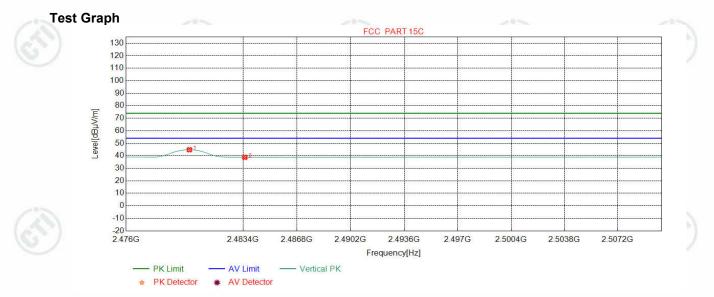


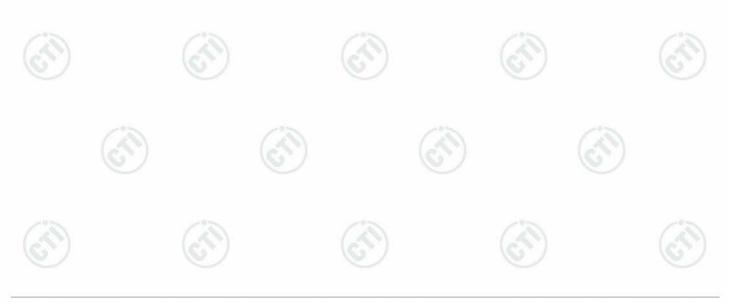




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	43.76	46.42	54.00	7.58	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.10	38.75	54.00	15.25	Pass	Horizontal
12	\	6		-				1	-	(A)






NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	42.15	44.81	54.00	9.19	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.12	38.77	54.00	15.23	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Page 42 of 57

Appendix I) Radiated Spurious Emissions

6.3	6.5	10			
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
4	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
(T)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
Test Procedure:		-	1	ı	L]

rest Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic a. camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a b. variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value C. of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. e.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be f. stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter). Test the EUT in the lowest channel ,the middle channel ,the Highest channel h.
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X i. axis positioning which it is worse case.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	1	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(62)	30
1.705MHz-30MHz	30	-	<u> </u>	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Repeat above procedures until all frequencies measured was complete. Limit:

> emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 43 of 57

Report No. : EED32M00166301

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	:		BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	72.0052	8.62	0.97	-32.02	40.42	17.99	40.00	22.01	Pass	Н	PK
2	179.5890	8.98	1.58	-31.99	55.49	34.06	43.50	9.44	Pass	Н	PK
3	240.0260	11.94	1.84	-31.90	52.53	34.41	46.00	11.59	Pass	Н	PK
4	396.3086	15.32	2.37	-31.74	40.96	26.91	46.00	19.09	Pass	Н	PK
5	600.0290	19.00	2.96	-31.50	39.79	30.25	46.00	15.75	Pass	Н	PK
6	974.9715	22.55	3.75	-30.95	35.46	30.81	54.00	23.19	Pass	Н	PK
7	56.7747	12.12	0.86	-31.91	41.37	22.44	40.00	17.56	Pass	V	PK
8	120.0250	9.20	1.30	-32.07	42.36	20.79	43.50	22.71	Pass	V	PK
9	181.6262	9.15	1.58	-31.98	50.96	29.71	43.50	13.79	Pass	V	PK
10	240.0260	11.94	1.84	-31.90	49.79	31.67	46.00	14.33	Pass	V	PK
11	488.7589	16.82	2.65	-31.90	42.66	30.23	46.00	15.77	Pass	V	PK
12	769.7960	20.57	3.32	-32.09	40.16	31.96	46.00	14.04	Pass	V	PK

Transmitter Emission above 1GHz

		1									
Mode	Mode:			BLE GFSK Transmitting				Channel:			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1329.8330	28.23	2.79	-42.75	56.58	44.85	74.00	29.15	Pass	Н	PK
2	1991.4992	31.64	3.46	-43.17	53.58	45.51	74.00	28.49	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	52.28	48.53	74.00	25.47	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	47.48	47.44	74.00	26.56	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.59	48.76	74.00	25.24	Pass	Н	PK
6	12010.000	39.31	7.60	-41.90	46.77	51.78	74.00	22.22	Pass	Н	PK
7	1331.8332	28.23	2.79	-42.75	62.32	50.59	74.00	23.41	Pass	V	PK
8	3200.0133	33.28	4.65	-43.10	51.02	45.85	74.00	28.15	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	48.17	44.42	74.00	29.58	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	47.98	47.94	74.00	26.06	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	46.47	48.64	74.00	25.36	Pass	V	PK
12	12010.000	39.31	7.60	-41.90	46.08	51.09	74.00	22.91	Pass	V	PK

Page 44 of 57

Mode:			BLE GF	SK Transm	nitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1329.4329	28.23	2.79	-42.75	55.88	44.15	74.00	29.85	Pass	Н	PK
2	1994.2994	31.66	3.46	-43.18	52.43	44.37	74.00	29.63	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	51.28	47.78	74.00	26.22	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	49.84	49.97	74.00	24.03	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.34	48.67	74.00	25.33	Pass	Н	PK
6	12200.000	39.42	7.67	-41.90	46.50	51.69	74.00	22.31	Pass	Н	PK
7	1329.6330	28.23	2.79	-42.75	61.80	50.07	74.00	23.93	Pass	V	PK
8	1997.8998	31.69	3.47	-43.20	58.00	49.96	74.00	24.04	Pass	V	PK
9	4880.0000	34.50	4.80	-42.80	47.27	43.77	74.00	30.23	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	50.90	51.03	74.00	22.97	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	47.38	49.71	74.00	24.29	Pass	V	PK
12	12200.000	39.42	7.67	-41.90	46.47	51.66	74.00	22.34	Pass	V	PK
1		1			1 1	1	1				

(A)

Page 45 of 57

			215 - 215				2015				
Mode	:		BLE GFSK Transmitting					Channel:			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1330.2330	28.23	2.79	-42.75	53.38	41.65	74.00	32.35	Pass	Н	PK
2	2937.1937	33.10	4.39	-43.10	50.73	45.12	74.00	28.88	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	50.40	46.92	74.00	27.08	Pass	Н	PK
4	7439.2960	36.54	5.85	-42.11	52.69	52.97	74.00	21.03	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.85	48.31	74.00	25.69	Pass	Н	PK
6	12400.000	39.54	7.86	-41.90	46.92	52.42	74.00	21.58	Pass	Н	PK
7	1332.4332	28.23	2.80	-42.75	62.75	51.03	74.00	22.97	Pass	V	PK
8	1994.2994	31.66	3.46	-43.18	57.70	49.64	74.00	24.36	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	48.92	45.44	74.00	28.56	Pass	V	PK
10	7439.2960	36.54	5.85	-42.11	51.88	52.16	74.00	21.84	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.14	48.60	74.00	25.40	Pass	V	PK
12	12400.000	39.54	7.86	-41.90	46.85	52.35	74.00	21.65	Pass	V	PK
	1		1			1				0	1

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

