Velvetwire LLC

TEST REPORT FOR

Powerslayer Model: 100101

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s) 15.207 & 15.249

Report No.: 96014-7

Date of issue: September 12, 2014

Testing Certificates: 803.01, 803.02, 803.05, 803.06 This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business. esting the Future Ш R 0 4 Ŷ 0 m

This report contains a total of 66 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information
Test Report Information
Report Authorization
Test Facility Information4
Software Versions4
Site Registration & Accreditation Information4
Summary of Results
Modifications/Conditions During Testing5
Equipment Under Test6
Peripheral Devices
FCC Part 15 Subpart C7
15.207 AC Conducted Emissions7
15.249(a)(b) RF Power Output16
15.31(e) Voltage Variations22
15.215(c) Occupied Bandwidth24
15.249(a)(d) Radiated Spurious Emissions and Band Edge28
Supplemental Information
Measurement Uncertainty65
Emissions Test Details

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Velvetwire LLC 1200 Pacific Ave. Suite 350 Santa Cruz, CA 95018 **REPORT PREPARED BY:**

Morgan Tramontin CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Chris Kilgus

Project Number: 96014

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: August 28, 2014 August 28 – September 2, 2014

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 Be

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN	
Fremont	US0082	SL2-IN-E-1148R	3082B-1	958979	A-0149	

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Test Procedure/Method	Description	Modifications*	Results
15.207 / ANSI C63.4	Conducted Emissions	NA	Pass
15.249 (a)(b) / ANSI C63.4	RF Power Output	NA	Pass
15.31(e) / ANSI C63.4	Voltage Variation	NA	Pass
15.215(c) / ANSI C63.4	Occupied Bandwidth	NA	Pass
15.249(a)(d) / ANSI C63.4	Radiated Spurious Emissions and Band Edge	NA	Pass

NA=Not Applicable

Modifications*/Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions	
None	

*Modifications listed above must be incorporated into all production units.

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Powerslayer

Manuf: Velvetwire LLC Model: 100101 Serial: RF 1

PERIPHERAL DEVICES

The EUT was not tested with peripheral devices.

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) CFR 47 Section 15 Subpart C requirements for Intentional Radiators.

15.207 AC Conducted Emissions

Test Data

Test Location:

ation: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Velvetwire LLC
Specification:	15.207 AC Mains - Average
Work Order #:	96014
Test Type:	Conducted Emissions
Equipment:	Powerslayer
Manufacturer:	Velvetwire LLC
Model:	100101
S/N:	RF 1

Date:	8/29/2014
Time:	8:58:07 AM
Sequence#:	3
Tested By:	Hieu Song Nguyenpham
-	120V 60Hz

Test Equipment:

ID	Asset #	Description	Model	Calibration D	ate Cal Due Date				
T1	ANP01211	Attenuator	PE7002-10	4/2/2013	4/2/2015				
T2	ANP00880	Cable	RG214U	6/13/2014	6/13/2016				
Т3	ANP05300	Cable	RG214/U	3/25/2013	3/25/2015				
T4	AN00493	50uH LISN-L1 (L)	3816/NM	3/4/2013	3/4/2015				
		Loss W/O European							
		Adapter							
	AN00493	50uH LISN-L(2) N	3816/NM	3/4/2013	3/4/2015				
		Loss W/O European							
		Adapter							
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015				
		Analyzer							
T5	ANP05258	High Pass Filter	HE9615-150K-	12/6/2012	12/6/2014				
			50-720B						
Equipment Under Test (* = EUT):									
Function		Manufacturer	Model #	(S/N				
Powerslaye	er*	Velvetwire LLC	100101]	RF 1				

Support Devices:				
Function	Manufacturer	Model #	S/N	

Test Conditions / Notes:

Conducted Emission Frequency Range: 150kHz to 30MHz

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=dBi

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: T	ransmitting N	Лode									
Ext A	ttn: 0 dB										
Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Black		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBμV	dB	Ant
1	558.690k	29.5	+9.6 +0.1	+0.0	+0.0	+0.1	+0.0	39.3	46.0	-6.7	Black
2	595.050k	26.1	+9.7 +0.1	+0.0	+0.0	+0.1	+0.0	36.0	46.0	-10.0	Black
3	898.469k	22.2	+9.6 +0.2	+0.1	+0.0	+0.1	+0.0	32.2	46.0	-13.8	Black
4	1.502M	22.3	+9.6 +0.1	+0.1	+0.0	+0.1	+0.0	32.2	46.0	-13.8	Black
5	875.752k	21.9	+9.6 +0.2	+0.1	+0.0	+0.1	+0.0	31.9	46.0	-14.1	Black
6	949.501k	21.9	+9.6 +0.1	+0.1	+0.0	+0.1	+0.0	31.8	46.0	-14.2	Black
7	2.166M	21.8	+9.6 +0.1	+0.1	+0.0	+0.1	+0.0	31.7	46.0	-14.3	Black
8	3.412M	21.8	+9.5 +0.1	+0.1	+0.1	+0.1	+0.0	31.7	46.0	-14.3	Black
9	2.774M	21.6	+9.6 +0.1	+0.1	+0.0	+0.1	+0.0	31.5	46.0	-14.5	Black
10	821.938k	21.3	+9.6 +0.2	+0.0	+0.0	+0.1	+0.0	31.2	46.0	-14.8	Black
11	3.943M	20.4	+9.6 +0.1	+0.1	+0.1	+0.1	+0.0	30.4	46.0	-15.6	Black
12	4.564M	18.8	+9.7 +0.2	+0.1	+0.1	+0.1	+0.0	29.0	46.0	-17.0	Black
13	2.566M	18.9	+9.6 +0.1	+0.1	+0.0	+0.1	+0.0	28.8	46.0	-17.2	Black
14	2.374M	18.6	+9.7 +0.1	+0.1	+0.0	+0.1	+0.0	28.6	46.0	-17.4	Black

15	3.748M	18.3	+9.6 +0.1	+0.1	+0.1	+0.1	+0.0	28.3	46.0	-17.7	Black
16	203.086k	25.0	+9.6 +0.2	+0.0	+0.0	+0.1	+0.0	34.9	53.5	-18.6	Black
17	211.085k	24.6	+9.6 +0.2	+0.0	+0.0	+0.1	+0.0	34.5	53.2	-18.7	Black
18	4.437M	17.3	+9.6 +0.1	+0.1	+0.1	+0.1	+0.0	27.3	46.0	-18.7	Black
19	732.492k	17.5	+9.5 +0.1	+0.0	+0.0	+0.1	+0.0	27.2	46.0	-18.8	Black
20	757.944k	17.2	+9.6 +0.2	+0.0	+0.0	+0.1	+0.0	27.1	46.0	-18.9	Black
21	781.215k	16.8	+9.6 +0.2	+0.0	+0.0	+0.1	+0.0	26.7	46.0	-19.3	Black
22	737.582k	16.6	+9.5 +0.1	+0.0	+0.0	+0.1	+0.0	26.3	46.0	-19.7	Black
23	197.996k	23.6	+9.6 +0.2	+0.0	+0.0	+0.1	+0.0	33.5	53.7	-20.2	Black
24	649.591k	15.8	+9.7 +0.1	+0.0	+0.0	+0.1	+0.0	25.7	46.0	-20.3	Black
25	4.956M	15.3	+9.5 +0.2	+0.2	+0.1	+0.1	+0.0	25.4	46.0	-20.6	Black
26	404.522k	17.5	+9.6 +0.0	+0.0	+0.0	+0.1	+0.0	27.2	47.8	-20.6	Black
27	189.996k	23.2	+9.6 +0.2	+0.0	+0.0	+0.1	+0.0	33.1	54.0	-20.9	Black
28	159.454k	24.2	+9.6 +0.4	+0.0	+0.0	+0.1	+0.0	34.3	55.5	-21.2	Black
29	4.836M	14.3	+9.5 +0.2	+0.2	+0.1	+0.1	+0.0	24.4	46.0	-21.6	Black
30	4.883M	14.2	+9.5 +0.2	+0.2	+0.1	+0.1	+0.0	24.3	46.0	-21.7	Black
31	223.448k	20.4	+9.6 +0.2	+0.0	+0.0	+0.1	+0.0	30.3	52.7	-22.4	Black
32	165.999k	21.9	+9.6 +0.4	+0.0	+0.0	+0.1	+0.0	32.0	55.2	-23.2	Black
33	5.175M	16.4	+9.6 +0.2	+0.2	+0.1	+0.1	+0.0	26.6	50.0	-23.4	Black
34	176.907k	21.1	+9.6 +0.3	+0.0	+0.0	+0.1	+0.0	31.1	54.6	-23.5	Black
35	5.045M	16.2	+9.6 +0.2	+0.2	+0.1	+0.1	+0.0	26.4	50.0	-23.6	Black
36	5.117M	16.2	+9.6 +0.2	+0.2	+0.1	+0.1	+0.0	26.4	50.0	-23.6	Black
37	5.238M	16.0	+9.6 +0.2	+0.2	+0.1	+0.1	+0.0	26.2	50.0	-23.8	Black
38	5.788M	15.5	+9.7 +0.1	+0.2	+0.1	+0.1	+0.0	25.7	50.0	-24.3	Black
39	5.130M	15.1	+9.6 +0.2	+0.2	+0.1	+0.1	+0.0	25.3	50.0	-24.7	Black
40	232.901k	17.6	+9.6 +0.2	+0.0	+0.0	+0.1	+0.0	27.5	52.3	-24.8	Black

41	6.328M	14.9	+9.6 +0.1	+0.2	+0.1	+0.1	+0.0	25.0	50.0	-25.0	Black
42	6.283M	14.8	+9.6 +0.1	+0.2	+0.1	+0.1	+0.0	24.9	50.0	-25.1	Black
43	5.815M	14.5	+9.7 +0.1	+0.2	+0.1	+0.1	+0.0	24.7	50.0	-25.3	Black
44	7.049M	14.4	+9.6 +0.1	+0.2	+0.1	+0.2	+0.0	24.6	50.0	-25.4	Black
45	7.103M	14.3	+9.6 +0.1	+0.2	+0.1	+0.2	+0.0	24.5	50.0	-25.5	Black
46	7.688M	14.3	+9.6 +0.1	+0.2	+0.1	+0.2	+0.0	24.5	50.0	-25.5	Black
47	170.362k	19.1	+9.6 +0.4	+0.0	+0.0	+0.1	+0.0	29.2	54.9	-25.7	Black
48	5.301M	14.1	+9.6 +0.2	+0.2	+0.1	+0.1	+0.0	24.3	50.0	-25.7	Black
49	5.959M	14.1	+9.7 +0.1	+0.2	+0.1	+0.1	+0.0	24.3	50.0	-25.7	Black
50	6.688M	14.1	+9.6 +0.1	+0.2	+0.1	+0.1	+0.0	24.2	50.0	-25.8	Black

CKC Laboratories, Inc. Date: 8/29/2014 Time: 8:58:07 AM Velvetwire LLC WO#: 96014 Test Lead: Black 120V 60Hz Sequence#: 3

Customer:	Velvetwire LLC		
Specification:	15.207 AC Mains - Average		
Work Order #:	96014	Date:	8/29/2014
Test Type:	Conducted Emissions	Time:	9:03:00 AM
Equipment:	Powerslayer	Sequence#:	4
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		120V 60Hz
S/N:	RF 1		

Test Equipment:

-	•				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP01211	Attenuator	PE7002-10	4/2/2013	4/2/2015
T2	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
Т3	ANP05300	Cable	RG214/U	3/25/2013	3/25/2015
	AN00493	50uH LISN-L1 (L)	3816/NM	3/4/2013	3/4/2015
		Loss W/O European			
		Adapter			
T4	AN00493	50uH LISN-L(2) N	3816/NM	3/4/2013	3/4/2015
		Loss W/O European			
		Adapter			
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			
T5	ANP05258	High Pass Filter	HE9615-150K-	12/6/2012	12/6/2014
			50-720B		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Powerslayer*	Velvetwire LLC	100101	RF 1	

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Conducted Emission Frequency Range: 150kHz to 30MHz

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=dBi

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: Transmitting Mode

Measu	rement Data:	Re	eading list	ted by ma	argin.			Test Lea	d: White		
#	Freq	Rdng	T1 T5	Т2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	561.599k	31.7	+9.6	+0.0	+0.0	+0.6	+0.0	42.0	46.0	-4.0	White
			+0.1						16.0		
2	595.050k	30.5	+9.7	+0.0	+0.0	+0.6	+0.0	40.9	46.0	-5.1	White
2	002 7211	22.4	+0.1	+0.1	+0.0	+0.6	+0.0	22.0	46.0	12.1	White
5	902.721K	23.4	+0.2	10.1	10.0	10.0	10.0	55.9	40.0	-12.1	w mite
4	271.443k	28.5	+9.6	+0.0	+0.0	+0.6	+0.0	38.9	51.1	-12.2	White
			+0.2								
5	336.892k	26.6	+9.6	+0.0	+0.0	+0.6	+0.0	36.9	49.3	-12.4	White
			+0.1								
6	213.994k	30.0	+9.6	+0.0	+0.0	+0.6	+0.0	40.4	53.0	-12.6	White
			+0.2								
7	835.028k	22.8	+9.6	+0.0	+0.0	+0.6	+0.0	33.2	46.0	-12.8	White
0	074 2071	22.4	+0.2	+0.1		10.0		22.0	46.0	12.1	W 71.14
8	8/4.29/K	22.4	+9.6	+0.1	+0.0	+0.6	+0.0	32.9	46.0	-13.1	white
9	1 456M	22.2	+9.6	+0.1	+0.0	+0.6	+0.0	32.6	46.0	-13.4	White
,	1.450101	22.2	+0.1	0.1	10.0	0.0	10.0	52.0	40.0	13.4	vv inte
10	2.136M	22.1	+9.6	+0.1	+0.0	+0.6	+0.0	32.5	46.0	-13.5	White
			+0.1								
11	3.327M	21.8	+9.6	+0.1	+0.1	+0.6	+0.0	32.3	46.0	-13.7	White
			+0.1								
12	2.757M	21.7	+9.6	+0.1	+0.0	+0.6	+0.0	32.1	46.0	-13.9	White
10	2 0 2 0 1 (20.1	+0.1	.0.1	.0.1	10.6		20.6	46.0	1.7.4	XX 71 * /
13	3.939M	20.1	+9.6	+0.1	+0.1	+0.6	+0.0	30.6	46.0	-15.4	White
14	664 135k	20.1	+0.1	+0.0	+0.0	+0.6	+0.0	30.5	46.0	15.5	White
14	004.133K	20.1	+9.7 +0.1	+0.0	10.0	10.0	10.0	50.5	40.0	-15.5	white
15	773.216k	20.0	+9.6	+0.0	+0.0	+0.6	+0.0	30.4	46.0	-15.6	White
			+0.2								
16	395.796k	21.5	+9.6	+0.0	+0.0	+0.6	+0.0	31.7	47.9	-16.2	White
			+0.0								
17	740.491k	19.0	+9.5	+0.0	+0.0	+0.6	+0.0	29.2	46.0	-16.8	White
1.0	4.50.00.5		+0.1	0.1				• • •	16.0		
18	4.530M	17.9	+9.7	+0.1	+0.1	+0.7	+0.0	28.7	46.0	-17.3	White
10	1 12011	177	+0.2	+0.1	+0.1	10.6		<u> </u>	46.0	17.0	White
19	4.428M	1/./	+9.0 +0.1	± 0.1	+0.1	± 0.0	± 0.0	28.2	40.0	-17.8	white
20	488 151k	17.2	+9.6	+0.0	+0.0	+0.6	+0.0	27.5	46.2	-18 7	White
20	400.101K	17.2	+0.1	0.0	0.0	0.0	10.0	21.5	40.2	10.7	vv inte
21	499.786k	16.4	+9.7	+0.0	+0.0	+0.6	+0.0	26.8	46.0	-19.2	White
			+0.1								
22	161.635k	25.0	+9.6	+0.0	+0.0	+0.6	+0.0	35.6	55.4	-19.8	White
			+0.4								
23	727.402k	15.4	+9.5	+0.0	+0.0	+0.6	+0.0	25.6	46.0	-20.4	White
			+0.1								

24	4.998M	14.6	+9.5 +0.2	+0.2	+0.1	+0.7	+0.0	25.3	46.0	-20.7	White
25	4.756M	14.2	+9.6 +0.2	+0.2	+0.1	+0.7	+0.0	25.0	46.0	-21.0	White
26	5.092M	16.2	+9.6 +0.2	+0.2	+0.1	+0.7	+0.0	27.0	50.0	-23.0	White
27	5.238M	13.7	+9.6 +0.2	+0.2	+0.1	+0.7	+0.0	24.5	50.0	-25.5	White
28	5.661M	13.6	+9.7 +0.1	+0.2	+0.1	+0.7	+0.0	24.4	50.0	-25.6	White
29	5.797M	13.6	+9.7 +0.1	+0.2	+0.1	+0.7	+0.0	24.4	50.0	-25.6	White
30	5.265M	13.4	+9.6 +0.2	+0.2	+0.1	+0.7	+0.0	24.2	50.0	-25.8	White
31	5.454M	13.3	+9.7 +0.2	+0.2	+0.1	+0.7	+0.0	24.2	50.0	-25.8	White
32	5.499M	13.3	+9.7 +0.1	+0.2	+0.1	+0.7	+0.0	24.1	50.0	-25.9	White
33	5.697M	13.1	+9.7 +0.1	+0.2	+0.1	+0.7	+0.0	23.9	50.0	-26.1	White
34	5.130M	13.0	+9.6 +0.2	+0.2	+0.1	+0.7	+0.0	23.8	50.0	-26.2	White
35	5.734M	13.0	+9.7 +0.1	+0.2	+0.1	+0.7	+0.0	23.8	50.0	-26.2	White
36	6.707M	13.0	+9.6 +0.1	+0.2	+0.1	+0.7	+0.0	23.7	50.0	-26.3	White
37	5./61M	12.7	+9.7 +0.1	+0.2	+0.1	+0.7	+0.0	23.5	50.0	-26.5	White
38	5.959M	12.5	+9.7 +0.1	+0.2	+0.1	+0.7	+0.0	23.3	50.0	-26.7	White
39	6.238M	12.6	+9.6 +0.1	+0.2	+0.1	+0.7	+0.0	23.3	50.0	-26.7	White
40	7.436M	12.5	+9.6 +0.1	+0.2	+0.1	+0.7	+0.0	23.2	50.0	-26.8	White
41	5.55/W	12.2	+9.7 +0.2	+0.2	+0.1	+0.7	+0.0	23.1	50.0	-20.9	White
42	5.851M	12.2	+9.7 +0.1	+0.2	+0.1	+0.7	+0.0	23.0	50.0	-27.0	White
43	6./9/M	12.3	+9.6 +0.1	+0.2	+0.1	+0.7	+0.0	23.0	50.0	-27.0	White
44	22.959M	11.4	+9.7 +0.2	+0.4	+0.1	+1.2	+0.0	23.0	50.0	-27.0	White
45	5.544M	12.1	+9.7 +0.1	+0.2	+0.1	+0./	+0.0	22.9	50.0	-27.1	white
40	25.408M	11.4	+9.7 +0.2	+0.4	+0.1	+1.1	+0.0	22.9	50.0	-27.1	white
47	25.464M	11.5	+9.7	+0.4	+0.1	+1.0	+0.0	22.9	50.0	-27.1	white

48	8.878M	11.9	+9.7	+0.2	+0.1	+0.8	+0.0	22.8	50.0	-27.2	White
			+0.1								
49	6.851M	12.0	+9.6	+0.2	+0.1	+0.7	+0.0	22.7	50.0	-27.3	White
			+0.1								
50	7.508M	12.0	+9.6	+0.2	+0.1	+0.7	+0.0	22.7	50.0	-27.3	White
			+0.1								

Test Setup Photo(s)

Page 15 of 66 Report No.: 96014-7

15.249(a)(b) RF Power Output

Test Data

Test Locat	ion: CKC La	aboratories, Inc. • 1120 Fult	on Place • Fremon	t, CA 94539 • (510) 24	9-1170				
Customer: Specification Work Order Test Type: Equipment Manufactu Model: S/N:	Velvetv on: 15.249 (er #: 96014 Radiate :: Powers rer: Velvetw 100101 RF 1	vire LLC Carrier and Spurious Emi ed Scan layer vire LLC	Emissions (2400-2483.5 MHz Transmitter) Date: 9/2/2014 Time: 15:59:35 Sequence#: 5 Tested By: Hieu Song Nguyenpham						
<u>Test Equi</u>	pment:	D	26 1 1						
T1	Asset # AN02157	Horn Antenna-ANSI C63.5	Model 3115	1/23/2013	Cal Due Date 1/23/2015				
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016				
Т3	ANP01210	Cable	FSJ1P-50A-4A	2/19/2013	2/19/2015				
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015				
Equipmer	nt Under Test (*	= EUT):							
Function	, , , , , , , , , , , , , , , , , , ,	Manufacturer	Model #	S/N					
Powerslaye	er*	Velvetwire LLC	100101	RF 1					
Support L	Devices:								
Function		Manufacturer	Model #	S/N					
Test Cond	litions / Notes:								
Fundament	tal of the EUT								
Temperatu	re: 22.5°C								
Humidity:	45 %								
Atmospher	ric Pressure: 101	.1 kPa							
Highest Ge	eneration Freque	ncy=2480MHz							
Firmware:	11 test firmware	2.4CII							
RE Output:	= 0dBm	Juency- 2.40HZ							
Gain of an	tenna=dBi								
RBW=3M VBW=8M	Hz Hz								
The EUT i the switch	s a mobile devic through the US	e, and it is a USB charger. B cable which is used to co	It is placed on an ontrol the EUT fo	80 cm table. The US r testing purpose. Th	B Port is connected to e switch is always on,				

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2402.320M	55.3	+28.6	+1.2	+2.7		+0.0	87.8	94.0	-6.2	Horiz
									Low Chan	nel	
2	2440.070M	53.9	+28.7	+1.2	+2.7		+0.0	86.5	94.0	-7.5	Horiz
									Middle Ch	annel	
3	2479.550M	52.9	+28.9	+1.2	+2.7		+0.0	85.7	94.0	-8.3	Horiz
									High Chan	nel	
4	2402.320M	51.9	+28.6	+1.2	+2.7		+0.0	84.4	94.0	-9.6	Vert
									Low Chan	nel	
5	2479.550M	49.1	+28.9	+1.2	+2.7		+0.0	81.9	94.0	-12.1	Vert
									High Chan	nel	
6	2440.070M	47.9	+28.7	+1.2	+2.7		+0.0	80.5	94.0	-13.5	Vert
									Middle Ch	annel	

Test Plots

Low Channel, Horizontal

Low Channel, Vertical

Middle Channel, Horizontal

Middle Channel, Vertical

High Channel, Horizontal

High Channel, Vertical

Test Setup Photo(s)

Page 21 of 66 Report No.: 96014-7

15.31(e) Voltage Variations

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Velvetwire LLC		
Specification:	15.31e		
Work Order #:	96014	Date:	8/29/2014
Test Type:	Radiated Scan	Time:	10:21:04
Equipment:	Powerslayer	Sequence#:	5
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101	-	
S/N:	RF 1		

Test Equipment:

IE)	Asset #	Description	Model	Calibration Date	Cal Due Date
T	l	AN02157	Horn Antenna-ANSI	3115	1/23/2013	1/23/2015
			C63.5			
T2	2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
				29094K-72TC		
T:	3	ANP01210	Cable	FSJ1P-50A-4A	2/19/2013	2/19/2015
		AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
			Analyzer			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Powerslayer*	Velvetwire LLC	100101	RF 1	

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes: 15.31e

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=dBi

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

15.31e: Adjust the voltage +/ 15% (102V, 138V), the fundamental of the EUT is not changing.

Test Setup Photo(s)

Page 23 of 66 Report No.: 96014-7

15.215(c) Occupied Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Velvetwire LLC		
Specification:	OBW		
Work Order #:	96014	Date:	8/29/2014
Test Type:	Radiated Scan	Time:	10:21:04
Equipment:	Powerslayer	Sequence#:	5
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N:	RF 1		

Test Equipment:

II)	Asset #	Description	Model	Calibration Date	Cal Due Date
Т	1	AN02157	Horn Antenna-ANSI	3115	1/23/2013	1/23/2015
			C63.5			
Т	2	AN03302	Cable	32026-29094K-	3/24/2014	3/24/2016
				29094K-72TC		
Т	3	ANP01210	Cable	FSJ1P-50A-4A	2/19/2013	2/19/2015
		AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
			Analyzer			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Powerslayer*	Velvetwire LLC	100101	RF 1	

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes: OBW Set up

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=dBi

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Test Data

Low Channel

Middle Channel

High Channel

Test Setup Photo(s)

15.249(a)(d) Radiated Spurious Emissions and Band Edge

Test Data

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious Emissions (2	400-2483.5 MI	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	13:50:42
Equipment:	Powerslayer	Sequence#:	49
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N:	RF 1		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date	
	ANP00880	Cable	RG214U	6/13/2014	6/13/2016	
	ANP05300	Cable	RG214/U	3/25/2013	3/25/2015	
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015	
		Analyzer				
	AN00432	Loop Antenna	6502	4/2/2013	4/2/2015	
Equipme	Equipment Under Test (* = EUT):					

i unotion mu		WIOUEI #	5/1N
Powerslayer* Vel	lvetwire LLC	100101	RF 1

S/N

Support Devices:

Function

Model #

Manufacturer

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 9kHz – 30MHz

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=200Hz from 9kHz to 150kHz RBW=VBW=9kHz from 150kHz to 30MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: Low Channel

No EUT emissions detected within 20dB of the limit.

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 MI	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	12:24:32
Equipment:	Powerslayer	Sequence#:	37
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101	-	
S/N:	RF 1		

Test Equipment:

1	r				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
T2	AN00852	Biconilog Antenna	CBL 6111C	11/28/2012	11/28/2014
Т3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP05300	Cable	RG214/U	3/25/2013	3/25/2015
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

E	quipment	t Under Test (* = EUT):	
T.	. •		

Function	Manufacturer	Model #	S/N
Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices:

Function Manufacturer Model # S/N

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 30MHz to 1000MHz

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=120kHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: Low Channel

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	157.450M	46.9	-29.0	+10.5	+1.1	+0.5	+0.0	30.4	43.5	-13.1	Vert
			+0.4								
2	64.007M	47.7	-29.2	+6.0	+0.7	+0.3	+0.0	25.7	40.0	-14.3	Vert
			+0.2								
3	125.498M	44.4	-29.1	+11.6	+1.0	+0.4	+0.0	28.6	43.5	-14.9	Horiz
			+0.3								
4	57.352M	46.1	-29.3	+6.5	+0.6	+0.3	+0.0	24.4	40.0	-15.6	Vert
			+0.2								
5	128.020M	43.3	-29.1	+11.4	+1.0	+0.4	+0.0	27.3	43.5	-16.2	Horiz
			+0.3								
6	141.234M	42.4	-29.0	+11.2	+1.1	+0.4	+0.0	26.4	43.5	-17.1	Horiz
			+0.3								

CKC Laboratories, Inc. Date: 8/30/2014 Time: 12:24:32 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 37

Page 30 of 66 Report No.: 96014-7

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 MI	Hz Transmitter)
Work Order #:	96014	Date:	8/29/2014
Test Type:	Radiated Scan	Time:	11:49:06
Equipment:	Powerslayer	Sequence#:	8
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N:	RF 1		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI C63.5	3115	1/23/2013	1/23/2015
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
Т3	ANP01210	Cable	FSJ1P-50A-4A	2/19/2013	2/19/2015
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T4	AN03114	Preamp	AMF-7D- 00101800-30-10P	4/11/2013	4/11/2015
T5	AN03015	Cable	32022-2-29094K- 24TC	5/6/2013	5/6/2015
T6	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016

Equipment Under Test (* = EUT):

Powerslaver* Velvetwire LLC 100101 RF 1	Function	Manufacturer	Model #	S/N
	Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices: Function

Function	Manufacturer

Model #

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 1000MHz to 12000MHz Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=1MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: Low Channel

S/N

Measu	irement Data:	Re	eading lis	ted by ma	argin.		Те	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4805.804M	67.8	+33.2	+1.7	+3.8	-58.3	+0.0	49.1	54.0	-4.9	Vert
			+0.7	+0.2							
2	7206.890M	63.0	+36.1	+2.0	+5.3	-59.3	+0.0	48.3	54.0	-5.7	Vert
	Ave		+1.0	+0.2							
^	7206.890M	70.4	+36.1	+2.0	+5.3	-59.3	+0.0	55.7	54.0	+1.7	Vert
			+1.0	+0.2							
4	10186.179	56.2	+39.7	+2.5	+6.3	-58.2	+0.0	48.0	54.0	-6.0	Vert
	М		+1.3	+0.2							
5	10042.035	56.0	+39.7	+2.4	+6.3	-58.2	+0.0	47.7	54.0	-6.3	Horiz
	М		+1.3	+0.2							
6	9909.903M	55.3	+39.6	+2.4	+6.3	-58.1	+0.0	47.0	54.0	-7.0	Vert
			+1.3	+0.2							
7	9744.738M	55.2	+39.0	+2.4	+6.3	-57.5	+0.0	46.9	54.0	-7.1	Horiz
			+1.3	+0.2							

CKC Laboratories, Inc. Date: 8/29/2014 Time: 11:49:06 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 8

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 MI	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	10:25:25
Equipment:	Powerslayer	Sequence#:	19
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101	-	
S/N:	RF 1		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN2693	Active Horn Antenna	AMFW-5F-	2/21/2013	2/21/2015
			18002650-20-10P		
T2	ANP00928	Cable	various	1/23/2014	1/23/2016
T3	ANP06126	Cable	32022-29094K-	7/12/2013	7/12/2015
			29094K-168TC		
T4	ANP06138	Cable	32022-29094K-	8/2/2013	8/2/2015
			29094K-72TC		
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Equipment Under Test (* = EUT):

<u> </u>			
Function	Manufacturer	Model #	S/N
Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices:

Function

Model #

S/N

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 12000MHz to 18000MHz

Manufacturer

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=1MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: Low Channel

Measu	rement Data:	Re	eading list	ted by ma	irgin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	14969.753 M	43.2	-15.4	+0.8	+6.8	+2.8	+0.0	38.2	54.0	-15.8	Horiz
2	17809.132 M	40.4	-13.4	+0.7	+7.3	+3.1	+0.0	38.1	54.0	-15.9	Horiz
3	17590.501 M	40.3	-13.9	+0.7	+7.3	+3.1	+0.0	37.5	54.0	-16.5	Vert
4	14407.920 M	42.8	-15.5	+0.8	+6.5	+2.8	+0.0	37.4	54.0	-16.6	Vert
5	15201.801 M	42.3	-15.5	+0.8	+6.9	+2.8	+0.0	37.3	54.0	-16.7	Vert
6	13681.125 M	43.2	-16.2	+0.8	+6.5	+2.7	+0.0	37.0	54.0	-17.0	Horiz

CKC Laboratories, Inc. Date: 8/30/2014 Time: 10:25:25 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 19

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	s Emissions (2400-2483.5 Ml	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	11:22:26
Equipment:	Powerslayer	Sequence#:	28
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N·	RF 1		

Test Equipment:

ID Asset # Description Model Calibration Dat	te Cal Due Date
T1 ANP06126 Cable 32022-29094K- 7/12/2013	7/12/2015
29094K-168TC	
T2 ANP06138 Cable 32022-29094K- 8/2/2013	8/2/2015
29094K-72TC	
AN03471 RF Characteristics E4440A 12/19/2013	12/19/2015
Analyzer	
T3 ANP00929 Cable various 1/23/2014	1/23/2016
T4 AN02694 Horn Antenna-ANSI AMFW-5F- 2/4/2013	2/4/2015
C63.5 Antenna 18002650-20-10P	
Factors (dB)	

Equipment Under Test (* = EUT):	
---------------------------------	--

Function	Manufacturer	Model #	S/N
Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices:

Function

Model #

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 18000MHz to 25000MHz

Manufacturer

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=1MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode. Note: Low Channel

S/N

Measu	rement Data:	Re	eading list	ted by ma	irgin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	21861.406	44.9	+8.2	+3.5	+3.0	-17.3	+0.0	42.3	54.0	-11.7	Horiz
	М										
2	21970.348	44.6	+8.2	+3.5	+3.0	-17.3	+0.0	42.0	54.0	-12.0	Vert
	М										
3	22796.488	44.2	+8.4	+3.7	+3.0	-17.8	+0.0	41.5	54.0	-12.5	Horiz
	М										
4	22642.154	43.7	+8.3	+3.6	+3.0	-17.7	+0.0	40.9	54.0	-13.1	Vert
	М										
5	24655.057	42.3	+8.9	+3.8	+3.0	-17.1	+0.0	40.9	54.0	-13.1	Vert
	М										
6	23634.025	43.1	+8.5	+3.6	+3.0	-17.7	+0.0	40.5	54.0	-13.5	Horiz
	М										
1											

CKC Laboratories, Inc. Date: 8/30/2014 Time: 11:22:26 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 28

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spuriou	s Emissions (2400-2483.5 M)	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	13:51:17
Equipment:	Powerslayer	Sequence#:	50
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N·	RF 1		

Test Equipment:

1000 2900	Pintenne				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
	ANP05300	Cable	RG214/U	3/25/2013	3/25/2015
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			
	AN00432	Loop Antenna	6502	4/2/2013	4/2/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Powerslayer*	Velvetwire LLC	100101	RF 1	
Support Devices:				

S/N

Function Manufacturer Model #

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 9kHz – 30MHz

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=200Hz from 9kHz to 150kHz RBW=VBW=9kHz from 150kHz to 30MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: Middle Channel

No EUT emissions detected within 20dB of the limit.

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 MI	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	12:54:56
Equipment:	Powerslayer	Sequence#:	40
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101	-	
S/N:	RF 1		

Test Equipment:

100. 24.	<i>P</i>				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
T2	AN00852	Biconilog Antenna	CBL 6111C	11/28/2012	11/28/2014
Т3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP05300	Cable	RG214/U	3/25/2013	3/25/2015
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Equ	ipment	Under Test (* = EUT):	

Function	Manufacturer	Model #	S/N
Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices:

function Manufacturer Model # S/N	Function Manufacturer Model # S/N
-----------------------------------	-----------------------------------

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 30MHz to 1000MHz

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=120kHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: Middle Channel

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	158.170M	46.4	-29.0	+10.5	+1.1	+0.5	+0.0	29.9	43.5	-13.6	Horiz
			+0.4								
2	64.007M	48.3	-29.2	+6.0	+0.7	+0.3	+0.0	26.3	40.0	-13.7	Vert
			+0.2								
3	125.978M	44.5	-29.1	+11.5	+1.0	+0.4	+0.0	28.6	43.5	-14.9	Horiz
			+0.3								
4	56.952M	45.8	-29.3	+6.6	+0.6	+0.2	+0.0	24.1	40.0	-15.9	Vert
			+0.2								
5	851.023M	31.2	-29.3	+22.2	+3.1	+1.0	+0.0	29.1	46.0	-16.9	Vert
			+0.9								
6	102.675M	42.1	-29.1	+10.3	+0.9	+0.2	+0.0	24.7	43.5	-18.8	Horiz
			+0.3								

CKC Laboratories, Inc. Date: 8/30/2014 Time: 12:54:56 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 40

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 M	Hz Transmitter)
Work Order #:	96014	Date:	8/29/2014
Test Type:	Radiated Scan	Time:	19:43:57
Equipment:	Powerslayer	Sequence#:	11
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N:	RF 1		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI C63.5	3115	1/23/2013	1/23/2015
T2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
Т3	ANP01210	Cable	FSJ1P-50A-4A	2/19/2013	2/19/2015
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T4	AN03114	Preamp	AMF-7D- 00101800-30-10P	4/11/2013	4/11/2015
T5	AN03015	Cable	32022-2-29094K- 24TC	5/6/2013	5/6/2015
T6	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016

Equipment Under Test (* = EUT):

Powerslayer* Velvetwire LLC	100101	RF 1	

Support Devices: Function

ction	Manufacturer

Model #

S/N

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 1000MHz to 12000MHz Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=1MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: Middle Channel

Measi	rement Data:	Re	eading lis	ted by ma	argin.	. Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	4881.880M	68.9	+33.4	+1.7	+3.8	-58.2	+0.0	50.5	54.0	-3.5	Vert
			+0.7	+0.2							
2	10171.164	57.1	+39.7	+2.5	+6.3	-58.2	+0.0	48.9	54.0	-5.1	Horiz
	М		+1.3	+0.2							
3	7320.947M	62.8	+36.6	+2.1	+5.4	-59.3	+0.0	48.8	54.0	-5.2	Vert
	Ave		+1.0	+0.2							
^	7320.947M	70.7	+36.6	+2.1	+5.4	-59.3	+0.0	56.7	54.0	+2.7	Vert
			+1.0	+0.2							
^	7320.947M	69.8	+36.6	+2.1	+5.4	-59.3	+0.0	55.8	54.0	+1.8	Vert
			+1.0	+0.2							
6	9741.735M	56.5	+39.0	+2.4	+6.3	-57.5	+0.0	48.2	54.0	-5.8	Vert
			+1.3	+0.2							
7	8803.798M	55.4	+38.0	+2.3	+5.9	-56.3	+0.0	47.0	54.0	-7.0	Horiz
			+1.4	+0.3							
8	7818.814M	59.1	+36.6	+2.1	+5.5	-58.5	+0.0	46.2	54.0	-7.8	Horiz
			+1.2	+0.2							

CKC Laboratories, Inc. Date: 8/29/2014 Time: 19:43:57 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 11

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	s Emissions (2400-2483.5 Ml	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	10:38:09
Equipment:	Powerslayer	Sequence#:	22
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101	-	
S/N:	RF 1		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN2693	Active Horn Antenna	AMFW-5F-	2/21/2013	2/21/2015
			18002650-20-10P		
T2	ANP00928	Cable	various	1/23/2014	1/23/2016
T3	ANP06126	Cable	32022-29094K-	7/12/2013	7/12/2015
			29094K-168TC		
T4	ANP06138	Cable	32022-29094K-	8/2/2013	8/2/2015
			29094K-72TC		
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Equipment Under Test (* = EUT):

<u> </u>			
Function	Manufacturer	Model #	S/N
Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices:

Model #

S/N

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 12000MHz to 18000MHz

Manufacturer

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=1MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: Middle Channel

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	17703.287 M	40.9	-13.7	+0.7	+7.3	+3.1	+0.0	38.3	54.0	-15.7	Horiz
2	17916.712 M	40.3	-13.5	+0.7	+7.3	+3.2	+0.0	38.0	54.0	-16.0	Vert
3	13822.800 M	43.6	-16.0	+0.8	+6.5	+2.7	+0.0	37.6	54.0	-16.4	Horiz
4	17312.875 M	40.9	-14.6	+0.7	+7.3	+3.0	+0.0	37.3	54.0	-16.7	Horiz
5	14274.745 M	42.8	-15.6	+0.8	+6.5	+2.8	+0.0	37.3	54.0	-16.7	Vert
6	13560.701 M	43.4	-16.2	+0.8	+6.4	+2.7	+0.0	37.1	54.0	-16.9	Vert

CKC Laboratories, Inc. Date: 8/30/2014 Time: 10:38:09 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 22

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 MI	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	11:40:19
Equipment:	Powerslayer	Sequence#:	31
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101	-	
S/N:	RF 1		

Test Equipment:

ID Asset # Description Model Calibration Dat	te Cal Due Date
T1 ANP06126 Cable 32022-29094K- 7/12/2013	7/12/2015
29094K-168TC	
T2 ANP06138 Cable 32022-29094K- 8/2/2013	8/2/2015
29094K-72TC	
AN03471 RF Characteristics E4440A 12/19/2013	12/19/2015
Analyzer	
T3 ANP00929 Cable various 1/23/2014	1/23/2016
T4 AN02694 Horn Antenna-ANSI AMFW-5F- 2/4/2013	2/4/2015
C63.5 Antenna 18002650-20-10P	
Factors (dB)	

|--|

Function	Manufacturer	Model #	S/N
Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices:

Function

Model #

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 18000MHz to 25000MHz

Manufacturer

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=1MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: Middle Channel

S/N

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	21783.331 M	44.9	+8.2	+3.5	+3.0	-17.3	+0.0	42.3	54.0	-11.7	Vert
2	22077.073 M	44.9	+8.2	+3.5	+3.0	-17.4	+0.0	42.2	54.0	-11.8	Horiz
3	21704.701 M	44.7	+8.2	+3.5	+3.0	-17.3	+0.0	42.1	54.0	-11.9	Horiz
4	22680.676 M	43.9	+8.4	+3.6	+3.0	-17.7	+0.0	41.2	54.0	-12.8	Horiz
5	23166.874 M	43.4	+8.5	+3.7	+2.9	-17.8	+0.0	40.7	54.0	-13.3	Vert
6	24613.664 M	42.2	+8.8	+3.8	+3.0	-17.1	+0.0	40.7	54.0	-13.3	Vert

CKC Laboratories, Inc. Date: 8/30/2014 Time: 11:40:19 Velvetwire LLC WO#. 96014 Test Distance: 3 Meters. Sequence#: 31

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spuriou	s Emissions (2400-2483.5 Ml	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	13:51:42
Equipment:	Powerslayer	Sequence#:	51
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N·	RF 1		

Test Equipment:

1000 2900	Pintenne				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
	ANP05300	Cable	RG214/U	3/25/2013	3/25/2015
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			
	AN00432	Loop Antenna	6502	4/2/2013	4/2/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Powerslayer*	Velvetwire LLC	100101	RF 1	
Support Devices:				

S/N

Function Manufacturer Model #

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 9kHz – 30MHz

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=200Hz from 9kHz to 150kHz RBW=VBW=9kHz from 150kHz to 30MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: High Channel

No EUT emissions detected within 20dB of the limit.

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 MI	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	13:12:11
Equipment:	Powerslayer	Sequence#:	43
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N:	RF 1		

Test Equipment:

1	r				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00686	Preamp	8447D Opt 010	5/27/2014	5/27/2016
T2	AN00852	Biconilog Antenna	CBL 6111C	11/28/2012	11/28/2014
Т3	ANP00880	Cable	RG214U	6/13/2014	6/13/2016
T4	ANP01183	Cable	CNT-195	9/3/2013	9/3/2015
T5	ANP05300	Cable	RG214/U	3/25/2013	3/25/2015
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			

Equipment Under Test (* = EUT):	
	-

Function	Manufacturer	Model #	S/N
Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices:

function Manufacturer Model # S/N	Function Manufacturer Model # S/N
-----------------------------------	-----------------------------------

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 30MHz to 1000MHz

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=120kHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: High Channel

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	157.089M	47.2	-29.0	+10.5	+1.1	+0.5	+0.0	30.7	43.5	-12.8	Vert
			+0.4								
2	64.007M	48.5	-29.2	+6.0	+0.7	+0.3	+0.0	26.5	40.0	-13.5	Vert
			+0.2								
3	125.476M	44.6	-29.1	+11.6	+1.0	+0.4	+0.0	28.8	43.5	-14.7	Horiz
			+0.3								
4	142.060M	44.3	-29.0	+11.2	+1.1	+0.4	+0.0	28.3	43.5	-15.2	Horiz
			+0.3								
5	56.686M	45.6	-29.3	+6.7	+0.6	+0.2	+0.0	24.0	40.0	-16.0	Vert
			+0.2								
6	128.004M	43.4	-29.1	+11.4	+1.0	+0.4	+0.0	27.4	43.5	-16.1	Horiz
			+0.3								

CKC Laboratories, Inc. Date: 8/30/2014 Time: 13:12:11 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 43

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 MI	Hz Transmitter)
Work Order #:	96014	Date:	8/29/2014
Test Type:	Radiated Scan	Time:	20:06:21
Equipment:	Powerslayer	Sequence#:	14
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N:	RF 1		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02157	Horn Antenna-ANSI C63.5	3115	1/23/2013	1/23/2015
Т2	AN03302	Cable	32026-29094K- 29094K-72TC	3/24/2014	3/24/2016
Т3	ANP01210	Cable	FSJ1P-50A-4A	2/19/2013	2/19/2015
	AN03471	RF Characteristics Analyzer	E4440A	12/19/2013	12/19/2015
T4	AN03114	Preamp	AMF-7D- 00101800-30-10P	4/11/2013	4/11/2015
T5	AN03015	Cable	32022-2-29094K- 24TC	5/6/2013	5/6/2015
Т6	AN03309	High Pass Filter	11SH10- 3000/T10000- O/O	4/2/2014	4/2/2016

Equipment Under Test (* = EUT):

Powerslaver* Velvetwire LLC 100101 RF 1	Function	Manufacturer	Model #	S/N
	Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices: Function

ction	Manufacturer

Model #

S/N

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 1000MHz to 12000MHz Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=1MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: High Channel

Reading II	sted by m	argin.	Test Distance: 3 Meters					
g T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
Т5	T6							
V dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
4.4 +36.8	+2.1	+5.4	-59.3	+0.0	50.6	54.0	-3.4	Horiz
+1.0	+0.2							
7.2 +33.6	+1.7	+3.9	-57.9	+0.0	49.4	54.0	-4.6	Horiz
+0.7	+0.2							
4.7 +39.0	+2.6	+6.2	-56.4	+0.0	47.6	54.0	-6.4	Horiz
+1.3	+0.2							
6.4 +39.2	+2.5	+6.1	-58.3	+0.0	47.4	54.0	-6.6	Vert
+1.3	+0.2							
5.6 +39.1	+2.4	+6.3	-57.5	+0.0	47.4	54.0	-6.6	Vert
+1.3	+0.2							
4.6 +38.2	+2.3	+6.0	-56.3	+0.0	46.5	54.0	-7.5	Vert
+1.4	+0.3							
	$\begin{array}{r} \mbox{Reading in} \\ \hline g & T1 \\ T5 \\ \hline V & dB \\ \hline 4.4 & +36.8 \\ & +1.0 \\ \hline 7.2 & +33.6 \\ & +0.7 \\ \hline 4.7 & +39.0 \\ & +1.3 \\ \hline 6.4 & +39.2 \\ & +1.3 \\ \hline 5.6 & +39.1 \\ & +1.3 \\ \hline 4.6 & +38.2 \\ & +1.4 \\ \hline \end{array}$	Reading fisted by find g T1 T2 T5 T6 M 4.4 +36.8 +2.1 +1.0 +0.2 7.2 +33.6 +1.7 +0.7 +0.2 4.7 +39.0 +2.6 +1.3 +0.2 6.4 +39.2 +2.5 +1.3 +0.2 5.6 +39.1 +2.4 +1.3 +0.2 4.6 +38.2 +2.3 +1.4 +0.3	Reading listed by margin. g T1 T2 T3 T5 T6 T6 V dB dB dB 4.4 +36.8 +2.1 +5.4 +1.0 +0.2 7.2 +33.6 +1.7 +3.9 +0.7 +0.2 4.7 +39.0 +2.6 +6.2 +1.3 +0.2 +0.2 6.4 +39.2 +2.5 +6.1 5.6 +39.1 +2.4 +6.3 +1.3 +0.2 +0.2 4.6 +38.2 +2.3 +6.0 +1.4 +0.3 +0.3	Reading listed by margin: g T1 T2 T3 T4 T5 T6 T6 T4 V dB dB dB dB dB 4.4 +36.8 +2.1 +5.4 -59.3 +1.0 +0.2 -57.9 7.2 +33.6 +1.7 +3.9 -57.9 $+0.7$ +0.2 4.7 +39.0 +2.6 +6.2 -56.4 $+1.3$ +0.2 -57.5 -57.5 5.6 +39.1 +2.4 +6.3 -57.5 $+1.3$ +0.2 -57.5 -57.5 4.6 +38.2 +2.3 +6.0 -56.3 $+1.4$ +0.3 -57.5 -57.5	Reading fisted by margin. Terminagin. g T1 T2 T3 T4 Dist T5 T6 T6 Dist T3 T4 Dist V dB dB dB dB dB Table 4.4 +36.8 +2.1 +5.4 -59.3 +0.0 +1.0 +0.2 -57.9 +0.0 +0.7 +0.2 -57.9 +0.0 4.7 +39.0 +2.6 +6.2 -56.4 +0.0 +1.3 +0.2 -57.5 +0.0 -57.5 +0.0 5.6 +39.1 +2.4 +6.3 -57.5 +0.0 +1.3 +0.2 -56.3 +0.0 -56.3 +0.0 4.6 +38.2 +2.3 +6.0 -56.3 +0.0 +1.4 +0.3 -56.3 +0.0	Test Distance g T1 T2 T3 T4 Dist Corr T5 T6 Table dB dB dB dB Table dB $\mu V/m$ 4.4 +36.8 +2.1 +5.4 -59.3 +0.0 50.6 +1.0 +0.2 - - - - - 7.2 +33.6 +1.7 +3.9 -57.9 +0.0 49.4 +0.7 +0.2 - - - - - 4.7 +39.0 +2.6 +6.2 -56.4 +0.0 47.6 +1.3 +0.2 - - - - - 6.4 +39.2 +2.5 +6.1 -58.3 +0.0 47.4 +1.3 +0.2 - - - - - 5.6 +39.1 +2.4 +6.3 -57.5 +0.0 47.4 +1.3 +0.2 - - - - - 4.6 +38.2 +2.3 +6.0 -56.3	Test Distance: 3 Meters g T1 T2 T3 T4 Dist Corr Spec T5 T6 Table dB dB dB dB Table dB $\mu V/m$ dB $\mu V/m$ 4.4 +36.8 +2.1 +5.4 -59.3 +0.0 50.6 54.0 +1.0 +0.2	Test Distance: 3 MetersgT1T2T3T4DistCorrSpecMarginT5T6T6TabledB $\mu V/m$ dB $\mu V/m$ dB4.4+36.8+2.1+5.4-59.3+0.050.654.0-3.4+1.0+0.2-7.2+33.6+1.7+3.9-57.9+0.049.454.0-4.6+0.7+0.2-9.2-9.2-9.2-9.2-9.2-9.2-9.2-9.2-9.26.4+39.2+2.6+6.2-56.4+0.047.654.0-6.6+1.3+0.2-9.2-9.2-9.2-9.2-9.2-9.26.4+39.2+2.5+6.1-58.3+0.047.454.0-6.6+1.3+0.2-9.2-9.2-9.2-9.2-9.2-9.2-9.2-9.26.4+39.2+2.5+6.1-58.3+0.047.454.0-6.6+1.3+0.2-9.2-9.2-9.2-9.2-9.2-9.24.6+38.2+2.3+6.0-56.3+0.047.454.0-6.6+1.4+0.3-9.2-9.2-9.2-9.2-9.2-9.2-9.25.6+39.1+2.4+6.3-57.5+0.047.454.0-6.6+1.3+0.2-9.2-9.2-9.2-9.2-9.2-9.24.6+38.2+2.3+6.0-56.3+0.046.5<

CKC Laboratories, Inc. Date: 8/29/2014 Time: 20:06:21 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 14

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 M	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	11:51:46
Equipment:	Powerslayer	Sequence#:	34
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N·	RF 1		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06126	Cable	32022-29094K-	7/12/2013	7/12/2015
			29094K-168TC		
T2	ANP06138	Cable	32022-29094K-	8/2/2013	8/2/2015
			29094K-72TC		
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			
Т3	ANP00929	Cable	various	1/23/2014	1/23/2016
T4	AN02694	Horn Antenna-ANSI	AMFW-5F-	2/4/2013	2/4/2015
		C63.5 Antenna	18002650-20-10P		
		Factors (dB)			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices:

Function

Model #

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 18000MHz to 25000MHz

Manufacturer

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=1MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: High Channel

S/N

Measu	rement Data:	Re	eading list	ted by ma	ırgin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	21999.399	45.1	+8.2	+3.5	+3.0	-17.3	+0.0	42.5	54.0	-11.5	Vert
	М										
2	21752 464	44 0	+8.2	+3.5	+3.0	-173	+0.0	41.4	54.0	-12.6	Horiz
_	M		0.2	0.0	2.0	1,10	0.0		0	12.0	110112
3	22767.437	43.7	+8.4	+3.6	+3.0	-17.8	+0.0	40.9	54.0	-13.1	Vert
	М										
4	24757 554	42.2	+8.9	+3.8	+3.0	-17.0	+0.0	40.9	54.0	-13.1	Vert
	M	12.2	0.9	- 5.0	- 5.0	17.0	0.0	10.9	5 1.0	10.1	vert
5	20733.185	42.7	+7.9	+3.4	+3.2	-17.0	+0.0	40.2	54.0	-13.8	Horiz
	М										
6	23549 268	42.7	+8.5	+3.6	+3.0	-177	+0.0	40.1	54.0	-13.9	Horiz
0	M	r∠./	. 0.5	. 5.0	. 5.0	1/./	0.0	10.1	24.0	15.7	TIOTIZ

CKC Laboratories, Inc. Date: 8/30/2014 Time: 11:51:46 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 34

Customer:	Velvetwire LLC		
Specification:	15.249 Carrier and Spurious	Emissions (2400-2483.5 MI	Hz Transmitter)
Work Order #:	96014	Date:	8/30/2014
Test Type:	Radiated Scan	Time:	11:51:46
Equipment:	Powerslayer	Sequence#:	34
Manufacturer:	Velvetwire LLC	Tested By:	Hieu Song Nguyenpham
Model:	100101		
S/N·	RF 1		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06126	Cable	32022-29094K-	7/12/2013	7/12/2015
			29094K-168TC		
T2	ANP06138	Cable	32022-29094K-	8/2/2013	8/2/2015
			29094K-72TC		
	AN03471	RF Characteristics	E4440A	12/19/2013	12/19/2015
		Analyzer			
Т3	AN02694	Horn Antenna-1	AMFW-5F-	2/4/2013	2/4/2015
		Meter Antenna	18002650-20-10P		
		Factors (dB) - SAE			
		ARP 958			
T4	ANP00929	Cable	various	1/23/2014	1/23/2016

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices:

Function	Manufacturer	Model #	S/N

Test Conditions / Notes:

Radiated Spurious Emission Frequency Range: 18000MHz to 25000MHz

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=0dBi

RBW=VBW=1MHz

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Note: High Channel

Measurement Data:		Re	eading lis	ted by ma	ırgin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	21999.399 M	45.1	+8.2	+3.5	-16.8	+3.0	+0.0	43.0	54.0	-11.0	Vert
2	21752.464 M	44.0	+8.2	+3.5	-16.7	+3.0	+0.0	42.0	54.0	-12.0	Horiz
3	22767.437 M	43.7	+8.4	+3.6	-17.1	+3.0	+0.0	41.6	54.0	-12.4	Vert
4	24757.554 M	42.2	+8.9	+3.8	-16.3	+3.0	+0.0	41.6	54.0	-12.4	Vert
5	20733.185 M	42.7	+7.9	+3.4	-16.4	+3.2	+0.0	40.8	54.0	-13.2	Horiz
6	23549.268 M	42.7	+8.5	+3.6	-17.1	+3.0	+0.0	40.7	54.0	-13.3	Horiz

CKC Laboratories, Inc. Date: 8/30/2014 Time: 11:51:46 Velvetwire LLC WO#: 96014 Test Distance: 3 Meters. Sequence#: 34

Band Edge Test Setup / Conditions

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place • Fremont, CA 94539 • (510) 249-1170

Customer:	Velvetwire LLC
Specification:	OBW
Work Order #:	96014
Test Type:	Radiated Scan
Equipment:	Powerslayer
Manufacturer:	Velvetwire LLC
Model:	100101
S/N:	RF 1

Date: 8/29/2014 Time: 10:21:04 Sequence#: 5 Tested By: Hieu Song Nguyenpham

S/N

Test Equipment:

T1 AN02157 Horn Antenna-ANSI 3115 1/23/2013 1/23/2015	
C63.5	
T2 AN03302 Cable 32026-29094K- 3/24/2014 3/24/2016	
29094K-72TC	
T3 ANP01210 Cable FSJ1P-50A-4A 2/19/2013 2/19/2015	
AN03471 RF Characteristics E4440A 12/19/2013 12/19/2015	
Analyzer	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Powerslayer*	Velvetwire LLC	100101	RF 1

Support Devices:

Function Manufacturer Model #

Test Conditions / Notes: Band Edge Test Setup

Temperature: 22.5°C Humidity: 45 % Atmospheric Pressure: 101.1 kPa Highest Generation Frequency=2480MHz Firmware: TI test firmware

Transmitting operating frequency= 2.4GHz RF Output= 0dBm Gain of antenna=dBi

The EUT is a mobile device, and it is a USB charger. It is placed on an 80 cm table. The USB Port is connected to the switch through the USB cable which is used to control the EUT for testing purpose. The switch is always on, and it is represented for the load. The EUT is operated in continuously transmitting mode.

Test Data

Band Edge - FHSS

Low Channel

Low Channel

High Channel

High Channel

Test Setup Photo(s)

9kHz – 30MHz

9kHz – 30MHz

30MHz – 1GHz

30MHz – 1GHz

1GHz – 12GHz

1GHz – 12GHz

12GHz – 18GHz

12GHz – 18GHz

18GHz – 25GHz

18GHz – 25GHz

Band Edge

Band Edge

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter	
4.73 dB	Radiated Emissions	
3.34 dB	Mains Conducted Emissions	
3.30 dB	Disturbance Power	

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS						
Meter reading (dBµV)						
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.