

RF Test Report

Applicant	:	AcSiP Technology Corp.
Product Name	:	Wi-Fi HaLow Module
Trade Name	:	AcSiP
Model Number	:	Al6108L
Applicable Standard	:	FCC 47 CFR PART 15 SUBPART C ANSI C63.10:2013
Received Date	:	Mar. 18, 2024
Test Period	:	Mar. 22, 2024 ~ Apr. 01, 2024
Issued Date	:	Apr. 16, 2024

Issued by

Eurofins E&E Wireless Taiwan Co., Ltd. No. 140-1, Changan Street, Bade District, Taoyuan City 334025, Taiwan (R.O.C.) Tel : +886-3-2710188 / Fax : +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330 Frequency Range: 9 kHz to 325 GHz Bade test site : Test Firm Registration Number: 226252 Test Firm Designation Number: TW0010 Wugu test site : Test Firm Registration Number: 191812 Test Firm Designation Number: TW0034

Note:

1. The test results are valid only for samples provided by customers and under the test conditions described in this report.

2. This report shall not be reproduced except in full, without the written approval of Eurofins E&E Wireless Taiwan Co., Ltd. 3. The relevant information is provided by customers in this test report. According to the correctness, appropriateness or

completeness of the information provided by the customer, if there is any doubt or error in the information which affects

the validity of the test results, the laboratory does not take the responsibility.

Revision History

Rev.	Issued Date	Description	Revised by
00	Apr. 16, 2024	Initial Issue	Rowan Hsieh

Verification of Compliance

Applicant	:	AcSiP Technology Corp.
Product Name	:	Wi-Fi HaLow Module
Trade Name	:	AcSiP
Model Number	:	AI6108L
FCC ID	:	2ADWC-AI6108L
Applicable Standard	:	FCC 47 CFR PART 15 SUBPART C ANSI C63.10:2013
Test Result	:	Complied
Performing Lab.	:	Eurofins E&E Wireless Taiwan Co., Ltd. No. 140-1, Changan Street, Bade District, Taoyuan City 334025, Taiwan (R.O.C.) Tel : +886-3-2710188 / Fax : +886-3-2710190 Taiwan Accreditation Foundation accreditation number: 1330

Eurofins E&E Wireless Taiwan Co., Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by Eurofins E&E Wireless Taiwan Co., Ltd. based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Approved By :

🛟 eurofins

TABLE OF CONTENTS

1	General Information	5
	1.1. Summary of Test Result	5
	1.2. Testing Location	5
	1.3. Measurement Uncertainty	6
2	EUT Description	7
3	Test Methodology	9
	3.1. Mode of Operation	9
	3.2. EUT Test Step	9
	3.3. Test Site Environment	6
	3.4. Configuration of Test System Details	10
	3.5. Test Instruments	
4	Measurement Procedure	15
	4.1. AC Power Line Conducted Emission Measurement	15
	4.2. Radiated Emission Measurement	17
	4.3. Maximum Conducted Output Power Measurement	22
	4.4. 6 dB RF Bandwidth Measurement	23
	4.5. Maximum Power Density Measurement	24
	4.6. Out of Band Conducted Emissions Measurement	25
	4.7. Antenna Measurement	26
5	Test Results	27
	5.1. Conducted Emission	27
	5.2. Conducted Test Results	29
	5.3. Radiated Emission Measurement	30

Appendix A. Test Data

Appendix B. Test Plots

Appendix C. Test Setup Photographs

1 General Information

1.1. Summary of Test Result

Standard	Item	Result	Remark
15.207	AC Power Conducted Emission	PASS	
15.247(d)	Transmitter Radiated Emissions	PASS	
15.247(b)(3)	Max. Output Power	PASS	
15.247(a)(2)	6 dB RF Bandwidth	PASS	
15.247(e)	Power Spectral Density	PASS	
15.247(d)	Out of Band Conducted Spurious Emission	PASS	
15.203	Antenna Requirement	PASS	

Standard	Description
CFR47, Part 15, Subpart C	Intentional Radiators
ANSI C63. 10: 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB 558074 D01 15.247 Meas Guidance v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES

Decision Rule

- Uncertainty is not included.
- □ Uncertainty is included.

1.2. Testing Location

Lab Name:	Eurofins E&E Wireless Taiwan Co., Ltd.
Site Address:	No. 140-1, Changan Street, Bade District, Taoyuan City 334025, Taiwan (R.O.C.)
Site Address:	■ No. 2, Wuquan 5th Rd. Wugu Dist., New Taipei City, Taiwan (R.O.C.)

1.3. Measurement Uncertainty

Test Item	Frequency	Uncertainty			
iest item	Frequency	В	D	WG	
Conducted Emission	150 kHz ~ 30 MHz	2.7	dB	2.6 dB	
Conducted C	Dutput Power	1.1	dB	1.1	dB
RF Bar	ndwidth	4.5	5 %	4.5 %	
Power Spec	Spectral Density 1.1 dB 1.1				dB
Test Item	Fraguanay	Uncertainty			
rest tiem	Frequency	96601-BD	96603-BD	96602-WG	96603-WG
	9 kHz ~ 30 MHz	1.9 dB	1.9 dB	1.6 dB	1.6 dB
	30 MHz ~ 1000 MHz	4.9 dB	4.9 dB	4.8 dB	4.8 dB
Radiated Emission	1000 MHz ~ 18000 MHz	4.9 dB	5.0 dB	5.0 dB	5.2 dB
	18000 MHz ~ 26500 MHz	4.3 dB	4.4 dB	4.4 dB	4.5 dB
	26500 MHz ~ 40000 MHz	4.5 dB	4.5 dB	4.6 dB	4.5 dB

1.4. Test Site Environment

Items	Required (IEC 60068-1)	Interval(*)
Temperature (°C)	15-35	20-30
Humidity (%RH)	25-75	45-75

(*)The measurement ambient temperature is within this range.

2 EUT Description

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity(except Max. RF Output Power).

Applicant	AcSiP Technology Corp. 3F., No. 246& 9F., No. 242, Bo'ai St., Shulin Dist., New Taipei City 238005, Taiwan						
Product Name	Wi-Fi HaLow Mo	odule					
Trade Name	AcSiP						
Model No.	AI6108L						
FCC ID	2ADWC-AI6108	L					
Frequency Range	902 - 928 MHz						
Modulation Type	OFDM	OFDM					
Operate Temp. Range	-30 ~ +85 °C	-30 ~ +85 ℃					
EUT Power Rating	DC 3.3 V	DC 3.3 V					
Antenna information	Type Max. Gain (d						
Antenna mormation		Dipole Antenna	1.55				
	802.11 ah 1M 0.133 W						
	802.11 ah 2M	0.127 W					
Max. RF Output Power	802.11 ah 4M	0.121 W					
	802.11 ah 8M	0.117 W					

eurofins

1M											
СН	Feq	СН		Feq	СН	Feq	СН	Feq	СН	Feq	
3	903.5	5 13	9	08.5	23	913.5	33	918.5	43	923.5	
5	904.5	5 15	9	09.5	25	914.5	35	919.5	45	924.5	
7	905.5	5 17	9	10.5	27	915.5	37	920.5	47	925.5	
9	906.5	5 19	9	11.5	29	916.5	39	921.5	49	926.5	
11	907.5	21	9	12.5	31	917.5	41	922.5			
					2	М					
СН		Feq			СН	Feq		CH		Feq	
6		905			26	915		46		925	
10		907			30	917	917				
14		909			34	919					
18		911		38		921					
22		913		42		923					
	4M										
СН							Feq				
8							906				
	16 910										
		24			914						
		32			918						
		40				922					
					8	М					
СН					Feq						
		12			908						
		28						916			

3 Test Methodology

3.1. Mode of Operation

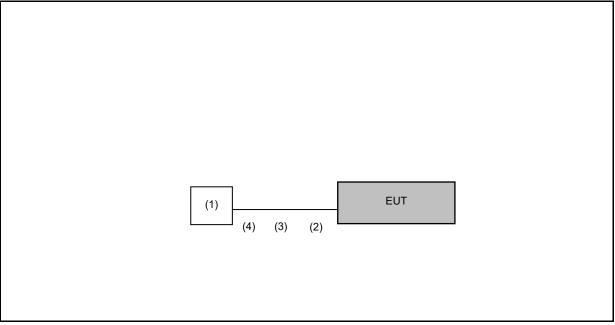
Decision of Test Eurofins has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Pre-Test Mode	Final-Test Mode
Transmit Mode	V
802.11 ah 1M	V
802.11 ah 2M	V
802.11 ah 4M	V
802.11 ah 8M	V

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes.

By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.


3.2. EUT Test Step

1	Setup the EUT shown on "Configuration of Test System Details".					
2	Turn on the power of all equipment.					
3	Setup Continuous TX					
4	EUT run test program.					

3.3. Configuration of Test System Details

Conduction Emission

eurofins

	Product	duct Manufacturer		Serial Number	Power Cord
(1)	Notebook	ASUS	X542U	H8N0CV11R01534B	
(2)	Type C cable	CHANG XING ELECTRONICS	IP-TCC01	N/A	
(3)	USB 3.0 to USB 3.0	CHANG XING ELECTRONICS	imax-USB-3.0B	N/A	
(4)	USB 3.0 to Type C 3.1	fujiei	SR3052	N/A	

3.4. Test Instruments

For Conducted

Test Period: Mar. 22, 2024 ~ Apr. 01, 2024 Testing Engineer: Sandy Yang

	Test Site	RF03-WG					
Use	Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period	
	Power Sensor	Anritsu	MA24408A	11998	Jan. 26, 2024	1 year	
	Spectrum Analyzer (10 Hz~26.5 GHz)	Keysight	N9010B	MY63460164	Mar. 08, 2024	1 year	

Note: N.C.R. = No Calibration Request.

🛟 eurofins

For Radiated Emissions Test Period: Mar. 25, 2024 ~ Mar. 26, 2024 Testing Engineer: Jason Yeh

	adiation test sites	Semi Anechoic Room 96603-WG					
Use	Equipment	Manufacturer	Manufacturer Model Number Serial Number Cal. Date				
	LOOP Antenna (9 kHz~30 MHz)	Schwarzbeck Mess-Elektronik	FMZB 1513-60	00031	Feb. 23, 2024	1 year	
	Trilog Broadband Antenna (30 kHz~1 GHz)	Schwarzbeck Mess-Elektronik	VULB9168	1276	Feb. 02, 2024	1 year	
	Broadband Horn Antenna (1 GHz~18 GHz)	RF SPIN	DRH18-E	210307A18ES	Dec. 15, 2023	1 year	
	Broadband Horn Antenna (15 GHz~40 GHz)	Schwarzbeck Mess-Elektronik	BBHA9170	1133	Jan. 18, 2024	1 year	
\boxtimes	Spectrum Analyzer (2 Hz~50 GHz)	KEYSIGHT	N9030B	MY57153537	Apr. 18, 2023	1 year	
\square	Pre-Amplifier	EMCI	EMC001330	980859	Nov. 29, 2023	1 year	
\boxtimes	Pre-Amplifier	EMCI	EMC118A45SE	980818	Dec. 15, 2023	1 year	
\boxtimes	Pre-Amplifier	EMCI	EMC184045SE	980861	Dec. 21, 2023	1 year	
	Coaxial Cable (10 kHz~3000 MHz)	EMCI	EMCCFD400-NM- NM-2000	211009	Dec. 28, 2023	1 year	
	Coaxial Cable (10 kHz~3000 MHz)	EMCI	EMCCFD400-NM- NM-2000	211010	Dec. 28, 2023	1 year	
	Coaxial Cable (10 kHz~3000 MHz)	EMCI	EMCCFD400-NM- NM-6000	211018	Dec. 28, 2023	1 year	
\boxtimes	Coaxial Cable (1 GHz~18 GHz)	EMCI	EMC104-SM-SM- 1000	211029	Dec. 28, 2023	1 year	
\boxtimes	Coaxial Cable (1 GHz~18 GHz)	EMCI	EMC104-SM-SM- 2000	211033	Dec. 28, 2023	1 year	
	Coaxial Cable (1 GHz~18 GHz)	EMCI	EMC104-SM-SM- 8000	211038	Dec. 28, 2023	1 year	
	Coaxial Cable (18 GHz~40 GHz)	EMCI	EMC101G-KM- KM-600	211211	Dec. 28, 2023	1 year	
	Coaxial Cable (18 GHz~40 GHz)	EMCI	EMC101G-KM- KM-2000	211210	Dec. 28, 2023	1 year	
	Coaxial Cable (18 GHz~40 GHz)	EMCI	EMC101G-KM- KM-6000	211209	Dec. 28, 2023	1 year	
\boxtimes	Highpass Filter	Warison	WFIL-H3000- 20000F	WR4BBFWC2B1	Nov. 13, 2023	1 year	
\boxtimes	Software	R_RAM	V1.3	N/A	N.C.R.		

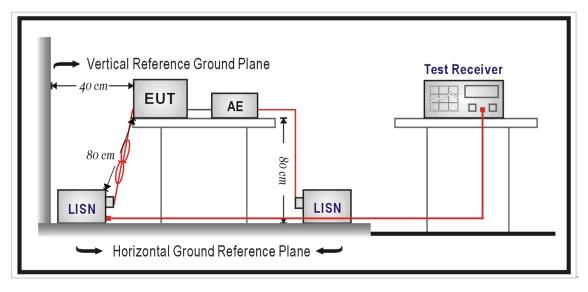
Note: N.C.R. = No Calibration Request.

For Conduction Emissions				
Test Period: Mar. 26, 2024				
Testing Engineer: Jason Yeh				

eurofins

R	adiation test sites	Conducted Emission Measurement Conduction01-WG				
Use	Equipment	Manufacturer	Model Number	Model Number Serial Number		Cal. Period
\boxtimes	Test Receiver	R&S	ESR3	102919	Dec. 30, 2023	1 year
\boxtimes	LISN	R&S	ENV216	101041	Apr. 12, 2023	1 year
\boxtimes	Current Probe	R&S	EZ-17	101687	Jun. 15, 2023	1 year
\boxtimes	Cable	EMCI	EMCCFD300-BM- NM-4000	220402	Jun. 08, 2023	1 year
\boxtimes	Software	ELEKTRA	94.50.4	N.A.	N.C.R.	N.C.R.

Note: N.C.R. = No Calibration Request.


4 Measurement Procedure

4.1. AC Power Line Conducted Emission Measurement

l i	m	it
		π

Frequency (MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56	56 to 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Test Setup

Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 Ω // 50 uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 Ω // 50 uH coupling impedance with 50 ohm termination.

Tabletop device shall be placed on a non-conducting platform, of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The wall of screened room shall be located 40 cm to the rear of the EUT. Other surfaces of tabletop or floor standing EUT shall be at least 80 cm from any other ground conducting surface including one or more LISNs. For floor-standing device shall be placed under the EUT with a 12 mm insulating material.

Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a resolution bandwidth of 9 kHz. The equipment under test (EUT) shall be meet the limits in section 4.1, as applicable, including the average limit and the quasi-peak limit when using respectively, an average detector and quasi-peak detector measured in accordance with the methods described of related standard. When all of peak value were complied with quasi-peak and average limit from 150 kHz to 30 MHz then quasi-peak and average measurement was unnecessary.

The AMN shall be placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for AMNs mounted on top of the ground reference plane. This distance is between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8 m from the AMN. If the mains power cable is longer than 1 m then the cable shall be folded back and forth at the centre of the lead to form a bundle no longer than 0.4 m. All of interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long. All of EUT and AE shall be separate place more than 0.1 m. All 50 Ω ports of the LISN shall be resistively terminated into 50 Ω loads when not connected to the measuring instrument.

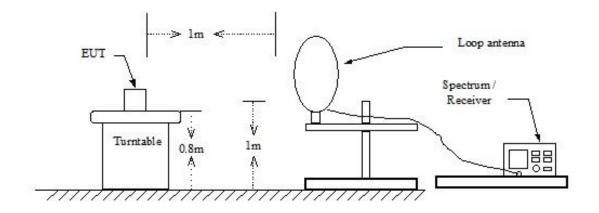
If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

4.2. Radiated Emission Measurement

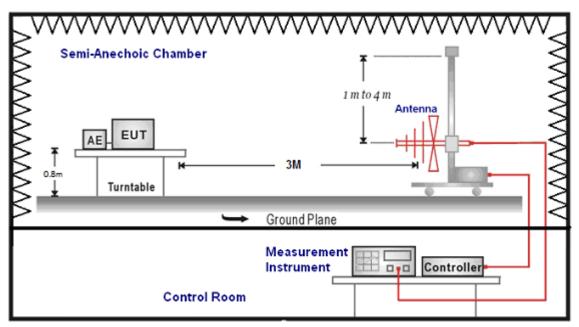
Limit

🛟 eurofins

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

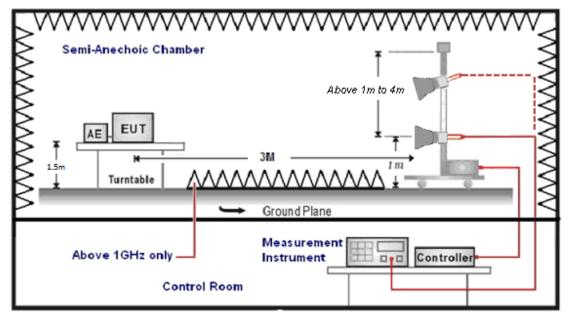

Frequency	Field Strength	Measurement Distance
(MHz)	(µV/m at meter)	(meters)
0.009 - 0.490	2400 / F (kHz)	300
0.490 – 1.705	24000 / F (kHz)	30
1.705 – 30.0	30	30
30 - 88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


eurofins E&E

Setup

9 kHz ~ 30 MHz



Below 1 GHz

Above 1 GHz

Test Procedure

Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 or 1.5 meters height, top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 9 kHz to 26.5 GHz is investigated.

For measurements below 30 MHz the resolution bandwidth is set to 10 kHz for peak detection measurements or 9 kHz for quasi-peak detection measurements. The video bandwidth is 3 times of the resolution bandwidth.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 3 MHz for peak measurements and 10 Hz for average measurements when Duty cycle >98 % / 1/T for average measurements when Duty cycle <98 %. A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

SCHWARZBECK MESS-ELEKTRONIK Biconilog Antenna at 3 Meter and the SCHWARZBECK Double Ridged Guide Antenna was used in frequencies 1 – 26.5 GHz at a distance of 1 meter. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20 dB/decade).

For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in micro volts pre meter (uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in micro colts per meter (dBuV/m).

The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer.

- (1) Amplitude (dBuV/m) = FI (dBuV) +AF (dBuV) +CL (dBuV)-Gain (dB)
 - FI= Reading of the field intensity.

AF= Antenna factor.

CL= Cable loss.

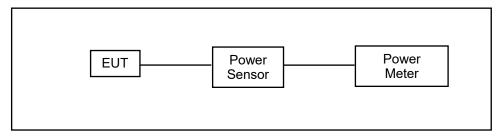
P.S Amplitude is auto calculate in spectrum analyzer.

(2) Actual Amplitude (dBuV/m) = Amplitude (dBuV)-Dis(dB)

The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:

- (a) For fundamental frequency : Transmitter Output < +30 dBm
- (b) For spurious frequency : Spurious emission limits = fundamental emission limit /10

Data of measurement within this frequency range without mark in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.



4.3. Maximum Conducted Output Power Measurement

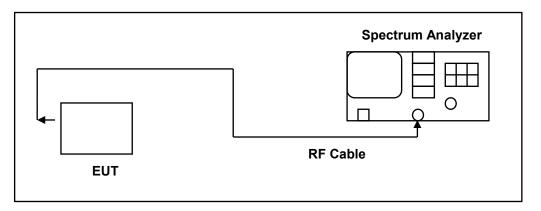
■ Limit

For systems using digital modulation in the 902-928 MHz, the limit for peak output power is 30 dBm.

Test Setup

Test Procedure

T he tests below are run with the EUT's transmitter set at high power in Transmit mode. The EUT is needed to force selection of output power level and channel number. While testing, EUT was set to transmit continuously. Remove the Subjective device's antenna and connect the RF output port to power sensor.



4.4. 6 dB RF Bandwidth Measurement

Limit

6 dB RF Bandwidth: Systems using digital modulation techniques may operate in the 902-928 MHz bands. The minimum 6 dB band-width shall be at least 500 kHz. 99 % Occupied Bandwidth: N/A

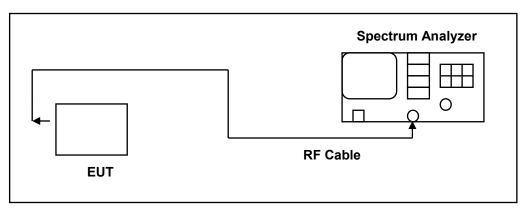
Test Setup

Test Procedure

The EUT tested to DTS test procedure of ANSI C63.10:2013 section 11.8.2 option2 for compliance to FCC 47CFR 15.247 requirements.

6 dB RF Bandwidth: The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A peak output reading was taken, a DISPLAY line was drawn 6 dB lower than peak level. The 6 dB bandwidth was determined from where the channel output spectrum intersected the display line.

The test was performed at 3 channels (Channel low, middle, high)



4.5. Maximum Power Density Measurement

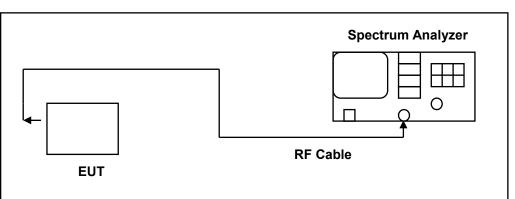
Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Setup

Test Procedure

The EUT tested to DTS test procedure of ANSI C63.10:2013 section 11.10.5 for compliance to FCC 47CFR 15.247 requirements.


- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 \times RBW.
- 5. Detector = power averaging (rms)
- 6. Sweep time = auto couple.
- 7. Trace mode = averaging.
- 8. Employ trace averaging (rms) mode over a minimum of 100 traces
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 11. Add [10 log (1 / D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time.
- 12. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

4.6. Out of Band Conducted Emissions Measurement

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

Test Setup

Test Procedure

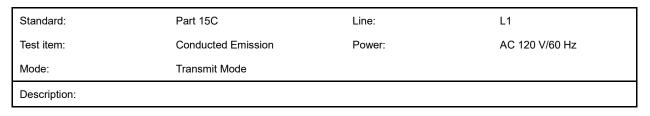
In any 100 kHz bandwidth outside the EUT pass band, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 30 dB below that of the maximum in-band 100 kHz emission, antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function. All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the pass band. The test was performed at 3 channels.

4.7. Antenna Measurement

Limit

For intentional device, according to 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

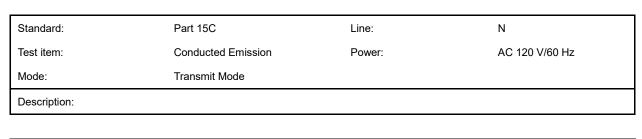
And According to 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


Antenna Connector Construction

See section 2 – antenna information.

5 Test Results

5.1. Conducted Emission



Rg	Frequency [MHz]	QP Result [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Result [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Correction factor [dB]	Line
1	0.155	50.50	65.75	15.26	40.95	55.75	14.81	9.65	L1
1	0.654	38.92	56.00	17.08	29.88	46.00	16.12	9.66	L1
1	0.749	34.70	56.00	21.30	24.47	46.00	21.53	9.67	L1
1	1.442	33.43	56.00	22.57	24.07	46.00	21.93	9.70	L1
1	3.521	34.71	56.00	21.29	24.57	46.00	21.43	9.77	L1
1	3.804	35.88	56.00	20.12	24.60	46.00	21.40	9.77	L1

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

🛟 eurofins

Rg	Frequency [MHz]	QP Result [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Result [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Correction factor [dB]	Line
1	0.150	48.94	66.00	17.06	34.07	56.00	21.93	9.64	Ν
1	0.249	35.77	61.79	26.02	24.27	51.79	27.52	9.64	Ν
1	0.645	35.80	56.00	20.20	24.02	46.00	21.98	9.66	Ν
1	1.901	31.14	56.00	24.86	23.52	46.00	22.48	9.72	Ν
1	3.552	34.60	56.00	21.40	24.55	46.00	21.45	9.78	Ν
1	3.741	34.97	56.00	21.03	24.34	46.00	21.66	9.78	Ν

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

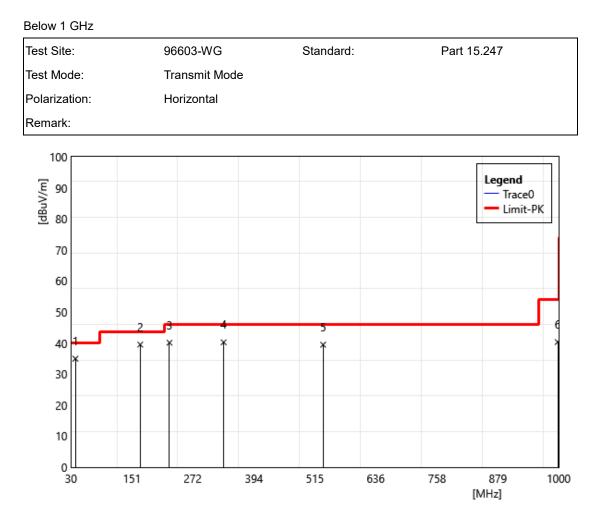
5.2. Conducted Test Results

Duty cycle Reference Appendix A / Appendix B

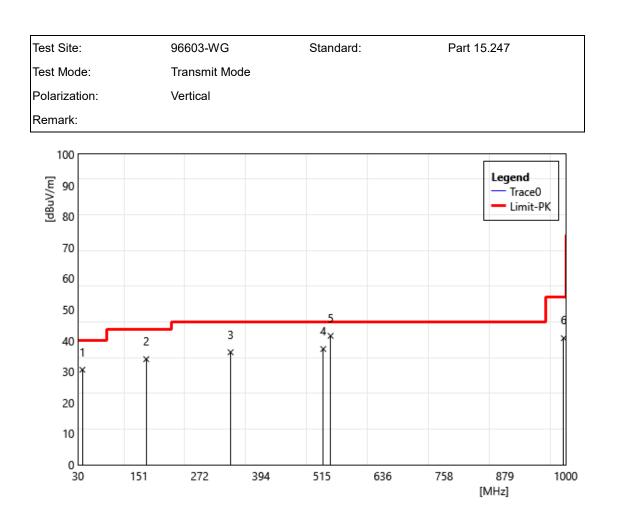
Maximum Conducted Output Power Measurement Reference Appendix A

6 dB Bandwidth and 99 % Occupied Measurement Reference Appendix A / Appendix B

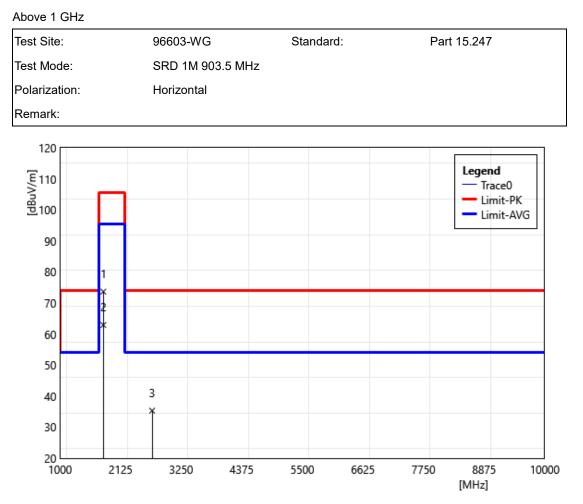
Maximum Power Density Measurement Reference Appendix A / Appendix B


Out of Band Conducted Emissions Measurement Reference level Reference Appendix B

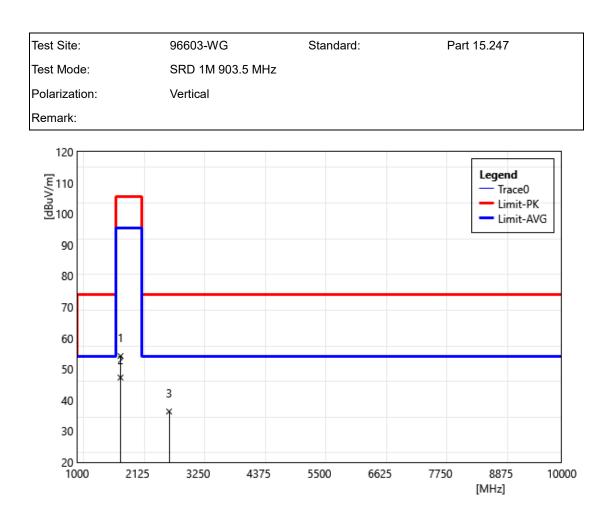
Out of Band Conducted Emissions Reference Appendix B


Conducted Band Edge Reference Appendix B

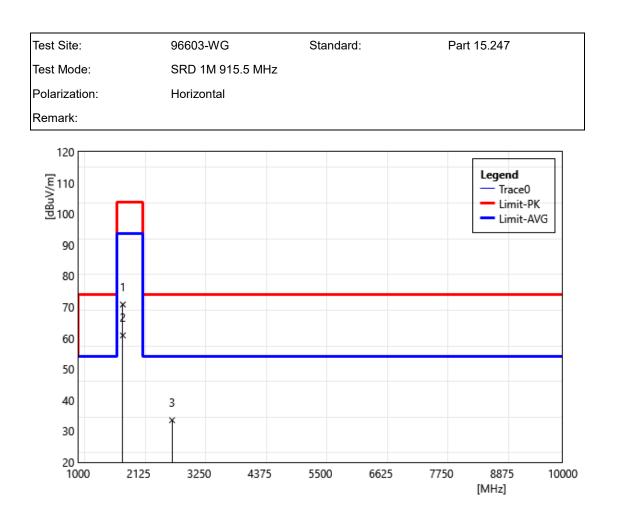
5.3. Radiated Emission Measurement

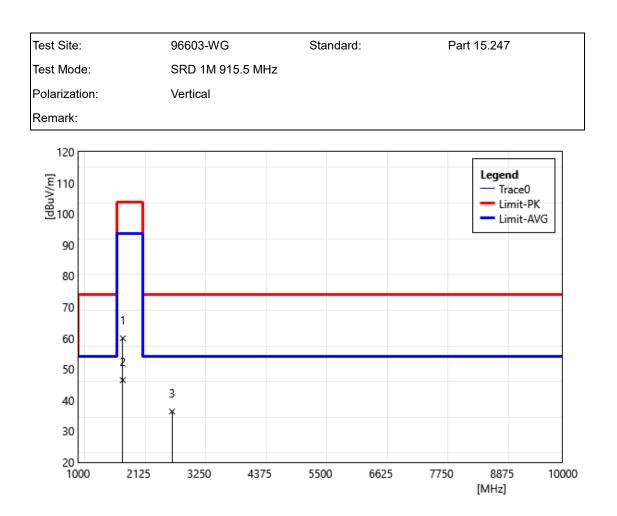

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	38.73	47.20	-12.23	34.97	40.00	-5.03	QP
2	167.74	51.82	-12.30	39.52	43.50	-3.98	QP
3	225.94	55.38	-15.25	40.13	46.00	-5.87	QP
4	333.61	50.88	-10.62	40.26	46.00	-5.74	QP
5	531.49	46.05	-6.57	39.48	46.00	-6.52	QP
6	998.06	40.13	0.22	40.35	54.00	-13.65	QP

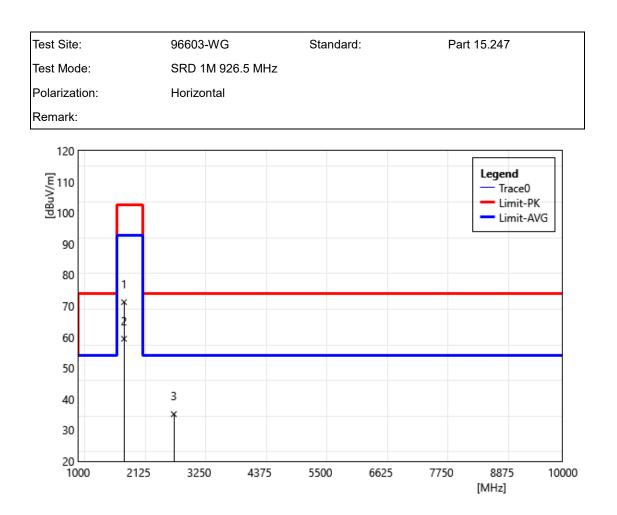
ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	38.73	42.84	-12.23	30.61	40.00	-9.39	QP
2	165.80	46.29	-12.26	34.03	43.50	-9.47	QP
3	333.61	46.88	-10.62	36.26	46.00	-9.74	QP
4	517.91	44.12	-6.82	37.30	46.00	-8.70	QP
5	532.46	48.07	-6.55	41.52	46.00	-4.48	QP
6	996.12	40.59	0.18	40.77	54.00	-13.23	QP

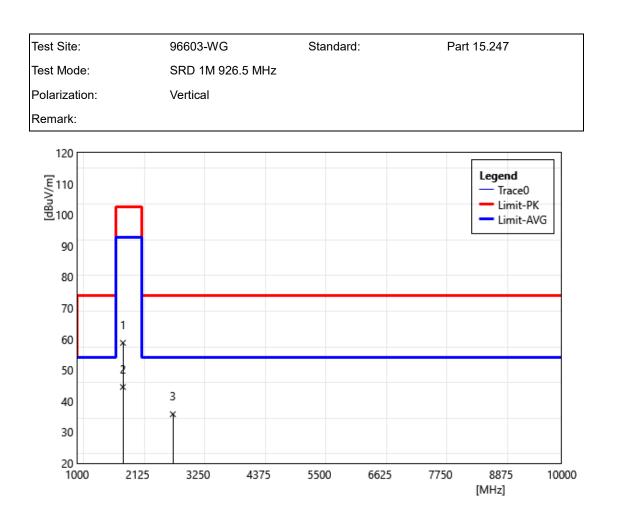


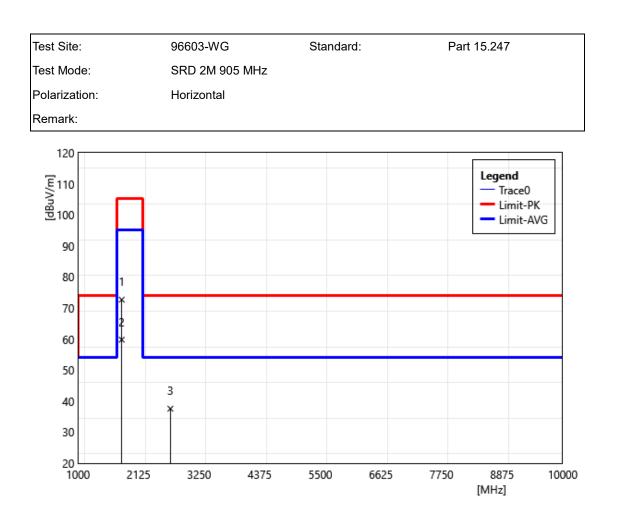
Harmonic

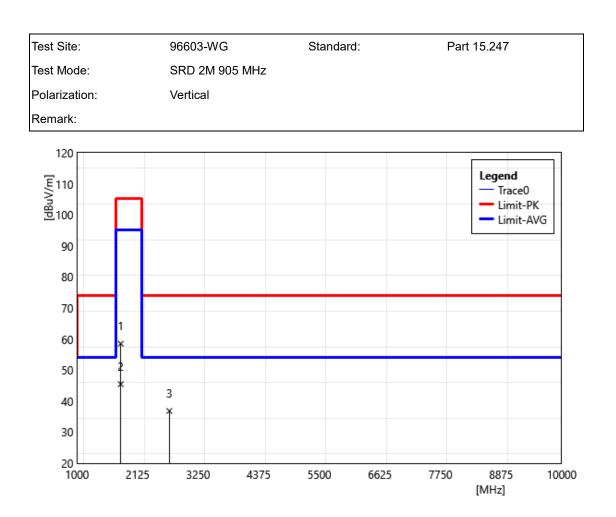

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1807.00	80.69	-6.97	73.68	105.43	-31.71	PEAK
2	1807.00	69.93	-6.97	62.92	95.43	-32.47	AVG
3	2710.50	39.20	-3.85	35.35	74.00	-38.65	PEAK

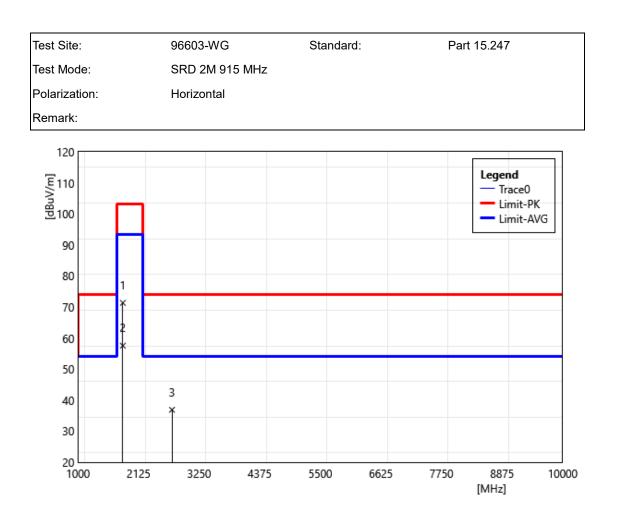

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1807.00	61.19	-6.97	54.22	105.43	-51.21	PEAK
2	1807.00	54.25	-6.97	47.28	95.43	-48.15	AVG
3	2710.50	40.20	-3.85	36.35	74.00	-47.65	PEAK

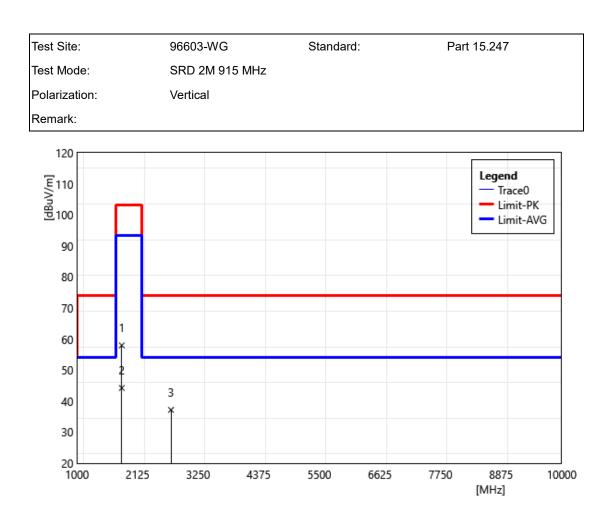

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1831.00	77.53	-6.72	70.81	103.64	-32.83	PEAK
2	1831.00	67.58	-6.72	60.86	93.64	-32.78	AVG
3	2746.50	37.34	-3.78	33.56	74.00	-40.44	PEAK

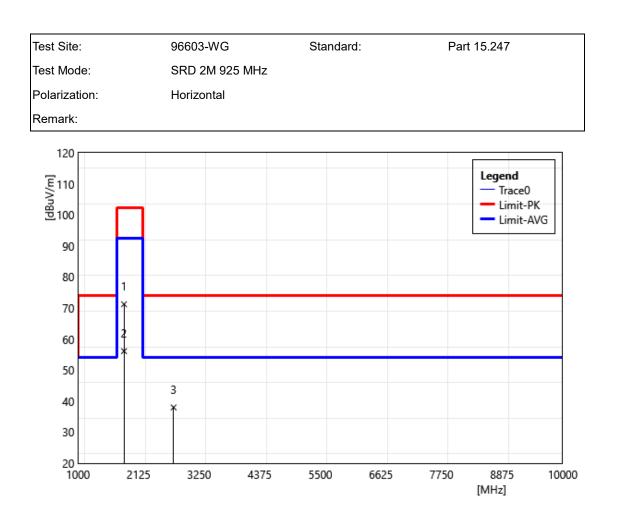

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1831.00	66.67	-6.72	59.95	103.64	-43.71	PEAK
2	1831.00	53.19	-6.72	46.47	93.64	-47.13	AVG
3	2746.50	40.13	-3.78	36.35	74.00	-37.65	PEAK

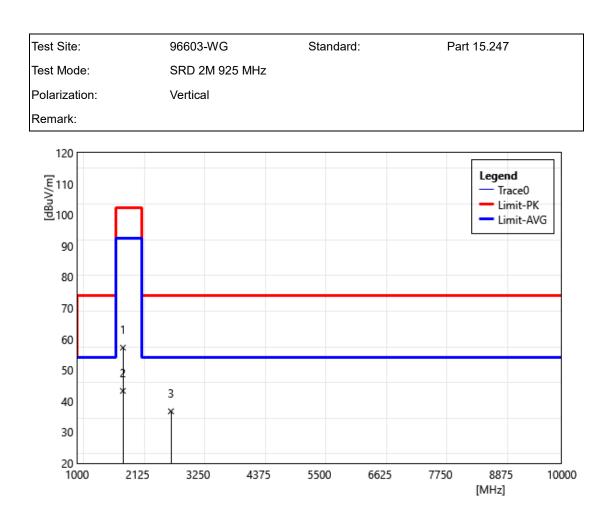

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1853.00	77.81	-6.54	71.27	102.70	-31.44	PEAK
2	1853.00	66.00	-6.54	59.46	92.70	-33.25	AVG
3	2779.50	38.88	-3.70	35.18	54.00	-18.82	AVG

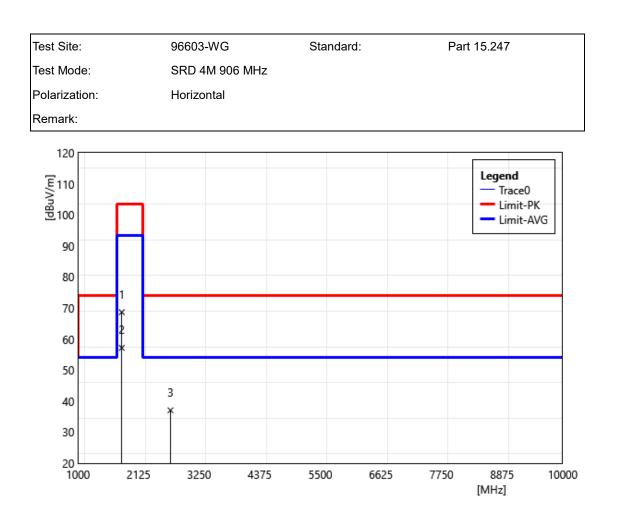

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1853.00	65.33	-6.55	58.78	102.70	-43.91	PEAK
2	1853.00	51.11	-6.55	44.56	92.70	-48.14	AVG
3	2779.50	39.51	-3.70	35.81	74.00	-38.19	PEAK

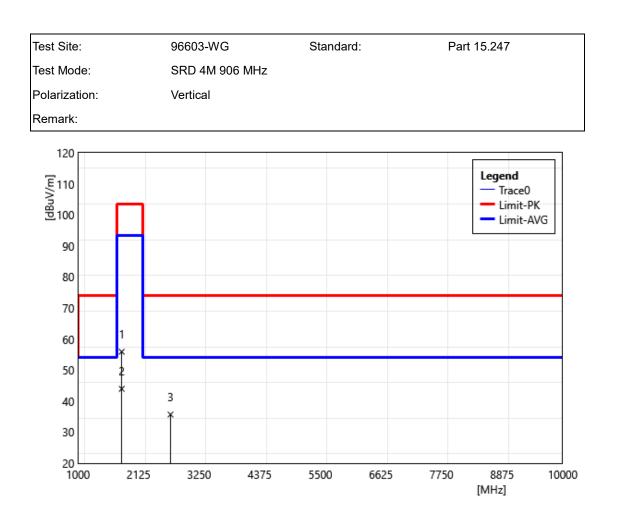

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1810.00	79.63	-6.93	72.70	105.21	-32.51	PEAK
2	1810.00	66.73	-6.93	59.80	95.21	-35.41	AVG
3	2715.00	41.42	-3.84	37.58	74.00	-36.42	PEAK

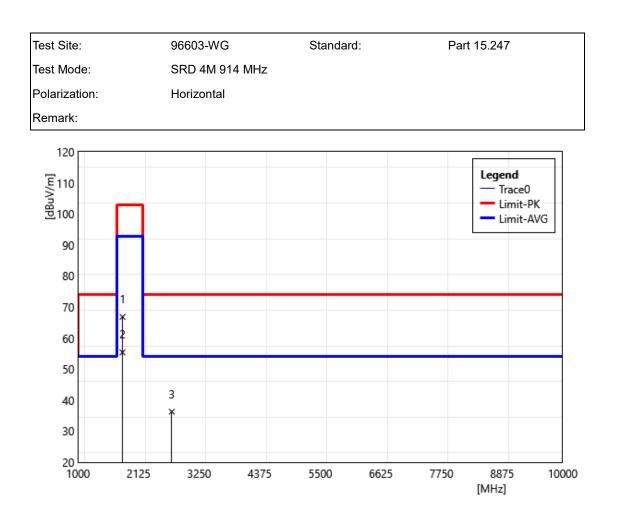

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1810.00	65.46	-6.93	58.53	105.21	-46.68	PEAK
2	1810.00	52.44	-6.95	45.49	95.21	-49.72	AVG
3	2715.00	40.68	-3.84	36.84	74.00	-37.16	PEAK

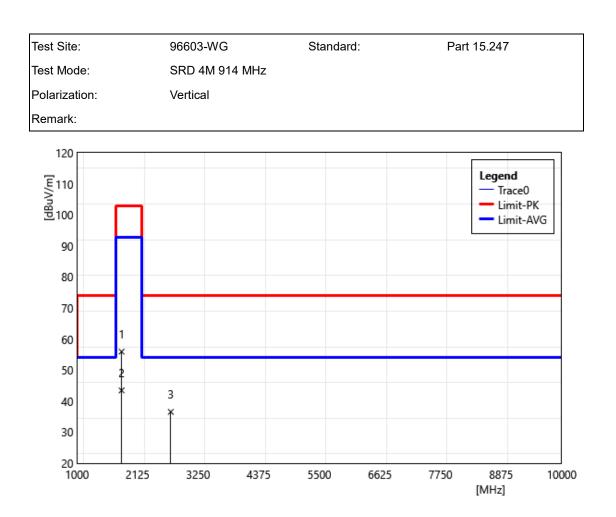

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1830.00	78.08	-6.73	71.36	103.33	-31.98	PEAK
2	1830.00	64.28	-6.73	57.56	93.33	-35.78	AVG
3	2745.00	40.68	-3.78	36.90	74.00	-37.10	PEAK

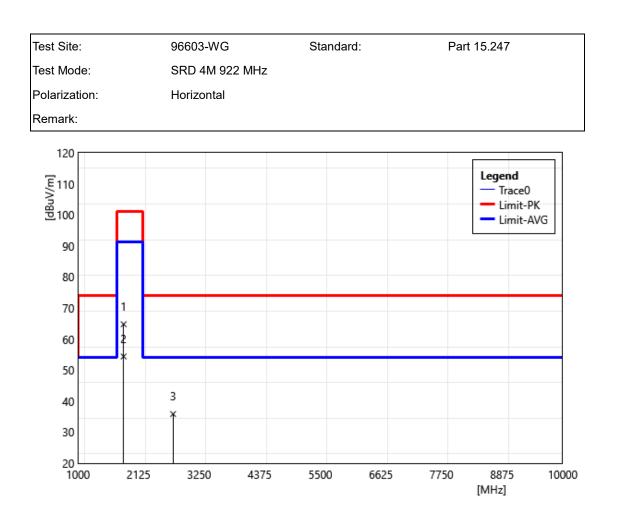

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1830.00	64.70	-6.73	57.97	103.33	-45.35	PEAK
2	1830.00	50.99	-6.73	44.26	93.33	-49.07	AVG
3	2745.00	40.98	-3.78	37.20	74.00	-36.80	PEAK

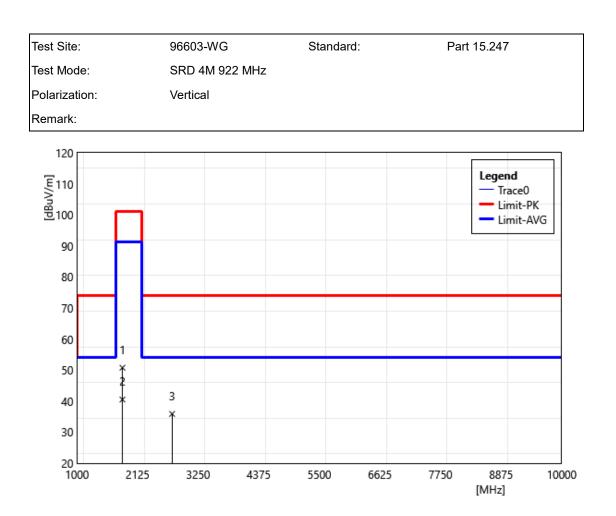

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1850.00	77.77	-6.55	71.23	102.33	-31.11	PEAK
2	1850.00	62.66	-6.55	56.12	92.33	-36.22	AVG
3	2775.00	41.71	-3.71	38.00	74.00	-36.00	PEAK

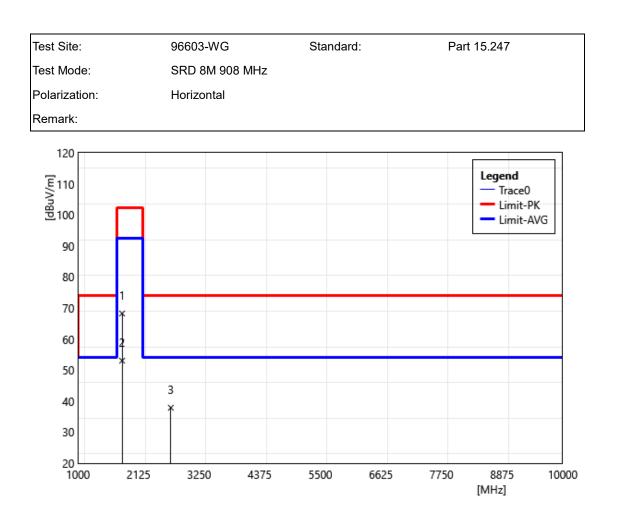

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1850.00	63.81	-6.55	57.26	102.33	-45.07	PEAK
2	1850.00	49.86	-6.55	43.31	92.33	-49.02	AVG
3	2775.00	40.52	-3.71	36.71	74.00	-37.29	PEAK

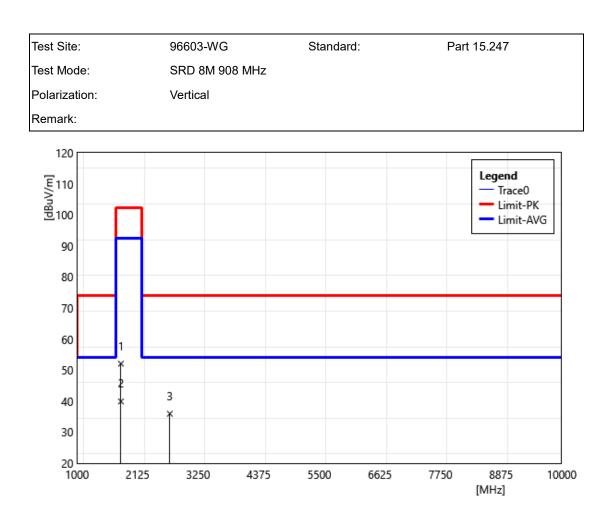

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1812.00	75.60	-6.93	68.67	103.45	-34.78	PEAK
2	1812.00	64.11	-6.93	57.18	93.45	-36.27	AVG
3	2718.00	40.90	-3.83	37.07	74.00	-36.93	PEAK

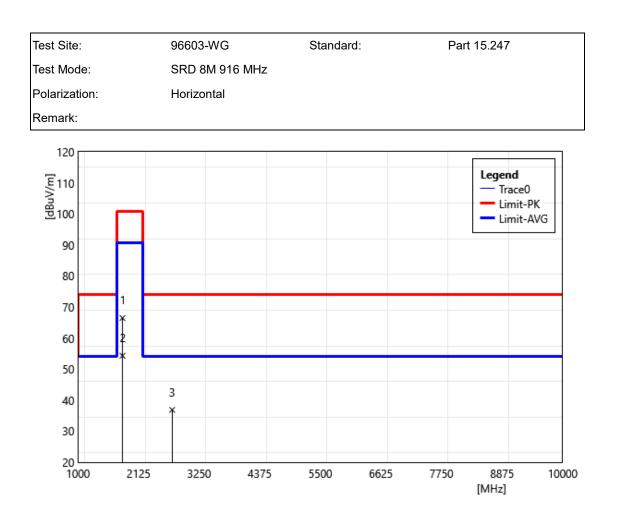

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1812.00	62.86	-6.93	55.93	103.45	-47.52	PEAK
2	1812.00	50.89	-6.93	43.96	93.45	-49.49	AVG
3	2718.00	39.53	-3.83	35.70	74.00	-38.30	PEAK

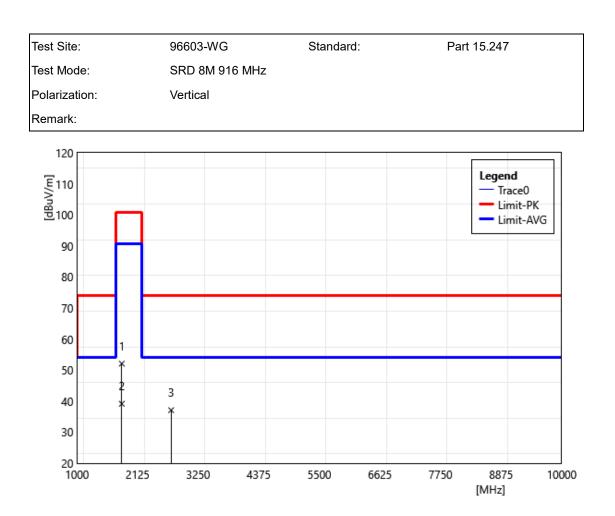

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1828.00	73.63	-6.80	66.83	102.87	-36.04	PEAK
2	1828.00	62.19	-6.80	55.39	92.87	-37.48	AVG
3	2742.00	40.09	-3.79	36.30	74.00	-37.70	PEAK


ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1828.00	62.74	-6.8	55.94	102.87	-46.93	PEAK
2	1828.00	50.25	-6.8	43.45	92.87	-49.42	AVG
3	2742.00	40.35	-3.79	36.56	74.00	-37.44	PEAK


ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1844.00	71.38	-6.59	64.79	101.21	-36.42	PEAK
2	1844.00	60.99	-6.59	54.40	91.21	-36.81	AVG
3	2766.00	39.61	-3.73	35.88	74.00	-38.12	PEAK


ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1844.00	57.39	-6.59	50.8	101.21	-50.41	PEAK
2	1844.00	47.14	-6.59	40.55	91.21	-50.66	AVG
3	2766.00	39.63	-3.73	35.90	74.00	-38.10	PEAK


ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1816.00	75.10	-6.90	68.2	102.41	-34.21	PEAK
2	1816.00	59.90	-6.90	53.0	92.41	-39.41	AVG
3	2724.00	41.72	-3.82	37.90	74.00	-36.10	PEAK


ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1816.00	59.00	-6.90	52.10	102.41	-50.31	PEAK
2	1816.00	46.82	-6.90	39.92	92.41	-52.49	AVG
3	2724.00	39.77	-3.82	35.95	74.00	-38.05	PEAK

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1832.00	73.26	-6.73	66.46	100.80	-34.27	PEAK
2	1832.00	61.03	-6.73	54.30	90.80	-36.5	AVG
3	2748.00	40.65	-3.77	36.88	74.00	-37.12	PEAK

ID	Frequency MHz	Reading dBuV	Correct Factor dB/m	Result dBuV/m	Limit dBuV/m	Margin dB	Remark
1	1832.00	58.82	-6.73	52.09	100.80	-48.71	PEAK
2	1832.00	45.90	-6.73	39.17	90.80	-51.63	AVG
3	2748.00	40.87	-3.77	37.10	74.00	-36.90	PEAK

---END----