FCC SAR TEST REPORT

FCC ID	$:$ 2ADVHWF20A
Equipment	$:$ Dino-Lite CONNECT
Brand Name	$:$ AnMo, Dino-Lite
Model Name	$:$ WF-20
Applicant	$:$ AnMo Electronics Corporation
	5F-1, No.76, Sec.2, Tung-Da Road, Hsinchu 300, Taiwan
Manufacturer	$:$ AnMo Electronics Corporation
	17F, No.97, Sec.4, ChongHsin Rd., Sanchong Dist., New
	Taipei City 24161, Taiwan
Standard	$:$ FCC 47 CFR Part 2 (2.1093)
	ANSI/IEEE C95.1-1992
	IEEE 1528-2013

The product was received on Oct. 19, 2018 and testing was started from Oct. 21, 2018 and completed on Oct. 21, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERTIONAL INC. EMC \& Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Cona Huang / Deputy Manager

SPORTON INTERNATIONAL INC. EMC \& Wireless Communications Laboratory
No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

1. Statement of Compliance 4
2. Guidance Applied 4
3. Equipment Under Test (EUT) Information 4
3.1 General Information 4
4. RF Exposure Limits 5
4.1 Uncontrolled Environment 5
4.2 Controlled Environment 5
5. Specific Absorption Rate (SAR) 6
5.1 Introduction 6
5.2 SAR Definition 6
6. System Description and Setup 7
6.1 E-Field Probe 8
6.2 Data Acquisition Electronics (DAE) 8
6.3 Phantom 9
6.4 Device Holder 10
7. Measurement Procedures 11
7.1 Spatial Peak SAR Evaluation 11
7.2 Power Reference Measurement 12
7.3 Area Scan 12
7.4 Zoom Scan 13
7.5 Volume Scan Procedures 13
7.6 Power Drift Monitoring 13
8. Test Equipment List 14
9. System Verification 15
9.1 Tissue Simulating Liquids 15
9.2 Tissue Verification 16
9.3 System Performance Check Results 17
10. Conducted RF Output Power (Unit: dBm) 18
11. Antenna Location 19
12. SAR Test Results 20
12.1 Hand SAR 20
13. Uncertainty Assessment 21
14. References 21
Appendix A. Plots of System Performance Check
Appendix B. Plots of High SAR MeasurementAppendix C. DASY Calibration Certificate
Appendix D. Test Setup Photos

History of this test report

Report No.	Version	Description	Issued Date
FA860505-01	01	Initial issue of report	Oct. 26, 2018

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for AnMo Electronics Corporation, Dino-Lite CONNECT, WF-20, are as follows.

EquipmentClass	Frequency Band	Highest SAR Summary
		Hand (Separation 0mm)
		10 gAR (W/kg)
DTS	2.4GHz WLAN	1.586
Date of Testing:		2018/10/21

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (4.0 W/kg for Hand 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

Reviewed by: Jason Wang Report Producer: Daisy Peng

2. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02

3. Equipment Under Test (EUT) Information

3.1 General Information

Product Feature \& Specification	
Equipment Name	Dino-Lite CONNECT
Brand Name	AnMo, Dino-Lite
Model Name	WF-20
FCC ID	2ADVHWF20A
Wireless Technology and	WLAN 2.4 GHz Band: $2412 \mathrm{MHz} \sim 2462 \mathrm{MHz}$
Frequency Range	WLAN $2.4 \mathrm{GHz}: 802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n} \mathrm{HT20/HT40}$
Mode	Production Unit
EUT Stage	

4. RF Exposure Limits

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

5. Specific Absorption Rate (SAR)

5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$
S A R=\frac{d}{d t}\left(\frac{d W}{d m}\right)=\frac{d}{d t}\left(\frac{d W}{\rho d v}\right)
$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$
\mathrm{SAR}=\frac{\sigma|\mathrm{E}|^{2}}{\rho}
$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

6. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
■ The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG).The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.
<ES3DV3 Probe>

Construction	Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	$10 \mathrm{MHz}-4 \mathrm{GHz} ;$ Linearity: $\pm 0.2 \mathrm{~dB}(30 \mathrm{MHz}-4 \mathrm{GHz})$ Directivity $\pm 0.2 \mathrm{~dB}$ in TSL (rotation around probe axis) $\pm 0.3 \mathrm{~dB}$ in TSL (rotation normal to probe axis)
Dynamic Range	$5 \mu \mathrm{~W} / \mathrm{g}->100 \mathrm{~mW} / \mathrm{g} ;$ Linearity: $\pm 0.2 \mathrm{~dB}$
Dimensions	Overall length: 337 mm (tip: 20 mm$)$ Tip diameter: 3.9 mm (body: 12 mm) Distance from probe tip to dipole centers: 3.0 mm

<EX3DV4 Probe>

| Construction | Symmetric design with triangular core
 Built-in shielding against static charges
 PEEK enclosure material (resistant to organic
 solvents, e.g., DGBE) |
| :--- | :--- | :--- |
| Frequency | $10 \mathrm{MHz}->6 \mathrm{GHz}$
 Linearity: $\pm 0.2 \mathrm{~dB}(30 \mathrm{MHz}-6 \mathrm{GHz}$)
 Directivity

 $\pm 0.3 \mathrm{~dB}$ in TSL (rotation around probe axis)
 $\pm 0.5 \mathrm{~dB}$ in TSL (rotation normal to probe axis) |
| Dynamic Range | $10 \mu \mathrm{~W} / \mathrm{g}->100 \mathrm{~mW} / \mathrm{g}$ |
| Linearity: $\pm 0.2 \mathrm{~dB}$ (noise: typically <1 $\mu \mathrm{W} / \mathrm{g}$) | |
| Dimensions | Overall length: 337 mm (tip: 20 mm)
 Tip diameter: 2.5 mm (body: 12 mm)
 Typical distance from probe tip to dipole centers: 1
 mm |

6.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.
The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB .

Fig 5.1 Photo of DAE

6.3 Phantom

<SAM Twin Phantom>

Shell Thickness	$2 \pm 0.2 \mathrm{~mm}$; Center ear point: $6 \pm 0.2 \mathrm{~mm}$
Filling Volume	Approx. 25 liters
Dimensions	Length: 1000 mm ; Width: 500 mm ; Height: adjustable feet
Measurement Areas	Left Hand, Right Hand, Flat Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.
<ELI Phantom>

Shell Thickness	$2 \pm 0.2 \mathrm{~mm}$ (sagging: $<1 \%$)
Filling Volume	Approx. 30 liters
Dimensions	Major ellipse axis: 600 mm \quad

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz . ELI4 is fully compatible with standard and all known tissue simulating liquids.

6.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm .

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

7. Measurement Procedures

The measurement procedures are as follows:
<Conducted power measurement>
(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
(b) Read the WWAN RF power level from the base station simulator.
(c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
(d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

(a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
(b) Place the EUT in the positions as Appendix D demonstrates.
(c) Set scan area, grid size and other setting on the DASY software
(d) Measure SAR results for the highest power channel on each testing position.
(e) Find out the largest SAR result on these testing positions of each band
(f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than $0.8 \mathrm{~W} / \mathrm{kg}$

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:
(a) Power reference measurement
(b) Area scan
(c) Zoom scan
(d) Power drift measurement

7.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1 g and 10 g , as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1 g and 10 g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:
(a) Extraction of the measured data (grid and values) from the Zoom Scan
(b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
(c) Generation of a high-resolution mesh within the measured volume
(d) Interpolation of all measured values form the measurement grid to the high-resolution grid
(e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
(f) Calculation of the averaged SAR within masses of 1 g and 10 g

7.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

7.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz .

	$\leq 3 \mathrm{GHz}$	$>3 \mathrm{GHz}$		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \mathrm{~mm}$	$1 / 2 \cdot \delta \cdot \ln (2) \pm 0.5 \mathrm{~mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$		
Maximum area scan spatial resolution: $\Delta \mathrm{x}_{\text {Area }}, \Delta \mathrm{y}_{\text {Area }}$			\quad	$\leq 2 \mathrm{GHz}: \leq 15 \mathrm{~mm}$
:---				
$2-3 \mathrm{GHz}: \leq 12 \mathrm{~mm}$	\quad	$3-4 \mathrm{GHz}: \leq 12 \mathrm{~mm}$		
:---				
When the x or y dimension of the test device, in the				
measurement plane orientation, is smaller than the above,				
the measurement resolution must be \leq the corresponding				
x or y dimension of the test device with at least one				
measurement point on the test device.				

7.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz

			$\leq 3 \mathrm{GHz}$	$>3 \mathrm{GHz}$
Maximum zoom scan spatial resolution: $\Delta \mathrm{x}_{\text {zoom }}, \Delta \mathrm{y}_{\text {zoom }}$			$\begin{gathered} \leq 2 \mathrm{GHz}: \leq 8 \mathrm{~mm} \\ 2-3 \mathrm{GHz}: \leq 5 \mathrm{~mm}^{*} \end{gathered}$	$\begin{aligned} & 3-4 \mathrm{GHz}: \leq 5 \mathrm{~mm}^{*} \\ & 4-6 \mathrm{GHz}: \leq 4 \mathrm{~mm}^{*} \end{aligned}$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta \mathrm{z}_{\text {Zoom }}(\mathrm{n})$		$\leq 5 \mathrm{~mm}$	$\begin{aligned} & 3-4 \mathrm{GHz}: \leq 4 \mathrm{~mm} \\ & 4-5 \mathrm{GHz}: \leq 3 \mathrm{~mm} \\ & 5-6 \mathrm{GHz}: \leq 2 \mathrm{~mm} \end{aligned}$
	graded grid	$\Delta z_{\text {Zoom }}(1)$: between $1^{\text {st }}$ two points closest to phantom surface	$\leq 4 \mathrm{~mm}$	$\begin{gathered} 3-4 \mathrm{GHz}: \leq 3 \mathrm{~mm} \\ 4-5 \mathrm{GHz}: \leq 2.5 \mathrm{~mm} \\ 5-6 \mathrm{GHz}: \leq 2 \mathrm{~mm} \end{gathered}$
		$\Delta Z_{\text {Zoom }}(\mathrm{n}>1)$: between subsequent points	$\leq 1.5 \cdot \Delta \mathrm{z}_{\text {Zoom }}(\mathrm{n}-1)$	
Minimum zoom scan volume	$\mathrm{x}, \mathrm{y}, \mathrm{z}$		$\geq 30 \mathrm{~mm}$	$\begin{aligned} & 3-4 \mathrm{GHz}: \geq 28 \mathrm{~mm} \\ & 4-5 \mathrm{GHz}: \geq 25 \mathrm{~mm} \\ & 5-6 \mathrm{GHz}: \geq 22 \mathrm{~mm} \end{aligned}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \mathrm{~W} / \mathrm{kg}, \leq 8 \mathrm{~mm}, \leq 7 \mathrm{~mm}$ and $\leq 5 \mathrm{~mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to $3 \mathrm{GHz}, 3 \mathrm{GHz}$ to 4 GHz and 4 GHz to 6 GHz .

7.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1 g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

7.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

8. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration	
				Last Cal.	Due Date
SPEAG	2450MHz System Validation Kit	D2450V2	929	Mar. 01, 2018	Feb. 28, 2019
SPEAG	Data Acquisition Electronics	DAE3	577	Sep. 19, 2018	Sep. 18, 2019
SPEAG	Dosimetric E-Field Probe	EX3DV4	7346	Feb. 28, 2018	Feb. 27, 2019
RCPTWN	Thermometer	HTC-1	TM560-1	Mar. 16, 2018	Mar. 15, 2019
SPEAG	Device Holder	N/A	N/A	N/A	N/A
R\&S	Signal Generator	SMA100A	101091	Jul. 09, 2018	Jul. 08, 2019
Agilent	ENA Network Analyzer	E5071C	MY46104758	Sep. 19, 2018	Sep. 18, 2019
SPEAG	Dielectric Probe Kit	DAK-3.5	1146	Jul. 24, 2018	Jul. 23, 2019
LINE SEIKI	Digital Thermometer	DTM3000-spezial	2942	Dec. 08, 2017	Dec. 07, 2018
Anritsu	Power Meter	ML2495A	1240001	Sep. 13, 2018	Sep. 12, 2019
Anritsu	Power Sensor	MA2411B	1207349	Sep. 13, 2018	Sep. 12, 2019
Anritsu	Spectrum Analyzer	MS2830A	6201396378	Jun. 23, 2018	Jun. 22, 2019
Mini-Circuits	Power Amplifier	ZVE-8G+	070501814	Oct. 08, 2018	Oct. 07, 2019
Mini-Circuits	Power Amplifier	ZVE-8G+	6382	Aug. 09, 2018	Aug. 08, 2019
ATM	Dual Directional Coupler	C122H-10	P610410z-02	Note 1	
Woken	Attenuator 1	WK0602-XX	N/A	Note 1	
PE	Attenuator 2	PE7005-10	N/A	Note 1	
PE	Attenuator 3	PE7005-3	N/A	Note 1	

General Note:

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

9. System Verification

9.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm , which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm , which is shown in Fig. 10.2.

Fig 10.1Photo of Liquid Height for Head SAR

Fig 10.2 Photo of Liquid Height for Body SAR

9.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	Water (\%)	Sugar (\%)	Cellulose (\%)	Salt (\%)	Preventol (\%)	$\begin{gathered} \text { DGBE } \\ (\%) \\ \hline \end{gathered}$	Conductivity (σ)	$\begin{gathered} \text { Permittivity } \\ (\varepsilon r) \end{gathered}$
For Head								
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
For Body								
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	68.1	0	0	0.1	0	31.8	2.16	52.5

Simulating Liquid for 5 GHz , Manufactured by SPEAG

Ingredients	(\% by weight)
Water	$64 \sim 78 \%$
Mineral oil	$11 \sim 18 \%$
Emulsifiers	$9 \sim 15 \%$
Additives and Salt	$2 \sim 3 \%$

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Conductivity (σ)	Permittivity $\left(\varepsilon_{r}\right)$	Conductivity Target (σ)	Permittivity Target $\left(\varepsilon_{r}\right)$	Delta (σ) $(\%)$	Delta $\left(\varepsilon_{r}\right)$ $(\%)$	Limit (\%)	Date
2450	MSL	22.3	1.996	52.817	1.95	52.70	2.36	0.22	± 5	$2018 / 10 / 21$

9.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. Below table shows the target SAR and measured SAR after normalized to 1 W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	$\begin{aligned} & \text { DAE } \\ & \text { S/N } \end{aligned}$	Measured 10 g SAR (W/kg)	$\begin{array}{\|c} \hline \text { Targeted } \\ \hline 10 \mathrm{~g} \text { SAR } \\ (\mathrm{W} / \mathrm{kg}) \\ \hline \end{array}$	$\begin{gathered} \text { Normalized } \\ 10 \mathrm{~g} \text { SAR } \\ (\mathrm{W} / \mathrm{kg}) \\ \hline \end{gathered}$	Deviation (\%)
2018/10/21	2450	MSL	250	D2450V2-929	EX3DV4 - SN7346	DAE3 Sn577	5.71	24.40	22.84	-6.39

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

10. Conducted RF Output Power (Unit: dBm)

<WLAN Conducted Power>

General Note:

1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.
2. For 2.4 GHz 802.11 b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order $802.11 \mathrm{a} / \mathrm{g} / \mathrm{n} / \mathrm{ac}$ mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. 18 The initial test position procedure is described in the following:
a. When the reported SAR of the initial test position is $\leq 0.4 \mathrm{~W} / \mathrm{kg}$, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
b. When the reported SAR of the test position is $>0.4 \mathrm{~W} / \mathrm{kg}$, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is $\leq 0.8 \mathrm{~W} / \mathrm{kg}$ or all required test position are tested.
c. For all positions/configurations, when the reported SAR is $>0.8 \mathrm{~W} / \mathrm{kg}$, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is $\leq 1.2 \mathrm{~W} / \mathrm{kg}$ or all required channels are tested.
$\leq 2.4 \mathrm{GHz}$ WLAN $>$

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle \%
2.4GHz WLAN	802.11b 1Mbps	1	2412	20.67	21.00	100.00
		6	2437	14.73	15.00	
		11	2462	15.36	15.50	
	802.11g 6Mbps	1	2412	16.92	17.00	100.00
		6	2437	16.87	17.00	
		11	2462	17.55	18.00	
	$\begin{gathered} 802.11 \mathrm{n}-\mathrm{HT} 20 \\ \text { MCSO } \end{gathered}$	1	2412	15.85	16.00	100.00
		6	2437	17.61	18.00	
		11	2462	16.11	17.00	
	$\begin{gathered} 802.11 \mathrm{n}-\mathrm{HT} 40 \\ \text { MCS0 } \end{gathered}$	3	2422	12.45	13.00	100.00
		6	2437	17.16	18.00	
		9	2452	13.93	14.00	

11. Antenna Location

12. SAR Test Results

General Note:

1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
a. Tune-up scaling Factor $=$ tune-up limit power $(\mathrm{mW}) / E U T$ RF power (mW), where tune-up limit is the maximum rated power among all production units.
b. For SAR testing of WLAN signal with non- 100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
c. For WLAN: Reported $\operatorname{SAR}(\mathrm{W} / \mathrm{kg})=$ Measured $\operatorname{SAR}(\mathrm{W} / \mathrm{kg})^{*}$ Duty Cycle scaling factor * Tune-up scaling factor
2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported $1-\mathrm{g}$ or $10-\mathrm{g}$ SAR for the mid-band or highest output power channel is:

- $\leq 0.8 \mathrm{~W} / \mathrm{kg}$ or $2.0 \mathrm{~W} / \mathrm{kg}$, for $1-\mathrm{g}$ or $10-\mathrm{g}$ respectively, when the transmission band is $\leq 100 \mathrm{MHz}$
- $\leq 0.6 \mathrm{~W} / \mathrm{kg}$ or $1.5 \mathrm{~W} / \mathrm{kg}$, for $1-\mathrm{g}$ or $10-\mathrm{g}$ respectively, when the transmission band is between 100 MHz and 200 MHz
- $\leq 0.4 \mathrm{~W} / \mathrm{kg}$ or $1.0 \mathrm{~W} / \mathrm{kg}$, for $1-\mathrm{g}$ or $10-\mathrm{g}$ respectively, when the transmission band is $\geq 200 \mathrm{MHz}$

3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is $\geq 0.8 \mathrm{~W} / \mathrm{kg}$.

WLAN Note:

1. Per KDB 248227 D01v02r02, for $2.4 \mathrm{GHz} 802.11 \mathrm{~g} / \mathrm{n}$ SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \mathrm{~W} / \mathrm{kg}$.
2. When the reported SAR of the test position is $>0.4 \mathrm{~W} / \mathrm{kg}$, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is $\leq 0.8 \mathrm{~W} / \mathrm{kg}$ or all required test position are tested.
3. For all positions / configurations, when the reported $S A R$ is $>0.8 \mathrm{~W} / \mathrm{kg}, \mathrm{SAR}$ is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is $\leq 1.2 \mathrm{~W} / \mathrm{kg}$ or all required channels are tested.
4. During SAR testing the WLAN transmission was verified using a spectrum analyzer.

12.1 Hand SAR

<WLAN SAR>

Plot No.	Band	Mode	Test Position	$\begin{gathered} \text { Gap } \\ (\mathrm{mm}) \end{gathered}$	Ch.	Freq. (MHz)	Power Setting	Average Power (dBm)	$\begin{array}{\|c} \text { Tune-Up } \\ \text { Limit } \\ (\mathrm{dBm}) \end{array}$	Tune-up Scaling Factor	Duty Cycle \%	Duty Cycle Scaling Factor	$\begin{gathered} \text { Measured } \\ 10 \mathrm{~g} \text { SAR } \\ (\mathrm{W} / \mathrm{kg}) \end{gathered}$	$\begin{array}{\|c\|} \text { Reported } \\ 10 \mathrm{~g} \text { SAR } \\ (\mathrm{W} / \mathrm{kg}) \end{array}$
	WLAN2.4GHz	802.11b 1Mbps	Front	0mm	1	2412	22	20.67	21.00	1.079	100	1.000	0.300	0.324
	WLAN2.4GHz	802	Back	0mm	1	2412	22	20.67	21.00	1.079	100	1.000	0.400	0.432
01	WLAN2.4GHz	802.11b 1 Mbps	Left Side	0mm	1	2412	22	20.67	21.00	1.079	100	1.000	1.470	1.586
	WLAN2.4GHz	802.11b 1 Mbps	Left Side	0mm	6	2437	16	14.73	15.00	1.064	100	1.000	0.404	0.430
	WLAN2.4GHz	802.11b 1Mbps	Left Side	0mm	11	2462	16	15.36	15.50	1.033	100	1.000	0.442	0.456
	WLAN2.4GHz	802.11b 1 Mbps	Right Side	Omm	1	2412	22	20.67	21.00	1.079	100	1.000	0.329	0.355

Test Engineer : Kurt Liu

13. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz , when the highest measured $1-\mathrm{g}$ SAR within a frequency band is $<1.5 \mathrm{~W} / \mathrm{kg}$ and the measured $10-\mathrm{g}$ SAR within a frequency band is $<3.75 \mathrm{~W} / \mathrm{kg}$. The expanded SAR measurement uncertainty must be $\leq 30 \%$, for a confidence interval of $k=2$. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured highest measured $10-\mathrm{g}$ SAR is less $3.75 \mathrm{~W} / \mathrm{kg}$. Therefore, the measurement uncertainty table is not required in this report.

14. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
[2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
[3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
[4] SPEAG DASY System Handbook
[5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
[6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
[7] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz ", Aug 2015.
[8] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

