

FCC Radio Test Report

FCC ID: 2ADUTLGPAU0F

This report concerns: Original Grant

Project No.	:	2401C089
Equipment	:	AXE3000 WIFI 6E USB ADAPTER WITH DUAL ANTENNAS
Brand Name	:	Panda Wireless
Test Model	:	PAU0F
Series Model	:	IGU0F
Applicant	:	Panda Wireless, Inc.
Address	:	15559 Union Ave., Suite 300, Los Gatos , CA95032, USA
Manufacturer	:	Panda Wireless, Inc.
Address	:	15559 Union Ave., Suite 300, Los Gatos , CA95032, USA
Factory	:	Panda Wireless, Inc.
Address	:	15559 Union Ave., Suite 300, Los Gatos , CA95032, USA
Date of Receipt	:	Jan. 08, 2024
Date of Test	:	Jan. 10, 2024 ~ Mar. 07, 2024
Issued Date	:	May 06, 2024
Report Version	:	R01
Test Sample	:	Engineering Sample No.: SSL20240108195 for conducted,
		SSL20240108194 for AC power line conducted emissions and radiated
		emissions.
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart E

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by : Antony Liang Antony Liang Approved by : Welly Zhou

Room 108, Building 2, No. 1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong 523000 China

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1 . APPLICABLE STANDARDS	7
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
2.3 TEST ENVIRONMENT CONDITIONS	9
3 . GENERAL INFORMATION	10
3.1 GENERAL DESCRIPTION OF EUT	10
3.2 TEST MODES	14
3.3 PARAMETERS OF TEST SOFTWARE	17
3.4 DUTY CYCLE	19
3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	20
3.6 SUPPORT UNITS	20
3.7 CUSTOMER INFORMATION DESCRIPTION	20
4 . AC POWER LINE CONDUCTED EMISSIONS	21
4.1 LIMIT	21
4.2 TEST PROCEDURE	21
4.3 DEVIATION FROM TEST STANDARD	21
4.4 TEST SETUP	22
4.5 EUT OPERATION CONDITIONS	22
4.6 TEST RESULTS	22
5 . RADIATED EMISSIONS	23
5.1 LIMIT	23
5.2 TEST PROCEDURE	24
5.3 DEVIATION FROM TEST STANDARD	25
5.4 TEST SETUP	25
5.5 EUT OPERATION CONDITIONS	27
5.6 TEST RESULTS - 9 KHZ TO 30 MHZ	27
5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	27
5.8 TEST RESULTS - ABOVE 1000 MHZ	27
6 . BANDWIDTH	28
6.1 LIMIT	28
6.2 TEST PROCEDURE	28

Table of Contents	Page
6.3 DEVIATION FROM STANDARD	28
6.4 TEST SETUP	28
6.5 EUT OPERATION CONDITIONS	28
6.6 TEST RESULTS	28
7 . MAXIMUM E.I.R.P.	29
7.1 LIMIT	29
7.2 TEST PROCEDURE	29
7.3 DEVIATION FROM STANDARD	29
7.4 TEST SETUP	30
7.5 EUT OPERATION CONDITIONS	30
7.6 TEST RESULTS	30
8 . MAXIMUM POWER SPECTRAL DENSITY (E.I.R.P.)	31
8.1 LIMIT	31
8.2 TEST PROCEDURE	31
8.3 DEVIATION FROM STANDARD	31
8.4 TEST SETUP	32
8.5 EUT OPERATION CONDITIONS	32
8.6 TEST RESULTS	32
9 . IN-BAND EMISSION (MASK)	33
9.1 LIMIT	33
9.2 TEST PROCEDURE	34
9.3 DEVIATION FROM STANDARD	34
9.4 TEST SETUP	34
9.5 EUT OPERATION CONDITIONS	34
9.6 TEST RESULTS	34
10 . CONTENTION BASED PROTOCOL	35
10.1 LIMIT	35
10.2 TEST PROCEDURE	35
10.3 DEVIATION FROM STANDARD	36
10.4 TEST SETUP	36
10.5 EUT OPERATION CONDITIONS	36
10.6 TEST RESULTS	36
11 . FREQUENCY STABILITY	37
11.1 LIMIT	37

Table of Contents	Page
11.2 TEST PROCEDURE	37
11.3 DEVIATION FROM STANDARD	37
11.4 TEST SETUP	37
11.5 EUT OPERATION CONDITIONS	37
11.6 TEST RESULTS	37
12 . MEASUREMENT INSTRUMENTS LIST	38
13 . EUT TEST PHOTOS	41
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	48
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	51
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	56
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	59
APPENDIX E - BANDWIDTH	162
APPENDIX F - MAXIMUM E.I.R.P.	185
APPENDIX G - MAXIMUM POWER SPECTRAL DENSITY (E.I.R.P.)	208
APPENDIX H - IN-BAND EMISSION (MASK)	253
APPENDIX I - CONTENTION BASED PROTOCOL	265
APPENDIX J - FREQUENCY STABILITY	288

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-4-2401C089	R00	Original Report.	Apr. 08, 2024	Invalid
BTL-FCCP-4-2401C089	R01	Modified the comments of TCB.	May 06, 2024	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of NVLAP: KDB 987594 D02 U-NII 6GHz EMC Measurement v02r01 KDB 789033 D02 General UNII Test Procedures New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart E				
Standard(s) Section	Test Item	Test Result	Judgment	Remark
15.207 15.407(b)	AC Power Line Conducted Emissions	APPENDIX A	PASS	
15.407(b) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS	
15.407(a)	Bandwidth	APPENDIX E	PASS	
15.407(a)	Maximum e.i.r.p.	APPENDIX F	PASS	
15.407(a)	Maximum Power Spectral Density (e.i.r.p.)	APPENDIX G	PASS	
15.407(b)	In-Band Emission (Mask)	APPENDIX H	PASS	
15.407(d)	Contention Based Protocol	APPENDIX I	PASS	
15.407(g)	Frequency Stability	APPENDIX J	PASS	
15.203	Antenna Requirements		PASS	NOTE (2)

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

(3) Device Type:

- Indoor access point
- Subordinate device (operating under control of a low-power indoor access point)
- Indoor client (operating under control of a low-power indoor access point)
- Dual client (operating under control of either a low-power indoor access point or standard power access point)
- Standard power access point
- Standard client (operating under control of a Standard power access point)
- Fixed client (operating under control of a Standard power access point)

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong 523792.

- BTL's Registration Number for FCC: 162128
- BTL's Designation Number for FCC: CN5042

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.88

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB01	CISPR	9kHz ~ 30MHz	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	<i>U</i> ,(dB)
DG-CB03 (3m)		30MHz ~ 200MHz	V	4.40
	CISPR	30MHz ~ 200MHz	Н	3.62
		200MHz ~ 1,000MHz	V	4.58
		200MHz ~ 1,000MHz	Н	3.98

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB03		1GHz ~ 6GHz	4.08
(3m)	CISPR	6GHz ~ 18GHz	4.62

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB03	CISPR	18 ~ 26.5 GHz	3.36
(1m)	CISER	26.5 ~ 40 GHz	3.58

C. Other Measurement test:

Test Item	Uncertainty
Bandwidth	0.90 %
Maximum e.i.r.p.	1.3 dB
Maximum Power Spectral Density (e.i.r.p.)	1.4 dB
Frequency Stability	2.7 ppm
Temperature	0.8 °C
Humidity	2.2 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By	Tested Date
AC Power Line Conducted Emissions	23°C	48%	AC 120V/60Hz	Hayden Chen	Jan. 18, 2024
Radiated Emissions- 9kHz to 30MHz	22°C	5□%	DC 5V	Hayden Chen	Jan. 23, 2024
Radiated Emissions- 30MHz to 1000MHz	23°C	45%	DC 5V	Jensen Zhou	Feb. 01, 2024
Radiated Emissions- Above 1000 MHz	21-23°C	40-45%	DC 5V	Jensen Zhou	Jan. 31, 2024- Mar. 03, 2024
Bandwidth	19-23°C	46-56%	DC 5V	Terry Deng	Jan. 16, 2024- Mar. 01, 2024
Maximum e.i.r.p.	21-22°C	53-54%	DC 5V	Oliver Wang	Jan. 15, 2024- Mar. 05, 2024
Maximum Power Spectral Density (e.i.r.p.)	19-23°C	46-56%	DC 5V	Terry Deng	Jan. 16, 2024- Mar. 01, 2024
In-Band Emission (Mask)	19-23°C	46-56%	DC 5V	Terry Deng	Jan. 16, 2024- Mar. 01, 2024
Contention Based Protocol	17-22°C	48-53%	DC 5V	Terry Deng	Jan. 23, 2024
Frequency Stability	Normal & Extreme	46-56%	Normal & Extreme	Terry Deng	Jan. 16, 2024- Mar. 01, 2024

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	AXE3000 WIFI 6E USB ADAPTER WITH DUAL ANTENNAS
Brand Name	Panda Wireless
Test Model	PAU0F
Series Model	IGU0F
Model Difference(s)	Only the model name is different, the product is the same.
Software Version	V1.0
Hardware Version	V1.0
Power Source	Supplied from PC USB port.
Power Rating	DC 5V
Operation Frequency Band(s)	UNII-5: 5925 MHz ~ 6425 MHz UNII-6: 6425 MHz ~ 6525 MHz UNII-7: 6525 MHz ~ 6875 MHz UNII-8: 6875 MHz ~ 7125 MHz
Modulation Type	IEEE 802.11a: OFDM IEEE 802.11ax: OFDMA
Bit Rate of Transmitter	IEEE 802.11a: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11ax: up to 2402 Mbps
Maximum e.i.r.p. _UNII-5	IEEE 802.11ax(HE80): 9.37 dBm (0.0086 W)
Maximum e.i.r.p. _UNII-6	IEEE 802.11ax(HE80): 8.10 dBm (0.0065 W)
Maximum e.i.r.p. _UNII-7	IEEE 802.11ax(HE80): 9.11 dBm (0.0081 W)
Maximum e.i.r.p. _UNII-6+UNII-7	IEEE 802.11ax(HE80): 8.56 dBm (0.0072 W)
Maximum e.i.r.p. _UNII-8	IEEE 802.11ax(HE80): 9.78 dBm (0.0095 W)
Maximum e.i.r.p. _UNII-7+UNII-8	IEEE 802.11ax(HE80): 9.93 dBm (0.0098 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

	UNII-5						
	IEE	EE 802.11a / IEI	EE 802.11ax(HE	20)			
Channel	Frequency (MHz)	Frequency (MHz)					
1	5955	33	6115	65	6275		
5	5975	37	6135	69	6295		
9	5995	41	6155	73	6315		
13	6015	45	6175	77	6335		
17	6035	49	6195	81	6355		
21	6055	53	6215	85	6375		
25	6075	57	6235	89	6395		
29	6095	61	6255	93	6415		

	UNII-5							
	IEEE 802.11ax(HE40)							
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Channel (MHz)							
3	5965	35	6125	67	6285			
11	6005	43	6165	75	6325			
19	6045	51	6205	83	6365			
27	6085	59	6245	91	6405			

UNII-5						
IEEE 802.11ax(HE80)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
7	5985	39	6145	71	6305	
23	6065	55	6225	87	6385	

UNII-6						
IEEE 802.11a / IEEE 802.11ax(HE20)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
97	6435	105	6475	113	6515	
101	6455	109	6495			

UNII-6							
	IEEE 802.11ax(HE40)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
99	6445	107	6485	115	6525		

UNII-6						
IEEE 802.11ax(HE80)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
103	6465					

	UNII-7						
	IEE	EE 802.11a / IEI	EE 802.11ax(HE	20)			
Channel	Frequency (MHz)						
117	6535	141	6655	165	6775		
121	6555	145	6675	169	6795		
125	6575	149	6695	173	6815		
129	6595	153	6715	177	6835		
133	6615	157	6735	181	6855		
137	6635	161	6755	185	6875		

UNII-7							
	IEEE 802.11ax(HE40)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
123	6565	147	6685	171	6805		
131	6605	155	6725	179	6845		
139	6645	163	6765				

UNII-7							
	IEEE 802.11ax(HE80)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
119	6545	151	6705	183	6865		
135	6625	167	6785				

UNII-8							
	IEEE 802.11a / IEEE 802.11ax(HE20)						
Channel	Channel Frequency Channel Frequency Channel Frequency (MHz) Channel (MHz) Channel (MHz)						
189	6895	205	6975	221	7055		
193	6915	209	6995	225	7075		
197	6935	213	7015	229	7095		
201	6955	217	7035	233	7115		

	UNII-8						
	IEEE 802.11ax(HE40)						
Channel	Channel Frequency (MHz) Channel Frequency (MHz) Frequency (MHz) Channel (MHz)						
187	6885	203	6965	219	7045		
195	6925	211	7005	227	7085		

UNII-8					
IEEE 802.11ax(HE80)					
Channel Frequency Channel Frequency Channel Fr					
199	6945	215	7025		

3. Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	PCB	IPEX	3.48
2	N/A	N/A	PCB	IPEX	3.48

Note:

This EUT supports CDD, and all antennas have the same gain, Directional gain = G_{ANT} +Array Gain. For power measurements, Array Gain=0dB ($N_{ANT} \le 4$), so the Directional gain=3.48. For power spectral density measurements, $N_{ANT} = 2$, $N_{SS} = 1$. So the Directional gain= G_{ANT} +Array Gain= G_{ANT} +10log(N_{ANT} / N_{SS})dBi=3.48+10log(2/1)dBi=6.49.

4. Table for Antenna Configuration:

Operating Mode TX Mode	2TX
IEEE 802.11a	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE20)	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE40)	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE80)	V(Ant. 1 + Ant. 2)

3.2 TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description	
Mode 1	TX A Mode Channel 01/45/93 (UNII-5)	
Mode 2	TX AX(HE20) Mode Channel 01/45/93 (UNII-5)	
Mode 3	TX AX(HE40) Mode Channel 03/43/91 (UNII-5)	
Mode 4	TX AX(HE80) Mode Channel 07/39/87 (UNII-5)	
Mode 5	TX A Mode Channel 97/105/113 (UNII-6)	
Mode 6	TX AX(HE20) Mode Channel 97/105/113 (UNII-6)	
Mode 7	TX AX(HE40) Mode Channel 99/107 (UNII-6)	
Mode 8	TX AX(HE80) Mode Channel 103 (UNII-6)	
Mode 9	TX A Mode Channel 117/149/181 (UNII-7)	
Mode 10	TX AX(HE20) Mode Channel 117/149/181 (UNII-7)	
Mode 11	TX AX(HE40) Mode Channel 123/147/179 (UNII-7)	
Mode 12	TX AX(HE80) Mode Channel 135/151/167 (UNII-7)	
Mode 13	TX AX(HE40) Mode Channel 115 (UNII-6+UNII-7)	
Mode 14	TX AX(HE80) Mode Channel 119 (UNII-6+UNII-7)	
Mode 15	TX A Mode Channel 189/213/233 (UNII-8)	
Mode 16	TX AX(HE20) Mode Channel 189/213/233 (UNII-8)	
Mode 17	TX AX(HE40) Mode Channel 195/211/227 (UNII-8)	
Mode 18	TX AX(HE80) Mode Channel 199/215 (UNII-8)	
Mode 19	TX A Mode Channel 185 (UNII-7+UNII-8)	
Mode 20	TX AX(HE20) Mode Channel 185 (UNII-7+UNII-8)	
Mode 21	TX AX(HE40) Mode Channel 187 (UNII-7+UNII-8)	
Mode 22	TX AX(HE80) Mode Channel 183 (UNII-7+UNII-8)	

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test			
Final Test Mode Description			
Mode 22 TX AX(HE80) Mode Channel 183 (UNII-7+UNII-8)			

Radiated Emissions Test - Below 1GHz			
Final Test Mode Description			
Mode 22	TX AX(HE80) Mode Channel 183 (UNII-7+UNII-8)		

	Radiated Emissions Test - Above 1GHz			
Final Test Mode	Description			
Mode 1	TX A Mode Channel 01/45/93 (UNII-5)			
Mode 2	TX AX(HE20) Mode Channel 01/45/93 (UNII-5)			
Mode 3	TX AX(HE40) Mode Channel 03/43/91 (UNII-5)			
Mode 4	TX AX(HE80) Mode Channel 07/39/87 (UNII-5)			
Mode 5	TX A Mode Channel 97/105/113 (UNII-6)			
Mode 6	TX AX(HE20) Mode Channel 97/105/113 (UNII-6)			
Mode 7	TX AX(HE40) Mode Channel 99/107 (UNII-6)			
Mode 8	TX AX(HE80) Mode Channel 103 (UNII-6)			
Mode 9	TX A Mode Channel 117/149/181 (UNII-7)			
Mode 10	TX AX(HE20) Mode Channel 117/149/181 (UNII-7)			
Mode 11	TX AX(HE40) Mode Channel 123/147/179 (UNII-7)			
Mode 12	TX AX(HE80) Mode Channel 135/151/167 (UNII-7)			
Mode 13	TX AX(HE40) Mode Channel 115 (UNII-6+UNII-7)			
Mode 14	TX AX(HE80) Mode Channel 119 (UNII-6+UNII-7)			
Mode 15	TX A Mode Channel 189/213/233 (UNII-8)			
Mode 16	TX AX(HE20) Mode Channel 189/213/233 (UNII-8)			
Mode 17	TX AX(HE40) Mode Channel 195/211/227 (UNII-8)			
Mode 18	TX AX(HE80) Mode Channel 199/215 (UNII-8)			
Mode 19	TX A Mode Channel 185 (UNII-7+UNII-8)			
Mode 20	TX AX(HE20) Mode Channel 185 (UNII-7+UNII-8)			
Mode 21	TX AX(HE40) Mode Channel 187 (UNII-7+UNII-8)			
Mode 22	TX AX(HE80) Mode Channel 183 (UNII-7+UNII-8)			

	Conducted test			
Final Test Mode	Description			
Mode 1	TX A Mode Channel 01/45/93 (UNII-5)			
Mode 2	TX AX(HE20) Mode Channel 01/45/93 (UNII-5)			
Mode 3	TX AX(HE40) Mode Channel 03/43/91 (UNII-5)			
Mode 4	TX AX(HE80) Mode Channel 07/39/87 (UNII-5)			
Mode 5	TX A Mode Channel 97/105/113 (UNII-6)			
Mode 6	TX AX(HE20) Mode Channel 97/105/113 (UNII-6)			
Mode 7	TX AX(HE40) Mode Channel 99/107 (UNII-6)			
Mode 8	TX AX(HE80) Mode Channel 103 (UNII-6)			
Mode 9	TX A Mode Channel 117/149/181 (UNII-7)			
Mode 10	TX AX(HE20) Mode Channel 117/149/181 (UNII-7)			
Mode 11	TX AX(HE40) Mode Channel 123/147/179 (UNII-7)			
Mode 12	TX AX(HE80) Mode Channel 135/151/167 (UNII-7)			
Mode 13	TX AX(HE40) Mode Channel 115 (UNII-6+UNII-7)			
Mode 14	TX AX(HE80) Mode Channel 119 (UNII-6+UNII-7)			
Mode 15	TX A Mode Channel 189/213/233 (UNII-8)			
Mode 16	TX AX(HE20) Mode Channel 189/213/233 (UNII-8)			
Mode 17	TX AX(HE40) Mode Channel 195/211/227 (UNII-8)			
Mode 18	TX AX(HE80) Mode Channel 199/215 (UNII-8)			
Mode 19	TX A Mode Channel 185 (UNII-7+UNII-8)			
Mode 20	TX AX(HE20) Mode Channel 185 (UNII-7+UNII-8)			
Mode 21	TX AX(HE40) Mode Channel 187 (UNII-7+UNII-8)			
Mode 22	TX AX(HE80) Mode Channel 183 (UNII-7+UNII-8)			

Note:

(1) For AC power line conducted emissions and radiated emission below 1 GHz test, the IEEE 802.11ax(HE80) channel 183 is found to be the worst case and recorded.

- (2) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz and 26.5GHz~40GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (3) For radiated emission Harmonic 18-40GHz test, only tested the worst case and recorded.
- (4) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (5) IEEE 802.11ax mode only supports full RU, so only the full RU is evaluated and measured inside report.
- (6) For radiated emission above 1 GHz test, the polarization of Vertical and Hoizontal are evaluated, the worst case is Vertical and recorded.
- (7) The device not uses either channel puncturing or bandwidth reduction for the purpose of incumbent avoidance.

3.3 PARAMETERS OF TEST SOFTWARE

UNII-5				
Test Software Version	QATool_Dbg 0.0.2.39			
Frequency (MHz)	5955	6175	6415	
IEEE 802.11a	-4	-4	-4	
IEEE 802.11ax(HE20)	-2.5	-2	-2.5	
Frequency (MHz)	5965	6165	6405	
IEEE 802.11ax(HE40)	0.5	0.5	0.5	
Frequency (MHz)	5985	6145	6385	
IEEE 802.11ax(HE80)	5	5	5	

UNII-6				
Test Software Version	QATool_Dbg 0.0.2.39			
Frequency (MHz)	6435	6475	6515	
IEEE 802.11a	-4	-4	-4	
IEEE 802.11ax(HE20)	-2	-2	-2.5	
Frequency (MHz)	6445	6485		
IEEE 802.11ax(HE40)	0.5	0.5		
Frequency (MHz)	6465			
IEEE 802.11ax(HE80)	4.5			

UNII-7				
Test Software Version	QATool_Dbg 0.0.2.39			
Frequency (MHz)	6535	6695	6855	
IEEE 802.11a	-5	-3	-3.5	
IEEE 802.11ax(HE20)	-3	-2.5	-2.5	
Frequency (MHz)	6565	6685	6845	
IEEE 802.11ax(HE40)	0	0	1.5	
Frequency (MHz)	6625	6705	6785	
IEEE 802.11ax(HE80)	4	4.5	5	

UNII-8			
Test Software Version	QATool_Dbg 0.0.2.39		
Frequency (MHz)	6895	7015	7115
IEEE 802.11a	-3.5	-3.5	-3.5
IEEE 802.11ax(HE20)	-1.5	-2	-2.5
Frequency (MHz)	6925	7005	7085
IEEE 802.11ax(HE40)	1.5	1.5	1.5
Frequency (MHz)	6945	7025	
IEEE 802.11ax(HE80)	6	5.5	


UNII-6+UNII-7		
Test Software Version	QATool_Dbg 0.0.2.39	
Frequency (MHz)	6525	
IEEE 802.11ax(HE40)	0	
Frequency (MHz)	6545	
IEEE 802.11ax(HE80)	4.5	

UNII-7+UNII-8		
Test Software Version	QATool_Dbg 0.0.2.39	
Frequency (MHz)	6875	
IEEE 802.11a	-3.5	
IEEE 802.11ax(HE20)	-2	
Frequency (MHz)	6885	
IEEE 802.11ax(HE40)	0.5	
Frequency (MHz)	6865	
IEEE 802.11ax(HE80)	5	

3.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor. The power spectral density = measured power spectral density + duty factor.

Duty cycle = 3.78 ms / 4.43 ms = 85.32% Duty Factor = 10 log(1 / Duty cycle) = 0.69 Duty cycle = 1.84 ms / 2.48 ms = 74.28% Duty Factor = 10 log(1 / Duty cycle) = 1.29

NOTE:

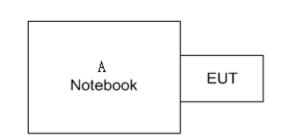
For IEEE 802.11a:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 813 Hz (Duty cycle < 98%).

For IEEE 802.11ax(HE20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 212 Hz (Duty cycle < 98%).

For IEEE 802.11ax(HE40):


For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 265 Hz (Duty cycle < 98%).

For IEEE 802.11ax(HE80):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 543 Hz (Duty cycle < 98%).

3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
А	Notebook	Honor	NbI-WAQ9HNRP	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
-	-	-	-	-

3.7 CUSTOMER INFORMATION DESCRIPTION

1) The antenna gain is provided by the manufacturer.

2) Except for AC power line conducted emissions and radiated emissions, the results of all test items include cable losses. All cable losses are provided by the testing laboratory.

4. AC POWER LINE CONDUCTED EMISSIONS

4.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

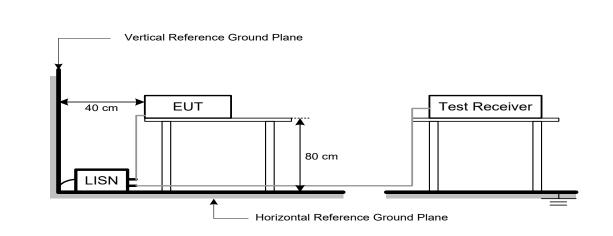
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use) Margin Level = Measurement Value – Limit Value

4.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameter	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.3 DEVIATION FROM TEST STANDARD

No deviation

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

The EUT was programmed to be in continuously transmitting/TX mode.

4.6 TEST RESULTS

Please refer to the APPENDIX A.

5. RADIATED EMISSIONS

5.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS (Above 1000 MHz)

Frequency	EIRP Limit	Band edge	Harmonic
(MHz)	(dBm/MHz)	at 3m (dBuV/m)	at 1m (dBµV/m)
5925-7125	Average: -27	68.2	77.7 (Note 2)

NOTE:

(1) The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: 1000000√<u>30</u>P Ε

(2)

$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

20log (d_{limit}/d_{measure})=20log (3/1)=9.5 dB.

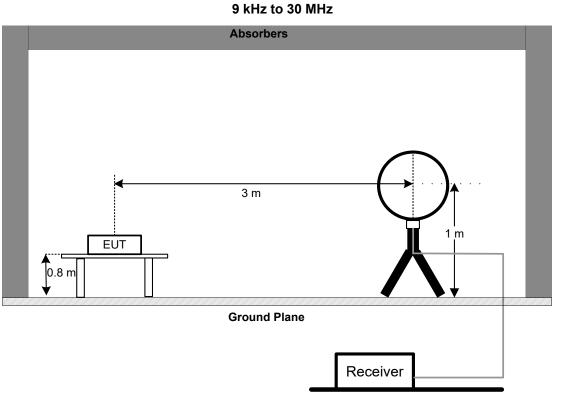
5.2 TEST PROCEDURE

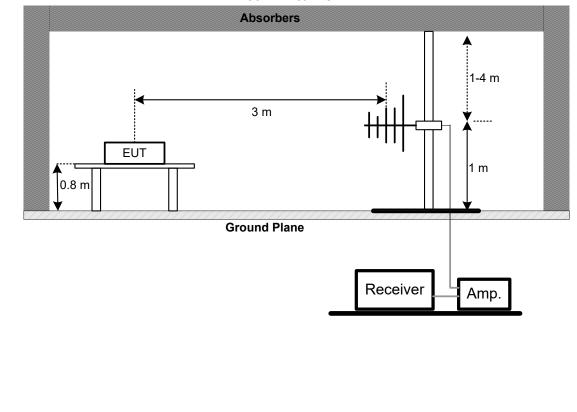
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m or 1m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.

The following table is the setting of the receiver:

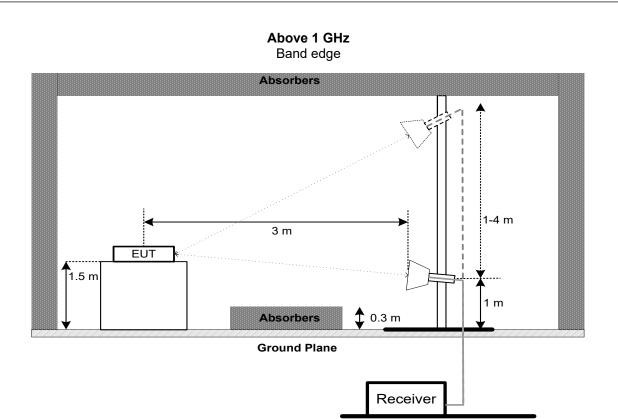
Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz

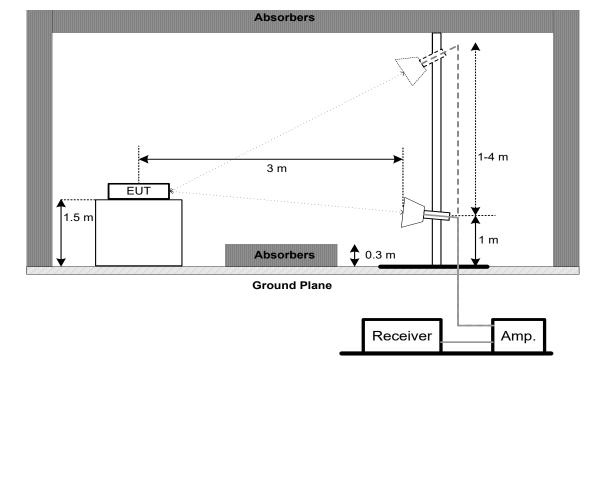
Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic or 40 GHz, whichever is lower
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value

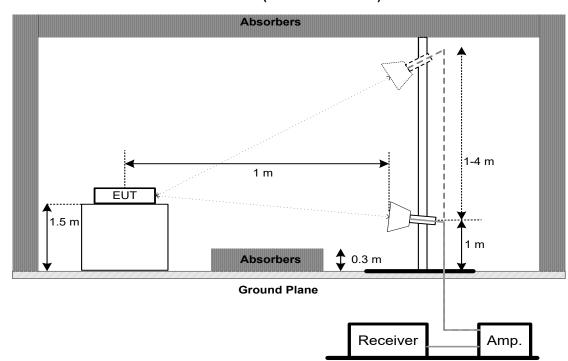

Receiver Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~40 GHz for PK/AVG detector


5.3 DEVIATION FROM TEST STANDARD

No deviation.


5.4 TEST SETUP


30 MHz to 1 GHz



Harmonic (1 GHz to 18 GHz)

Harmonic (18 GHz to 40 GHz)

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

5.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

6. BANDWIDTH

6.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(a)	26 dB Bandwidth	Maximum 320 MHz	5925-7125

6.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. Spectrum Setting:

For 26 dB Bandwidth:

Spectrum Parameter	Setting
Span Frequency	> 26 dB Bandwidth
RBW	Appromiximately 1% of the emission bandwidth
VBW	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For 99% Occupied Bandwidth:


Spectrum Parameter	Setting	
Span Frequency	1.5 times to 5 times the OBW	
RBW	1% to 5% of the OBW	
VBW	≥ 3*RBW	
Detector	Peak	
Trace	Max Hold	
□weep □ime	Auto	

c. Measured the spectrum width with power higher than 26 dB below carrier.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

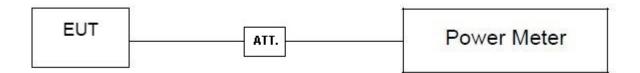
Please refer to the APPENDIX E.

7. MAXIMUM E.I.R.P.

7.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(a)	Maximum e.i.r.p.	Standard power access point and fixed client device 36 dBm Indoor access point 30 dBm Subordinate device operating under the control of an indoor access point 30 dBm Client devices operating under the control of a standard power access point 30 dBm Client devices operating under the control of a standard power access point 30 dBm Client devices operating under the control of an indoor access point 30 dBm Client devices operating under the control of an indoor access point 24 dBm	5925-6425 6525-6875
		Indoor access point 30 dBm Subordinate device operating under the control of an indoor access point 30 dBm Client devices operating under the control of an indoor access point 24 dBm	6425-6525 6875-7125

7.2 TEST PROCEDURE


- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. Test test was performed in accordance with method of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8. MAXIMUM POWER SPECTRAL DENSITY (E.I.R.P.)

8.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(a)	Maximum Power Spectral Density (e.i.r.p.)	Standard power access point and fixed client device 23 dBm/MHz Indoor access point 5 dBm/MHz Subordinate device operating under the control of an indoor access point 5 dBm/MHz Client devices operating under the control of a standard power access point 17 dBm/MHz Client devices operating under the control of an indoor access point -1 dBm/MHz	5925-6425 6525-6875
	Indoor access point 5 dBm/MHz Subordinate device operating under the control of an indoor access point 5 dBm/MHz Client devices operating under the control of an indoor access point -1 dBm/MHz	6425-6525 6875-7125	

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting:

Spectrum Parameter	Setting
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1 MHz
VBW	3 MHz
Detector	RMS
Trace average	100 trace
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

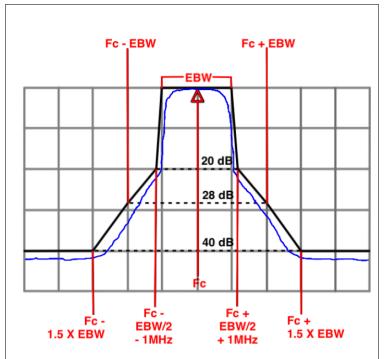
8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.


9. IN-BAND EMISSION (MASK)

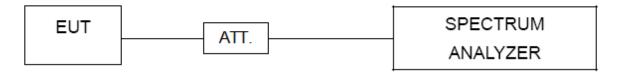
9.1 LIMIT

Section	Test Item	Frequency Range (MHz)	(X) dBc (Note 1)
		At 1MHz outside of channel edge	20
		At one channel bandwidth from the channel center (Note 2)	28
FCC 15.407(b) In-Band Emission (Mask)	At one- and one-half times the channel bandwidth away from channel center (Note 3)	40	
		More than one- and one-half times the channel bandwidth	40

Note:

- 1. The power spectral density must be suppressed by "X" dB.
- 2. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression.
- 3. At frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression.

9.2 TEST PROCEDURE


- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting:

Spectrum Parameter	Setting
Span Frequency	> 26 dB Bandwidth
RBW	Appromiximately 1% of the emission bandwidth
VBW	≥3xRBW
Detector	RMS
Trace average	100 trace
Sweep Time	Auto

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10. CONTENTION BASED PROTOCOL

10.1 LIMIT

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band (herein referred to as unlicensed devices) are required to use technologies that include a contention-based protocol to avoid co-channel interference with incumbent devices sharing the band. To ensure incumbent co-channel operations are detected in a technology-agnostic manner, unlicensed devices are required to detect co-channel radio frequency energy (energy detect) and avoid simultaneous transmission.

Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel and stay off the channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm). The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain. (See note)

To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz- wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.

Note: The EUT with a lowest gain is 3.48dBi. All power injected into EUT should be -62+3.48=58.52dBm.

10.2 TEST PROCEDURE

lf	Number of Tests	Placement of Incumbent Transmission
BW _{EUT} ≤BW _{Inc}	Once	Tune incumbent and EUT transmissions
	Once	$(f_{c1}=f_{c2})$
BW _{Inc} <bw<sub>EUT≤2BW_{Inc}</bw<sub>	Once	Incumbent transmission is contained
	Once	within BW _{EUT}
		Incumbent transmission is located as
2BW _{Inc} <bw<sub>FUT≤4BW_{Inc}</bw<sub>	Twice. Incumbent transmission is	closely as possible to the lower edge
2DVV _{inc} < DVV _{EUT} = 4DVV _{inc}	contained within BW_{EUT}	and upper edge, respectively, of the
		EUT channel
		Incumbent transmission is located as
		closely as possible to the lower edge of
$BW_{EUT} > 4BW_{Inc}$	Three times	the EUT channel, in the middle of EUT
		channel, and as closely as possible to
		the upper edge of the EUT channel

a. Number of times detection threshold:

Where:

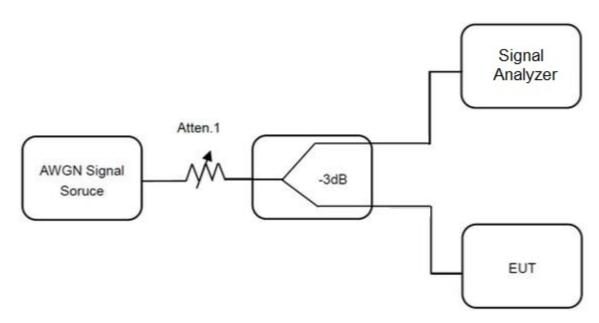
BW_{EUT}: Transmission bandwidth of EUT signal.

BWInc: Transmission bandwidth of the simulated incumbent signal (10 MHz wide AWGN signal).

f_{c1}: Center frequency of EUT transmission.

f_{c2}: Center frequency of simulated incumbent signal.

- b. Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use step b table to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- c. Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer and the EUT as show in the block diagram below.
- d. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer.
- e. Monitor the signal analyzer to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.



- f. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- g. Refer to step b table to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step c, choose a different center frequency for the AWGN signal and repeat the process.

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The test equipment is configured to be in continuously transmitting mode with a constant duty cycle through QATool_Dbg software.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

11. FREQUENCY STABILITY

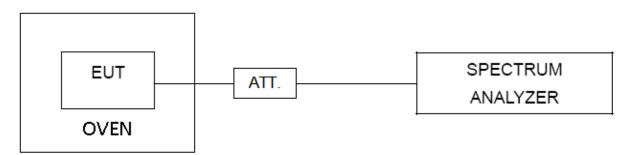
11.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(g)	Frequency Stability	An emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.	5925-7125

11.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting:

Spectrum Parameter	Setting
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


c. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.

d. User manual temperature is -10°C~55°C.

11.3 DEVIATION FROM STANDARD

No deviation.

11.4 TEST SETUP

11.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

11.6 TEST RESULTS

Please refer to the APPENDIX J.

12. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions											
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until							
1	EMI Test Receiver	R&S	ESR3	103027	Jun. 16, 2024							
2	TWO-LINE V-NETWORK	R&S	ENV216	101447	Dec. 22, 2024							
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A							
4	Cable	N/A	SFT205-NMNM-9M-001	9M	Nov. 27, 2024							
5	643 Shield Room	ETS	6*4*3	N/A	N/A							

	Radiated Emissions - 9 kHz to 30 MHz										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until						
1	Active Loop Antenna	Schwarzbeck	FMZB 1513-60B	1513-60 B-034	Apr. 01, 2024						
2	MXE EMI Receiver	Keysight	N9038A	MY56400091	Dec. 22, 2024						
3	Cable	N/A	RW2350-3.8A-NMBM-1.5M	N/A	Jun. 10, 2024						
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A						
5	966 Chamber room	ETS	9*6*6	N/A	Jul. 11, 2024						

	Radiated Emissions - 30 MHz to 1 GHz										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until						
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	1462	Dec. 13, 2024						
2	Attenuator	EMC INSTRUMENT	EMCI-N-6-06	AT-06009	Dec. 13, 2024						
3	Preamplifier	EMC INSTRUMENT					Nov. 17, 2024				
4	Cable	RegalWay	LMR400-NMNM-12.5m	N/A	Jul. 04, 2024						
5	Cable	RegalWay	LMR400-NMNM-3m	N/A	Jul. 04, 2024						
6	Cable	RegalWay	LMR400-NMNM-0.5m	N/A	Jul. 04, 2024						
7	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024						
8	Positioning Controller	MF	MF-7802	N/A	N/A						
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A						
10	966 Chamber room	СМ	9*6*6	N/A	May 17, 2024						

			Emissions - Above 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024					
2	Preamplifier	EMC INSTRUMENT	EMC118A45SE	980888	Nov. 17, 2024					
3	EXA Spectrum Analyzer	Keysight	N9010A	MY55150209	Jun. 16, 2024					
4	Double Ridged Guide Antenna	ETS	3115	75789	May 31, 2024					
5	Cable	RegalWay	RWLP50-4.0A-SMSM-9M	N/A	Jan. 22, 2025					
6	Cable	RegalWay	RWLP50-2.6A-3.5M2.92MR A-3M	N/A	Jan. 22, 2025					
7	Cable	RegalWay	RWLP50-4.0A-NMRASM-2. 5M	N/A	Aug. 08, 2024					
8	Cable	RegalWay	RWLP50-4.0A-NMRASMR A-0.8M	N/A	Aug. 08, 2024					
9	Low Noise Amplifier	CONNPHY	CLN-18G40G-4330-K	619413	Jul. 06, 2024					
10	Cable	RegalWay	RWLP50-2.6A-2.92M2.92M -1.1M	N/A	Jul. 26, 2024					
11	Cable	Tonscend	HF160-KMKM-3M	N/A	Jul. 26, 2024					
12	Broad-Band Horn Antenna	Schwarzbeck	BBHA9170(3m)	9170-319	Jun. 20, 2024					
13	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A					
14	Filter	COM-MW	ZBSF6-C6425-6525-1106	N/A	Jun. 16, 2024					
15	Filter	COM-MW	ZBSF6-C6525-6875-1107	N/A	Jun. 16, 2024					
16	Filter	COM-MW	ZBSF6-C5925-6425-1105	N/A	Jun. 16, 2024					
17	Filter	COM-MW	ZBF-C7000-250-1108	N/A	Jun. 16, 2024					
18	Positioning Controller	MF	MF-7802	N/A	N/A					
19	Measurement Software	ement Earad EZ EMC Ver NB 03A1 01 N/A		N/A	N/A					
20	966 Chamber room	СМ	9*6*6	N/A	May 17, 2024					

	Bandwidth & Maximum Power Spectral Density & In-Band Emission (Mask)										
Item											
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Dec. 22, 2024						
2	Attenuator	Talent Microwave	TA10A0-S-26.5	N/A	N/A						
3	Cable	RegalWay	S02-181212-208	N/A	N/A						
4	DC Block	N/A	N/A	N/A	N/A						
5	Attenuator	Talent Microwave	LA10A0-S-26.5		N/A						
6	Measurement Software	keysight	IOT0047A	N/A	N/A						

	Maximum Output Power										
Item	Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated until										
1	Peak Power Analyzer	Keysight	Keysight 8990B MY51000506 Jun. 17, 20								
2	2 Wideband power Keysight N1923A MY58310004 Jun. 17, 2024										
3	Talent Microwave	TA10A2-S-18	N/A	N/A	N/A						

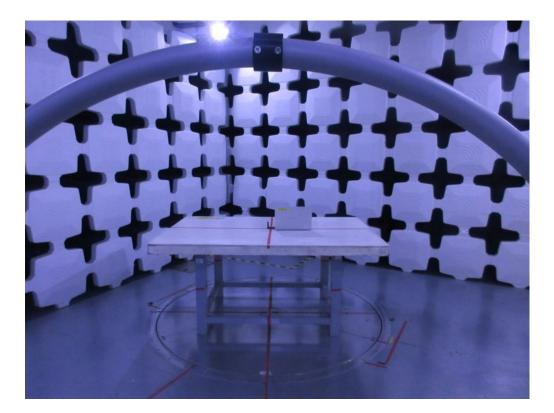
	Contention Based Protocol										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until						
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Dec. 22, 2024						
2	MXG Vector Signal Generator	Keysight	N5182B	MY57300568	Jun. 17, 2024						
3	Frequency Extender	Keysight	N5182BX07	MY59362506	Jun. 17, 2024						
4	Cable	RegalWay	S02-190322-034	N/A	N/A						
5	Cable	RegalWay	20210802 016	RWP50-402-SM SM-1M	N/A						
6	Cable	RegalWay	20210802 002	RWP50-402-SM SM-1M	N/A						
7	Cable	RegalWay	20210802 005	RWP50-402-SM SM-1M	N/A						
8	DC Block	N/A	N/A	N/A	N/A						
9	Measurement Software	BTL	WIFI6E TestSystem	N/A	N/A						
10	Power Splitter	N/A	N/A	SZ201504789	Dec. 22, 2024						
11	DC Block	N/A	N/A	N/A	N/A						

	Frequency Stability										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until						
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Dec. 22, 2024						
2	Attenuator	Talent Microwave	LA10A0-S-26 5		N/A						
3	Cable	RegalWay	egalWay S02-181212-208		N/A						
4	DC Block	N/A	N/A	N/A	N/A						
5	Attenuator	Talent Microwave	TA10A0-S-26.5	N/A	N/A						
6	Measurement Software	keysight	keysight IOT0047A		N/A						
7	Table top type high and low temperature test chamber	CEPREI	CEEC-M64T-40	15-008	Dec. 22, 2024						

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

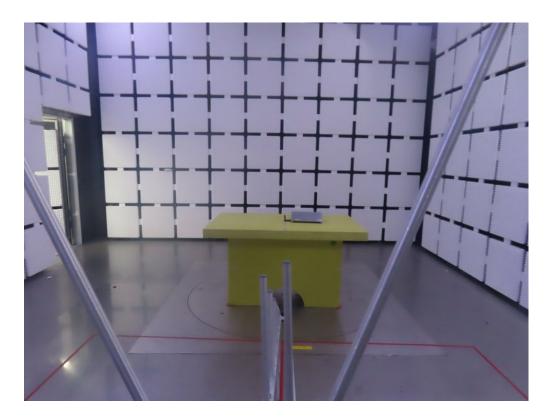
13. EUT TEST PHOTOS

AC Power Line Conducted Emissions Test Photos

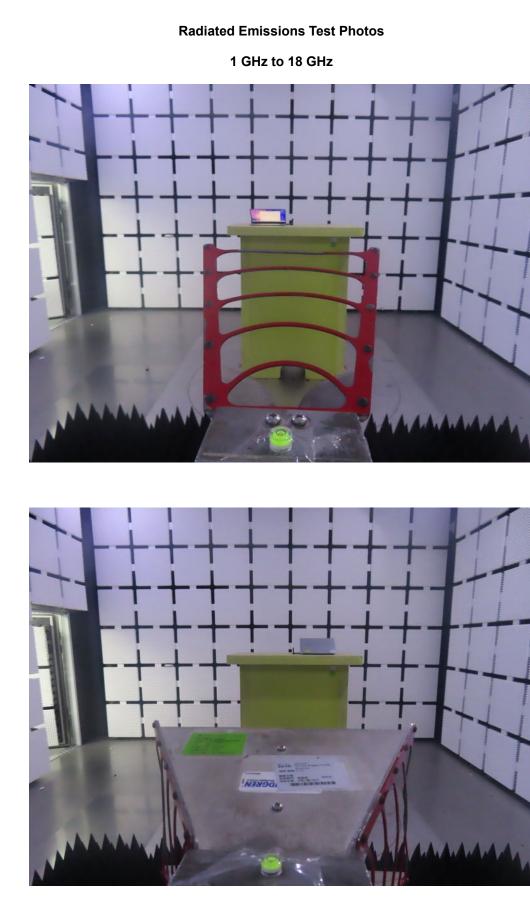


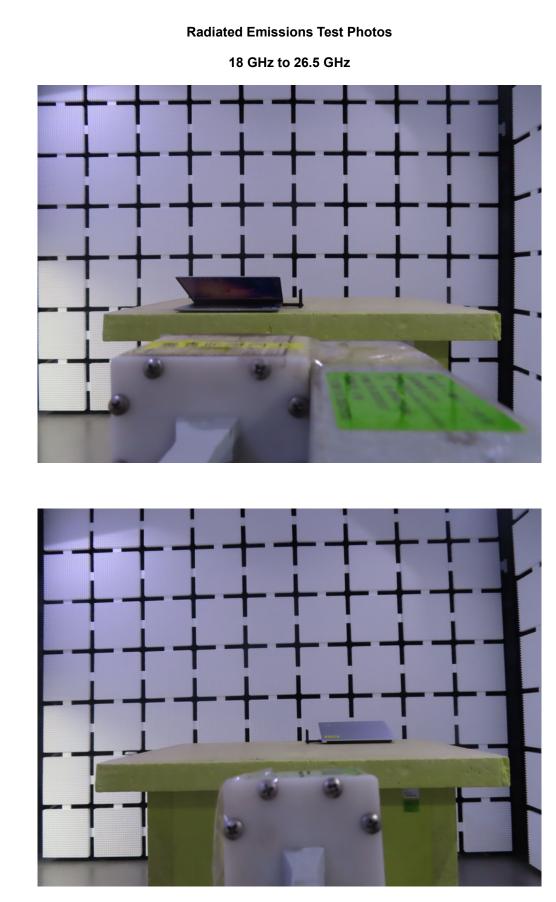
Radiated Emissions Test Photos

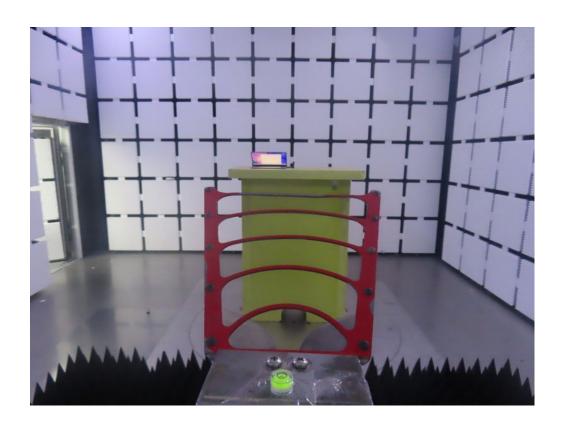
9 kHz to 30 MHz



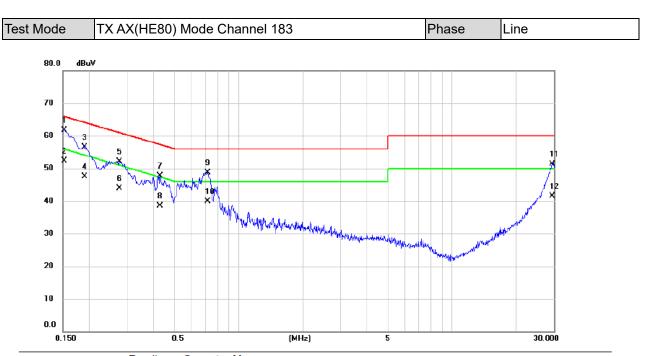
Radiated Emissions Test Photos


30 MHz to 1 GHz

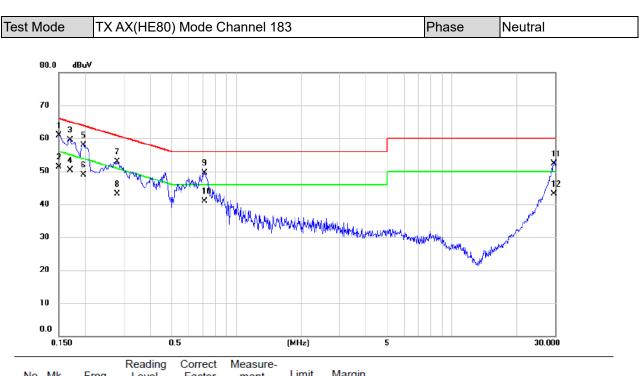




Band Edge Test Photos

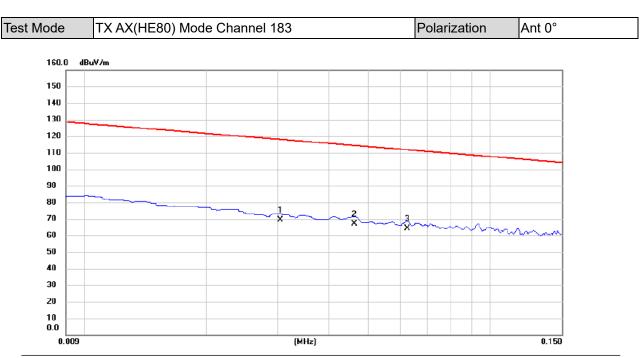


APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS



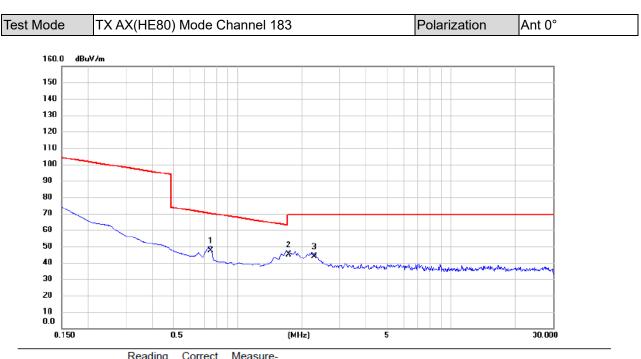
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1532	61.62	0.04	61.66	65.82	-4.16	QP	
2	*	0.1532	52.30	0.04	52.34	55.82	-3.48	AVG	
3		0.1894	56.41	0.04	56.45	64.06	-7.61	QP	
4		0.1894	47.50	0.04	47.54	54.06	-6.52	AVG	
5		0.2760	52.02	0.05	52.07	60.94	-8.87	QP	
6		0.2760	43.80	0.05	43.85	50.94	-7.09	AVG	
7		0.4290	47.60	0.05	47.65	57.27	-9.62	QP	
8		0.4290	38.40	0.05	38.45	47.27	-8.82	AVG	
9		0.7170	48.58	0.07	48.65	56.00	-7.35	QP	
10		0.7170	39.90	0.07	39.97	46.00	-6.03	AVG	
11		29.4878	50.97	0.40	51.37	60.00	-8.63	QP	
12		29.4878	41.20	0.40	41.60	50.00	-8.40	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


No. Mk.	Freq.	Level	Factor	ment	Limit	Margin	1	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1508	60.94	0.04	60.98	65.96	-4.98	QP	
2	0.1508	51.20	0.04	51.24	55.96	-4.72	AVG	
3	0.1703	59.40	0.04	59.44	64.95	-5.51	QP	
4 *	0.1703	50.30	0.04	50.34	54.95	-4.61	AVG	
5	0.1955	57.95	0.04	57.99	63.80	-5.81	QP	
6	0.1955	48.90	0.04	48.94	53.80	-4.86	AVG	
7	0.2805	52.91	0.05	52.96	60.80	-7.84	QP	
8	0.2805	43.10	0.05	43.15	50.80	-7.65	AVG	
9	0.7102	49.38	0.07	49.45	56.00	-6.55	QP	
10	0.7102	40.80	0.07	40.87	46.00	-5.13	AVG	
11	29.7668	51.87	0.40	52.27	60.00	-7.73	QP	
12	29.7668	42.70	0.40	43.10	50.00	-6.90	AVG	

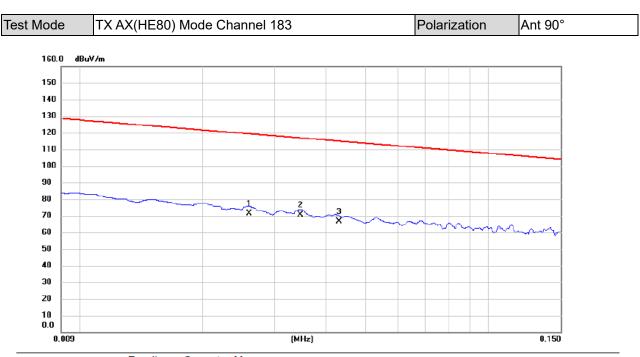
Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		0.0304	49.65	19.80	69.45	117.95	-48.50	AVG	
2	*	0.0462	47.22	19.80	67.02	114.31	-47.29	AVG	
3		0.0624	44.35	19.84	64.19	111.70	-47.51	AVG	

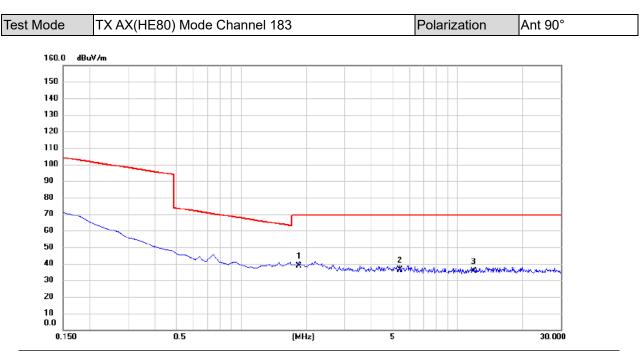
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



No. Mk.	Freq.	Level	Factor	ment	Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	0.7470	27.61	19.86	47.47	70.14	-22.67	QP	
2	1.7321	25.36	19.81	45.17	69.54	-24.37	QP	
3	2.2843	24.11	19.81	43.92	69.54	-25.62	QP	

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.0260	51.48	20.02	71.50	119.31	-47.81	AVG	
2 *	0.0347	50.63	19.80	70.43	116.80	-46.37	AVG	
3	0.0431	46.85	19.80	66.65	114.92	-48.27	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
-	1	*	1.8515	18.65	19.80	38.45	69.54	-31.09	QP	
-	2		5.4185	16.22	19.95	36.17	69.54	-33.37	QP	
-	3		11.8363	14.99	20.23	35.22	69.54	-34.32	QP	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

t Mode	e TX	AX(HE80)) Mode C	hannel 18	33			Polarization	Vertical
80.0	dBuV/m								
70									
60									
50									
40						2 X		3 X	××××
30		1 X				×			
20									
10									
0.0 30.	000 127.0	0 224.00	321.00	418.00	515.00	612.00) 709.0	0 806.00	1000.00 MHz
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	162.8900	36.42	-11.00	25.42	43.50	-18.08	peak		
2	594.0550	38.18	-3.84	34.34	46.00	-11.66	peak		
3	770.5950	37.42	-1.26	36.16	46.00	-9.84	peak		
4	899.6050	37.56	0.17	37.73	46.00	-8.27	peak		
5 *	925.3100	37.69	0.28	37.97	46.00	-8.03	peak		

38.61 54.00 -15.39

peak

REMARKS:

6

1000.000

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

37.81

0.80

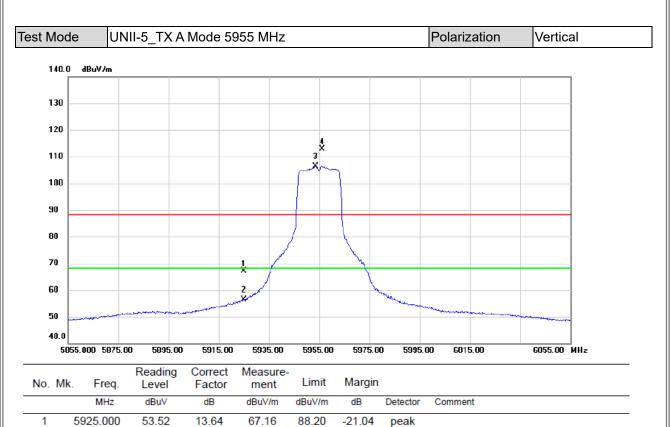
Mode	TX A	AX(HE80) Mode C	hannel 1	83			Polarizatior	n Horizontal
80.0 d	BuV/m								
70									
60									
50									
40								4 X	5 6 X X
30			1 X	2 X	X				
20									
10									
0.0 30.000	127.00	224.00	321.00	418.00	515.00	612.0	0 709.	00 806.00	1000.00 MHz
o. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Margir	า		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 26	5.7100	39.70	-11.79	27.91	46.00	-18.09	peak		
2 37	1.4400	37.44	-8.97	28.47	46.00	-17.53	peak		
3 53	2.9450	37.58	-5.38	32.20	46.00	-13.80	peak		
4 75	4.1050	37.23	-1.19	36.04	46.00	-9.96	peak		
5 85	0.6200	38.61	-0.52	38.09	46.00	-7.91	peak		

0.17 38.16 46.00 -7.84

peak

REMARKS:

6 * 903.4850


(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

37.99

APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ

2

3 *

5925.000

5953.600

4 X 5956.300

42.62

92.76

99.08

13.64

13.72

13.73

56.26

106.48

112.81

68.20

68.20

88.20

-11.94

38.28

24.61

AVG

AVG

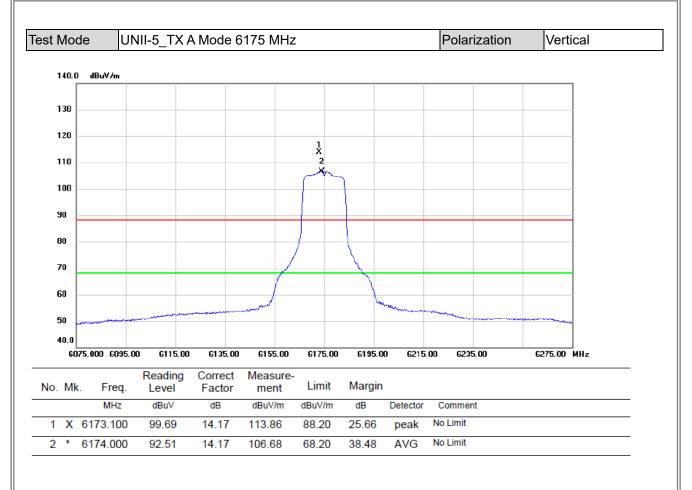
peak

No Limit

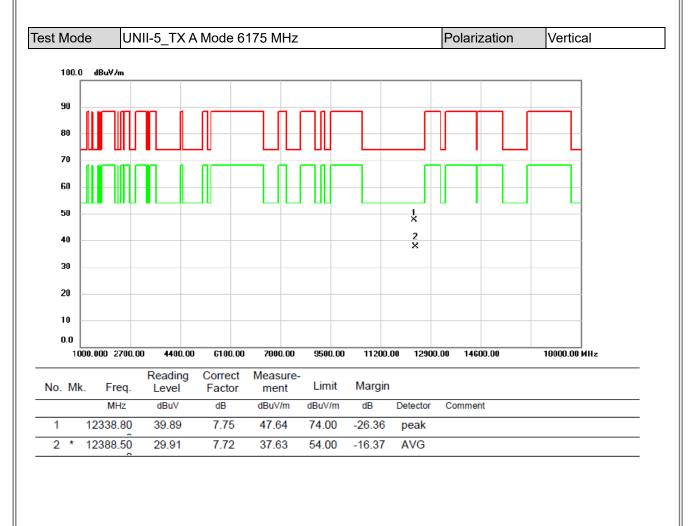
No Limit

(1) Measurement Value = Reading Level + Correct Factor.

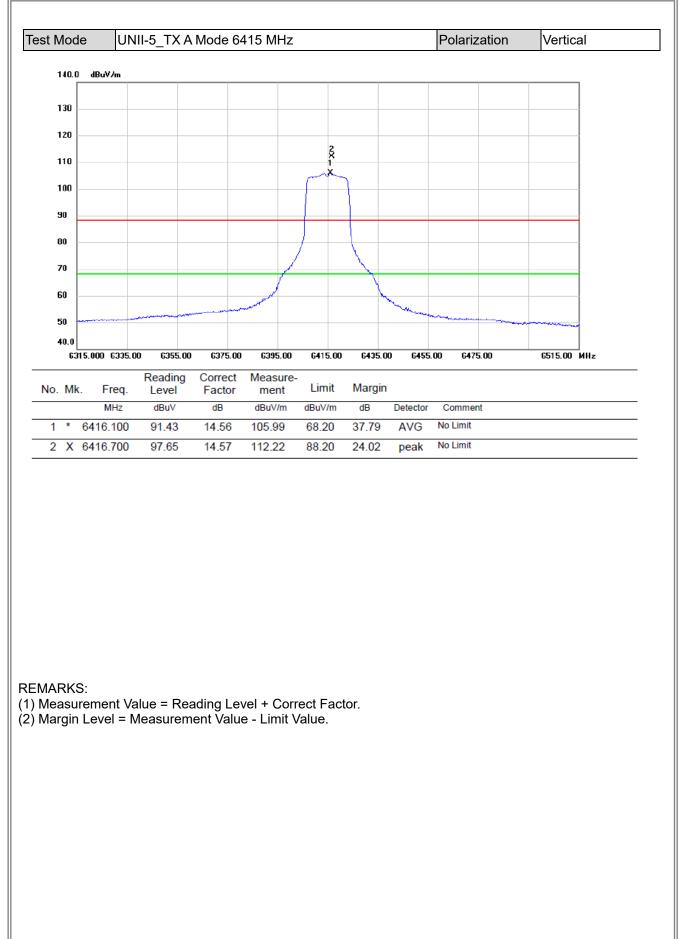
(2) Margin Level = Measurement Value - Limit Value.



(1) Measurement Value = Reading Level + Correct Factor.

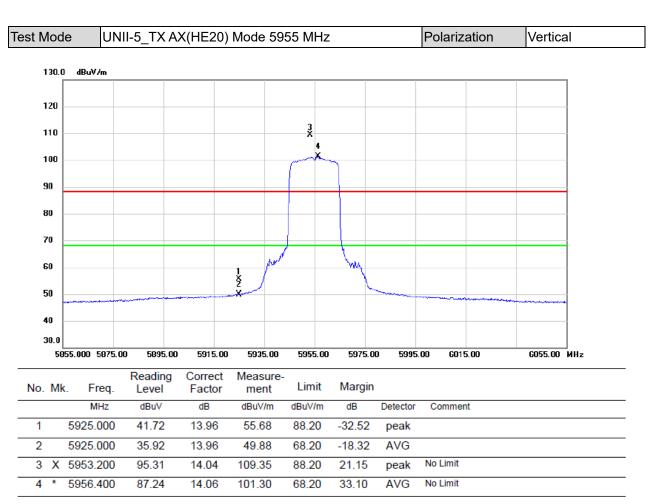

(2) Margin Level = Measurement Value - Limit Value.

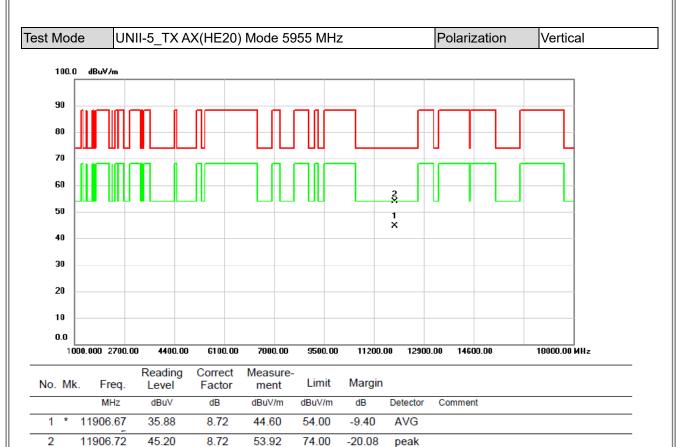
BIL

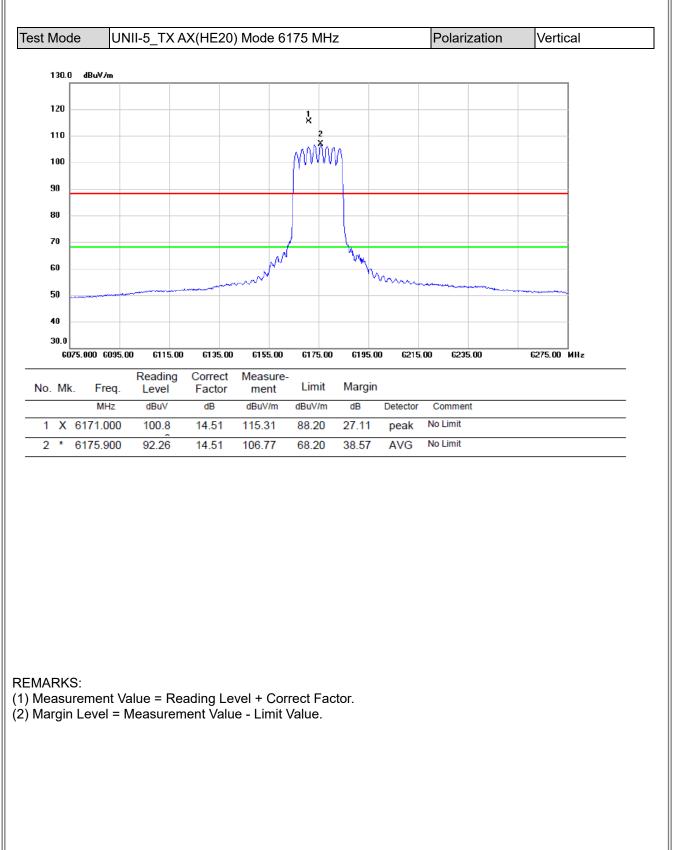

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

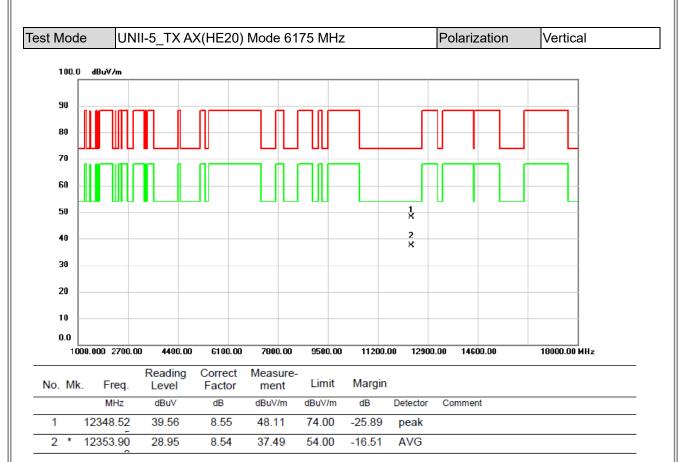
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BIL

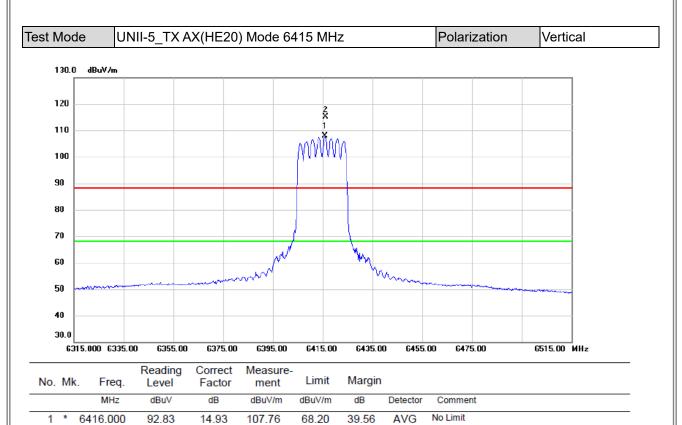



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

No Limit

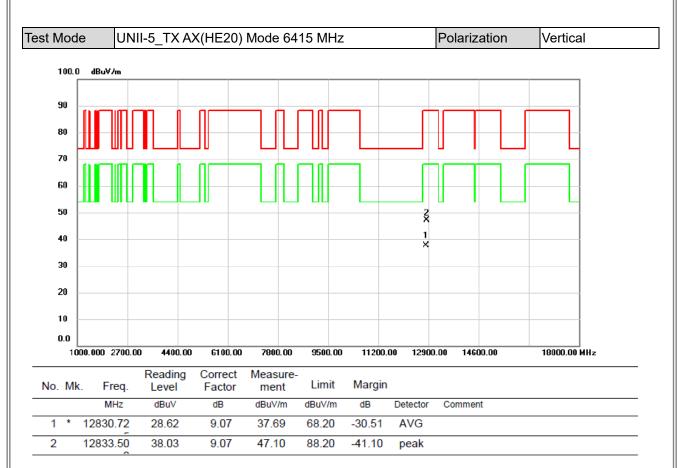
peak

REMARKS:

2 X 6416.200

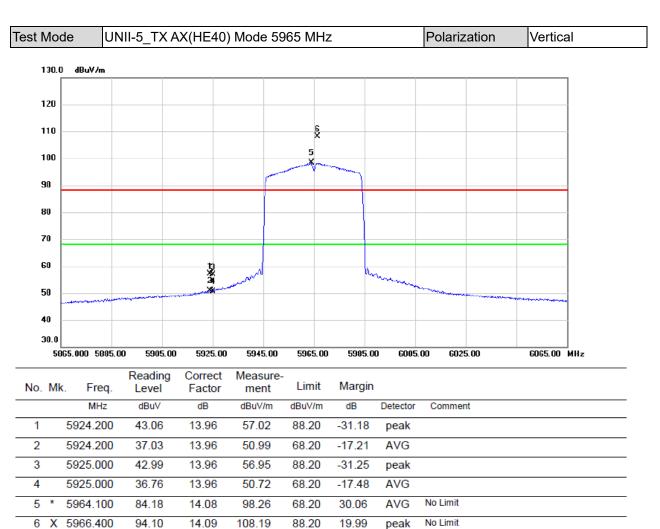
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

100.1

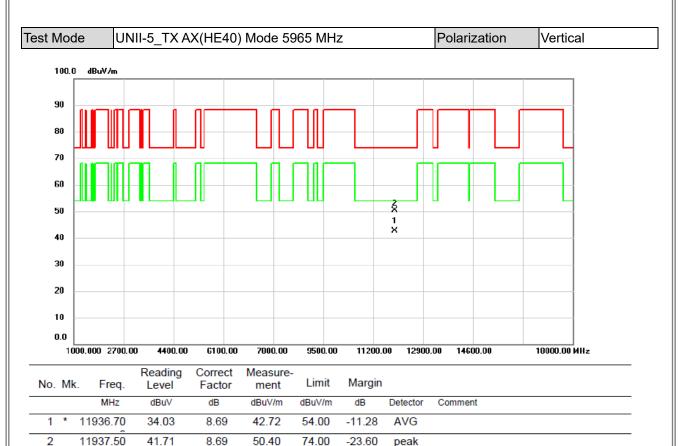

14.93

115.04

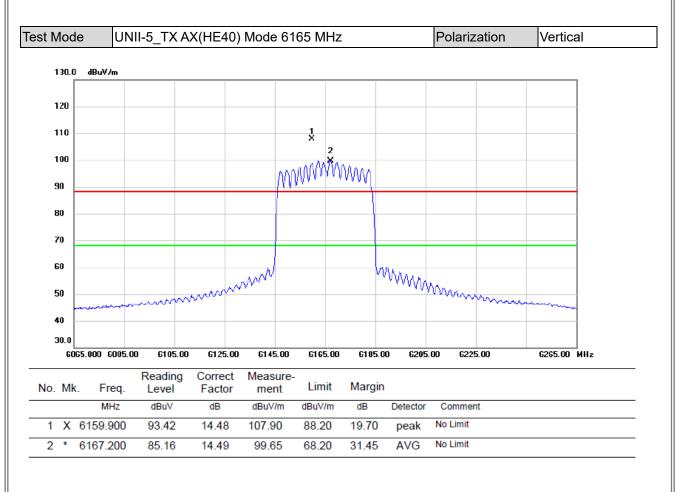
88.20

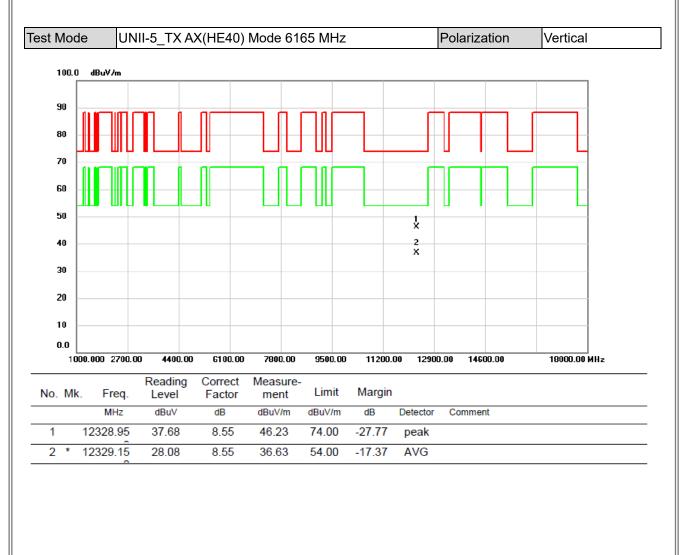

26.84

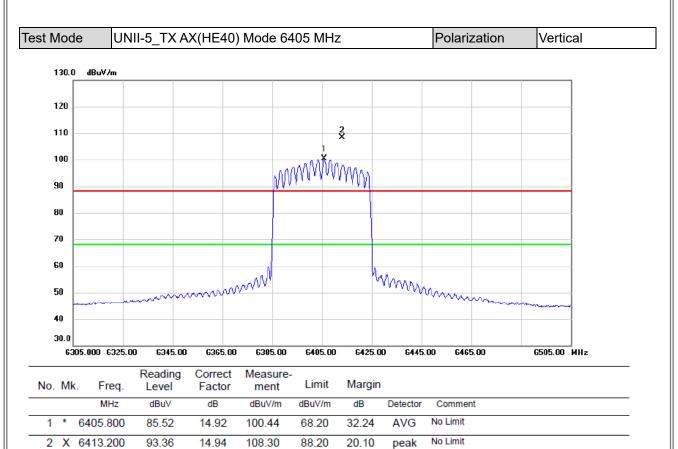
- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

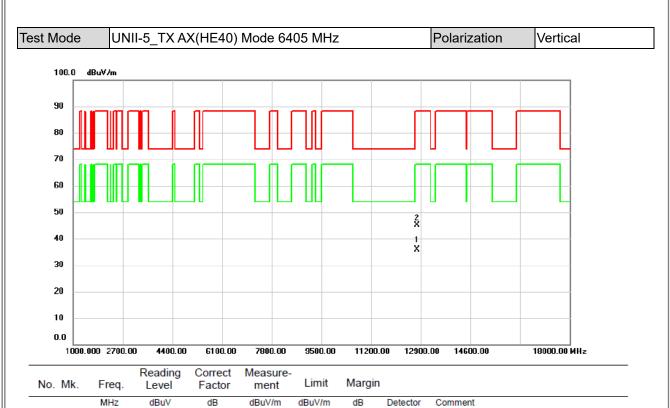


(1) Measurement Value = Reading Level + Correct Factor.


(2) Margin Level = Measurement Value - Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

35.77

45.04

8.96

8.98

68.20

88.20

-32.43

-43.16

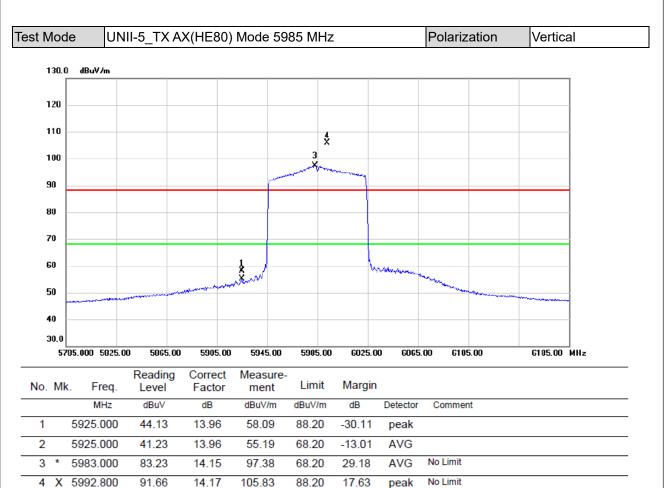
AVG

peak

1 *

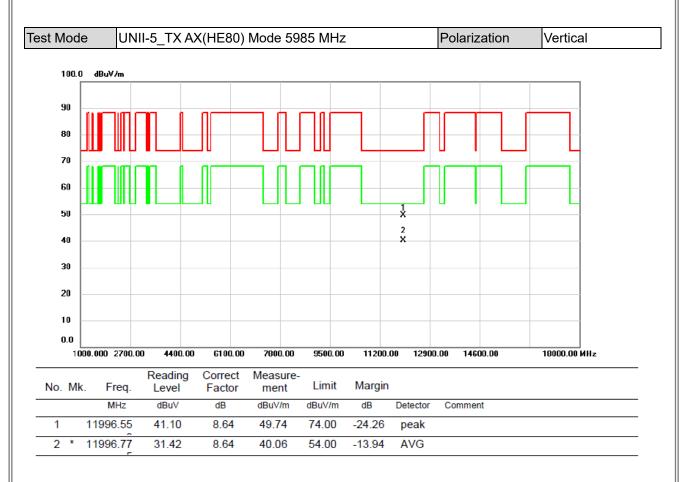
2

12769.80


12779.45

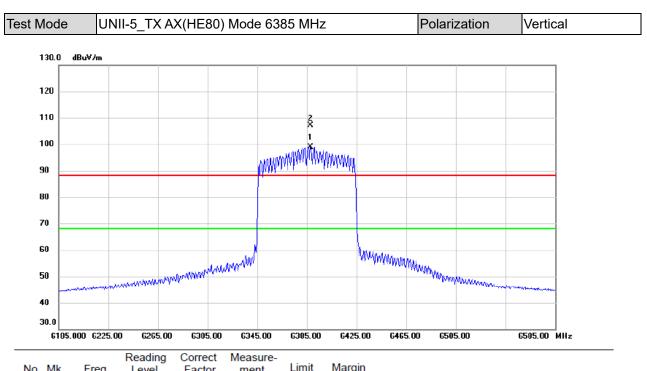
26.81

36.06

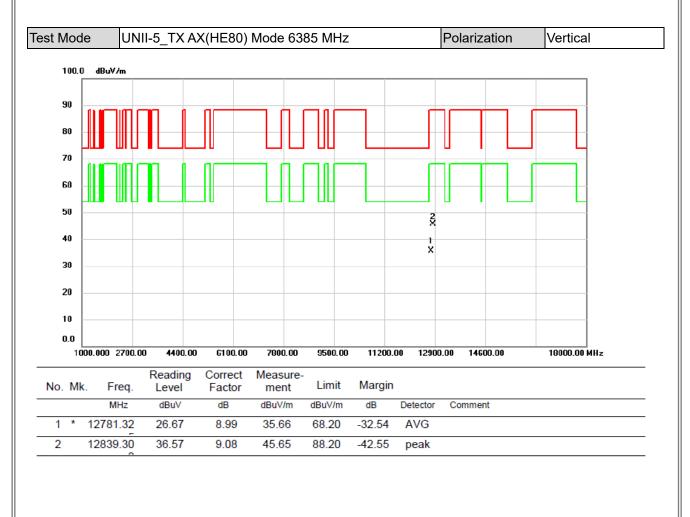

(1) Measurement Value = Reading Level + Correct Factor.

(1) Measurement Value = Reading Level + Correct Factor.

(1) Measurement Value = Reading Level + Correct Factor.

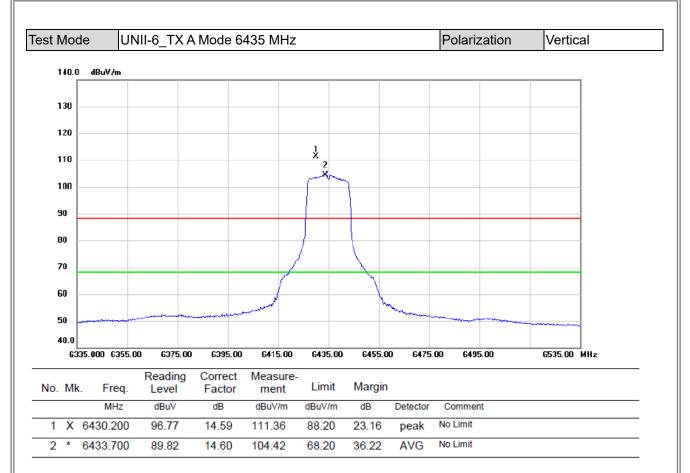


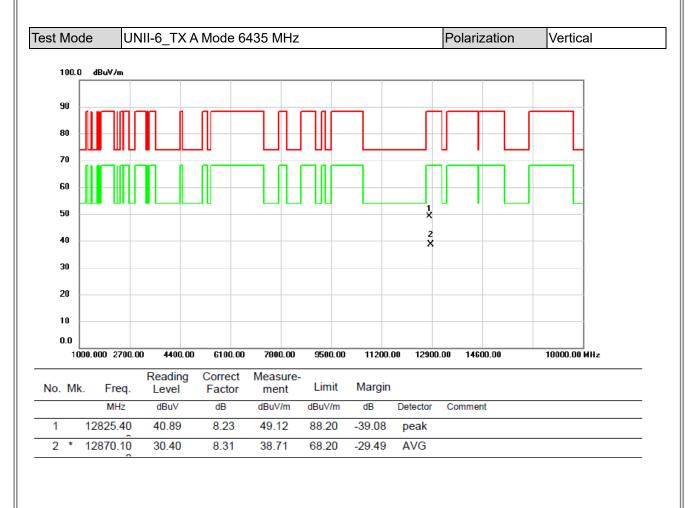
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



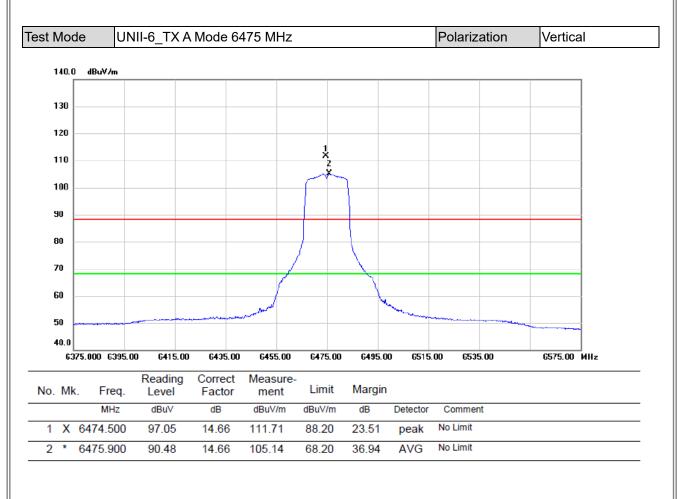
	NO.	M	K. ⊢	req.	Level	Factor	ment	LIITIIL	margin		
-			Ν	ИНz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
-	1	*	6388	.000	84.10	14.88	98.98	68.20	30.78	AVG	No Limit
	2	Х	6388	.200	92.30	14.88	107.18	88.20	18.98	peak	No Limit

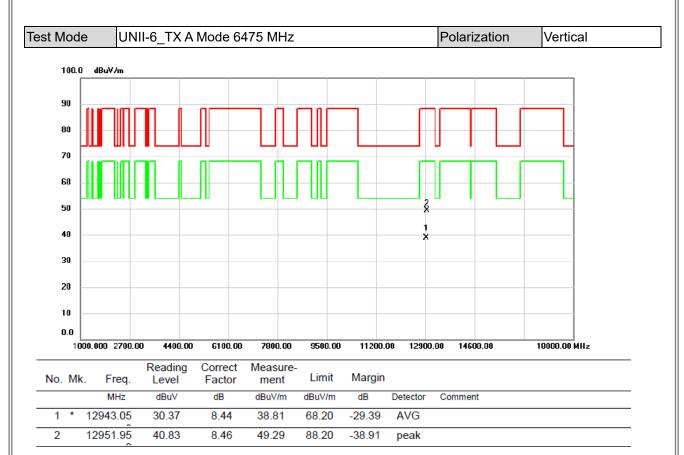
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

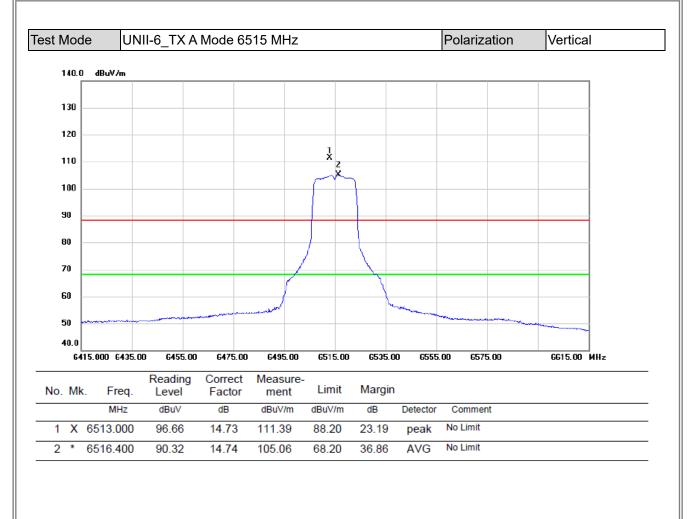



(1) Measurement Value = Reading Level + Correct Factor.

3ĩL

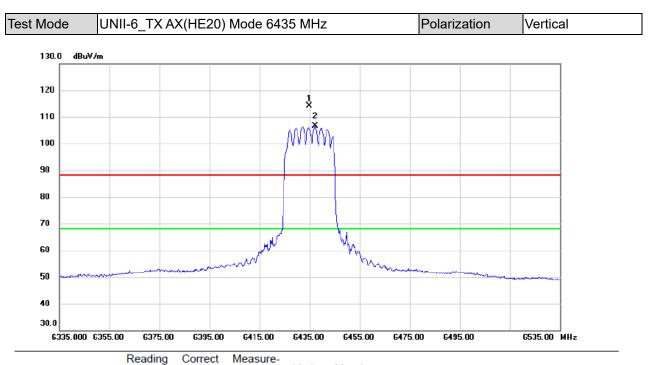

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.



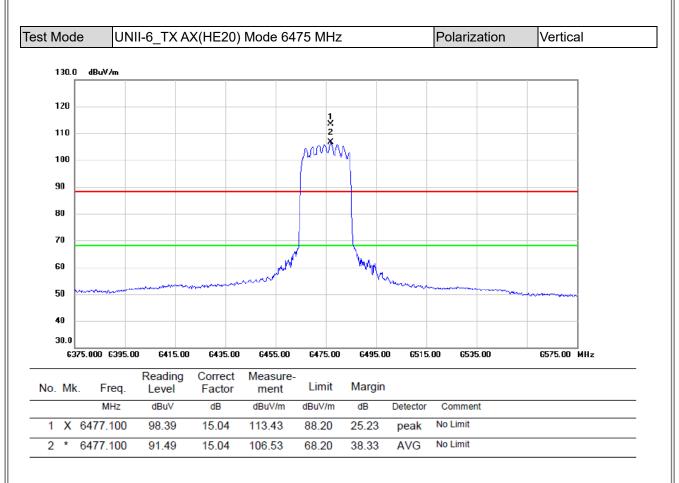
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

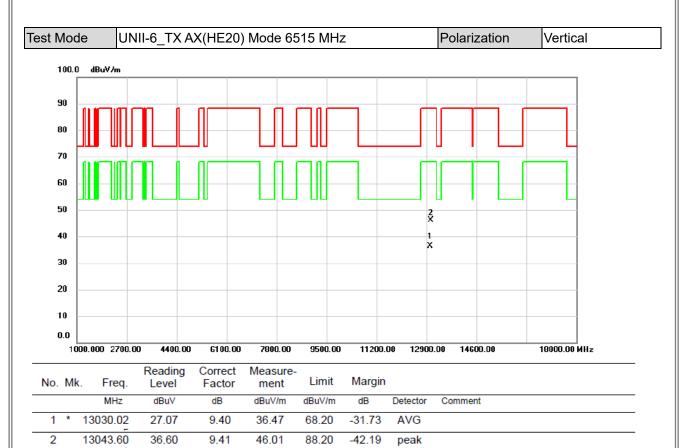
(1) Measurement Value = Reading Level + Correct Factor.

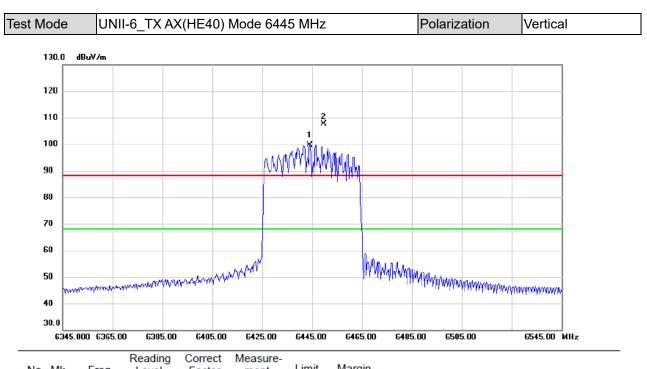
No. Mk.	Freq.	Level	Factor	ment	Limit	Margin		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 X 6	434.800	99.08	14.97	114.05	88.20	25.85	peak	No Limit
2 * 6	437.300	91.53	14.98	106.51	68.20	38.31	AVG	No Limit


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

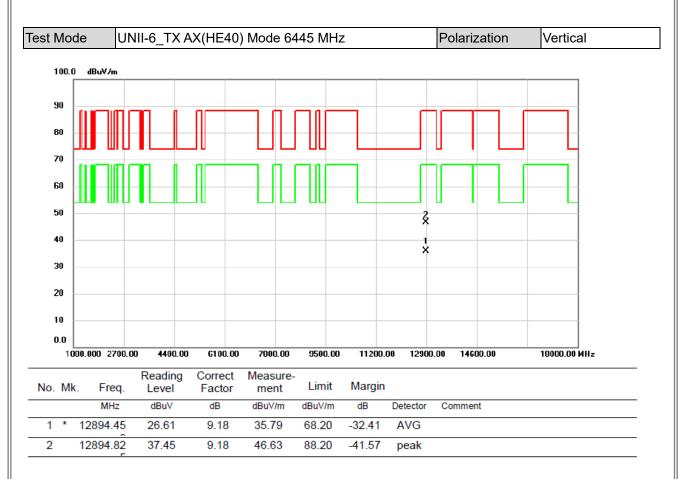

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

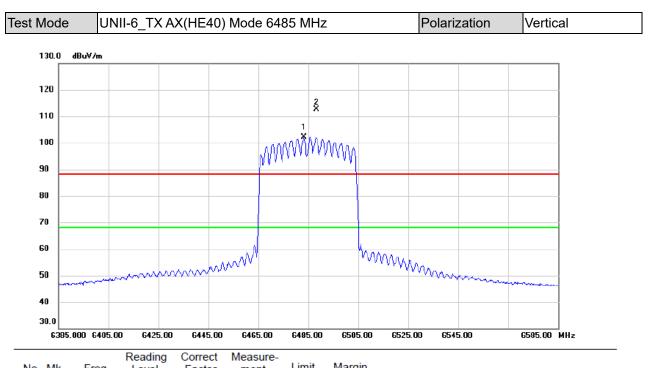

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

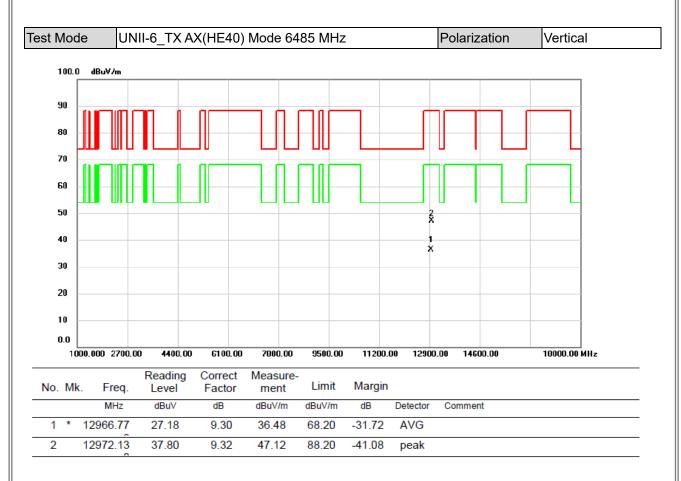
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



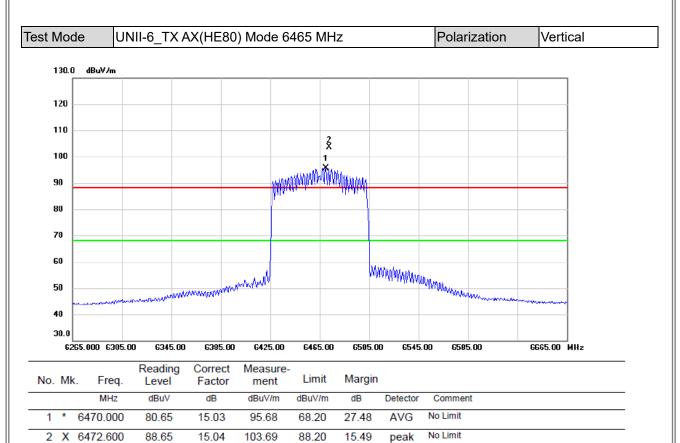
	No.	Mk	. Freq.	Level	Factor	ment	Limit	Margin		
-			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
-	1	*	6444.200	84.75	14.98	99.73	68.20	31.53	AVG	No Limit
	2	Х	6449.600	92.72	15.00	107.72	88.20	19.52	peak	No Limit

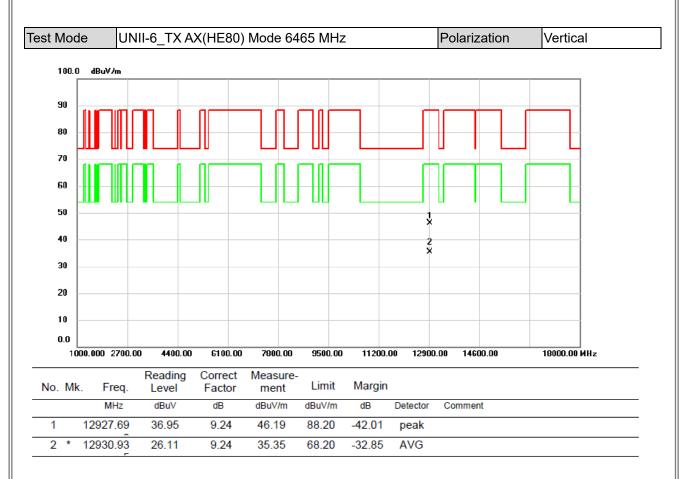

(1) Measurement Value = Reading Level + Correct Factor.

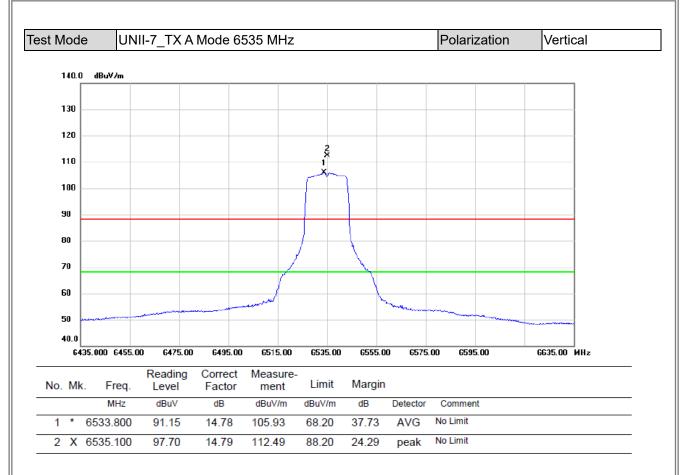
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



No).	Mk	. Freq.	Level	Factor	ment	Limit	Margin		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	1	*	6483.300	87.13	15.06	102.19	68.20	33.99	AVG	No Limit
2	2	Х	6488.400	97.64	15.07	112.71	88.20	24.51	peak	No Limit

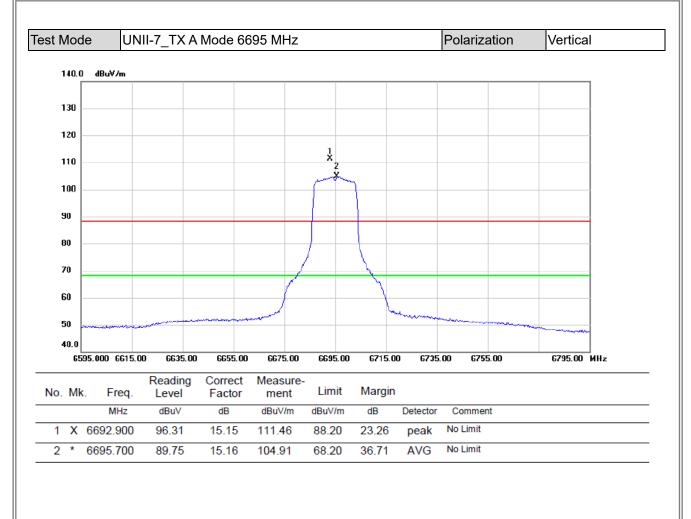

(1) Measurement Value = Reading Level + Correct Factor.


- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

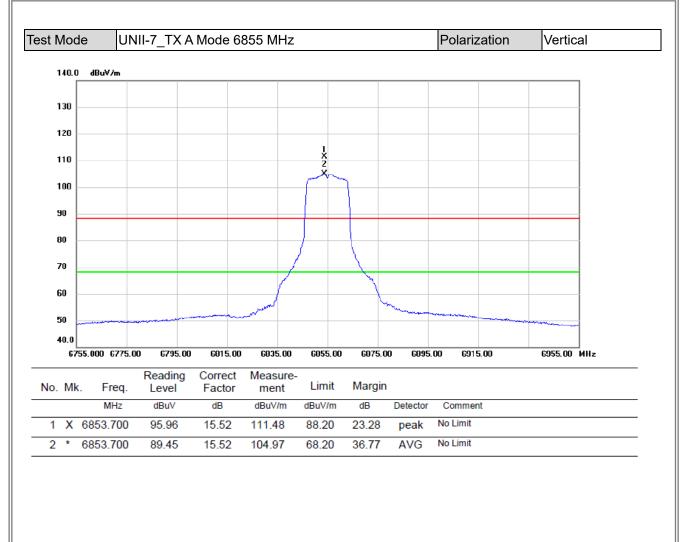

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BIL


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

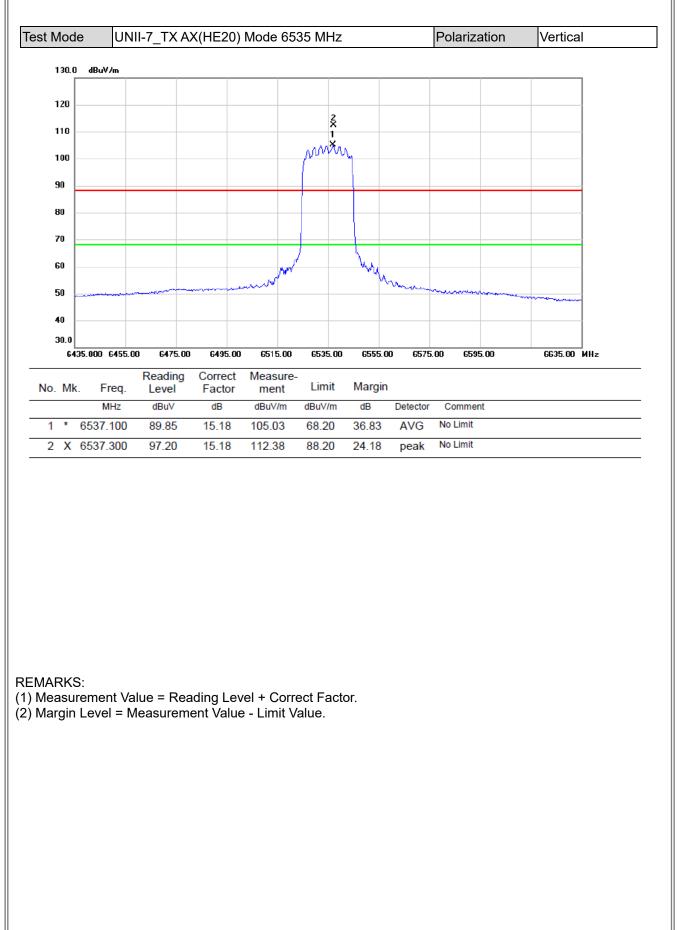
(1) Measurement Value = Reading Level + Correct Factor.

BIL


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

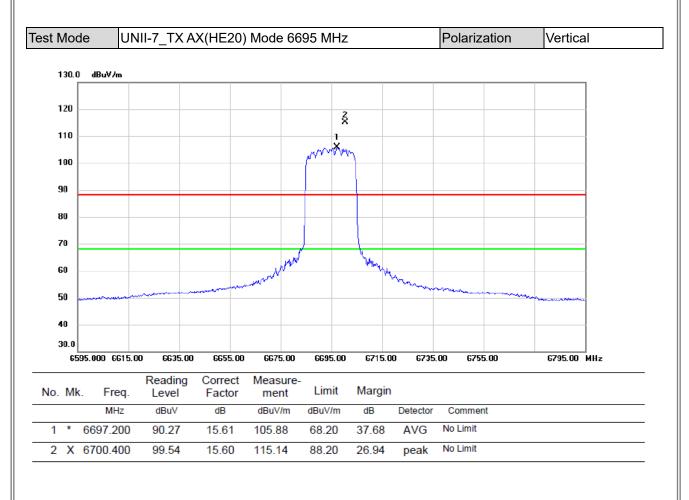
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

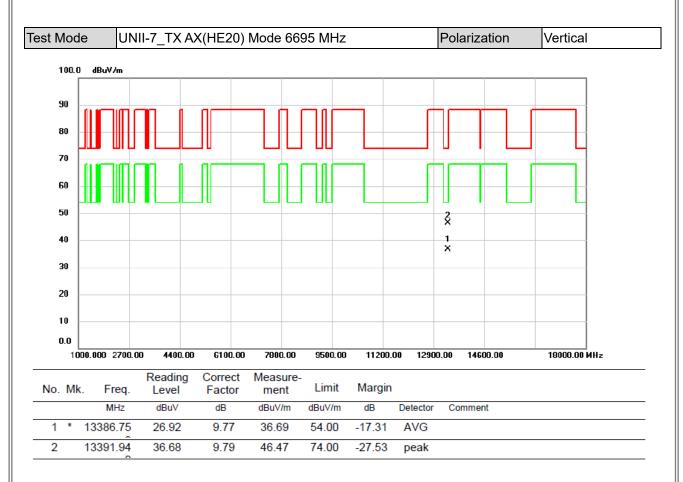
BIL

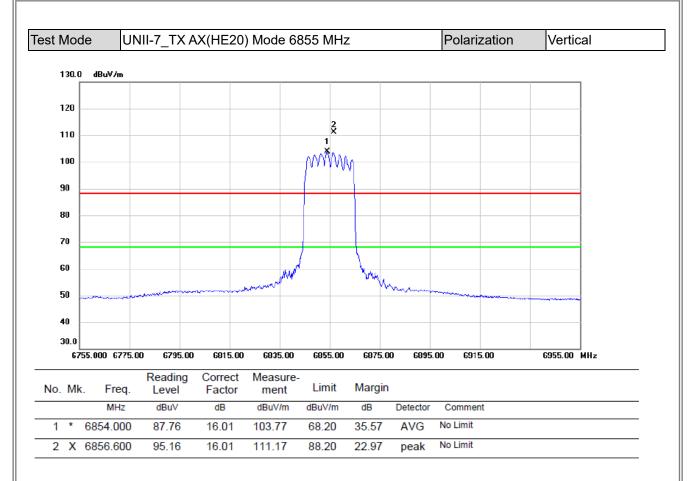

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



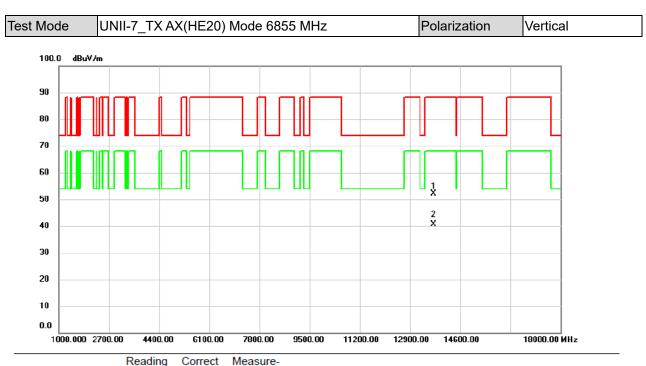
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.




(1) Measurement Value = Reading Level + Correct Factor.

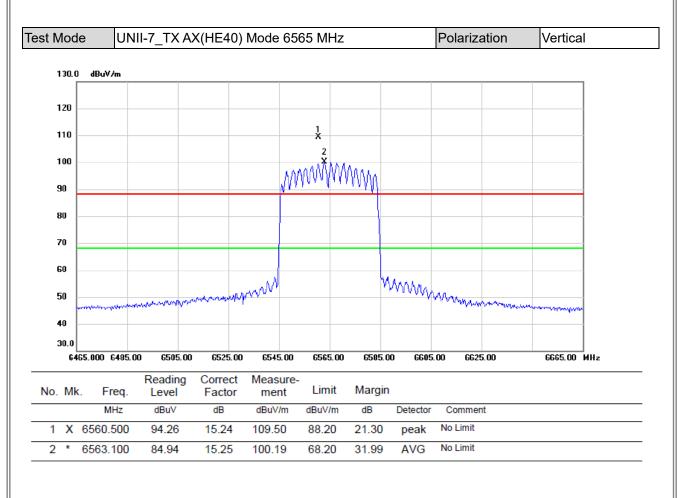


(1) Measurement Value = Reading Level + Correct Factor.

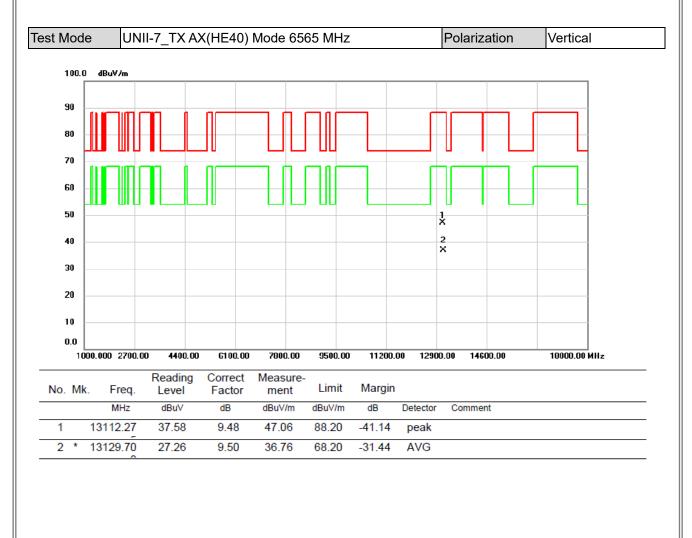


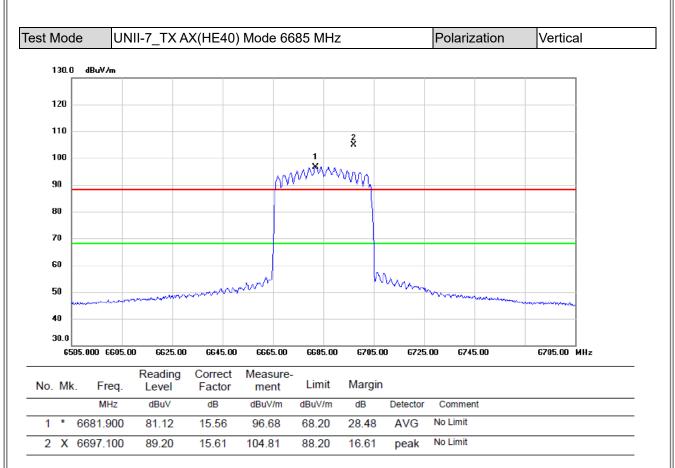
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

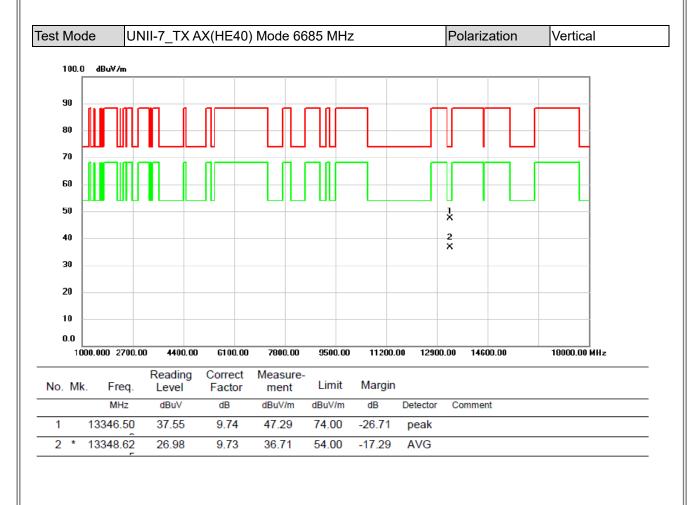
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

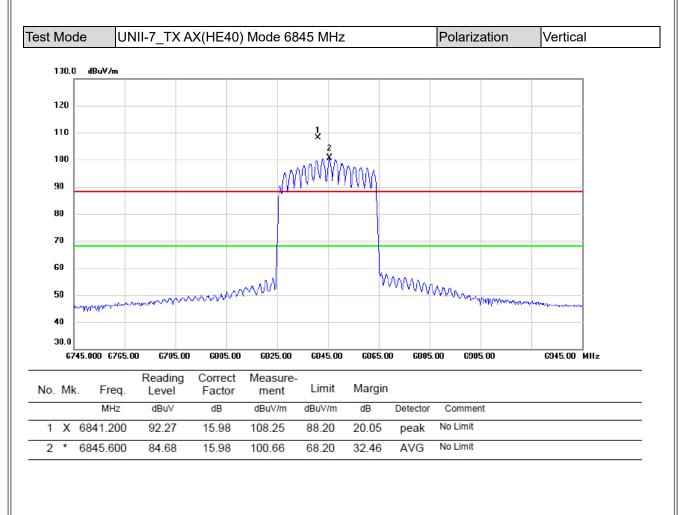


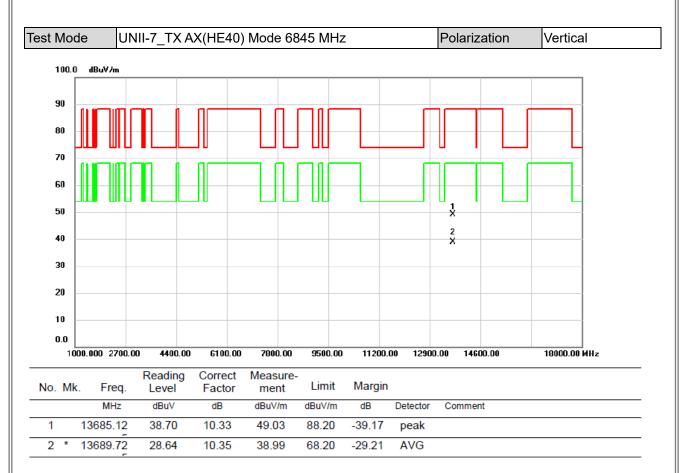
	No.	Mk	. Freq.			ment	Limit	Margin		
-			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	1		13706.62	41.83	10.39	52.22	88.20	-35.98	peak	
	2	*	13709.67	30.33	10.40	40.73	68.20	-27.47	AVG	

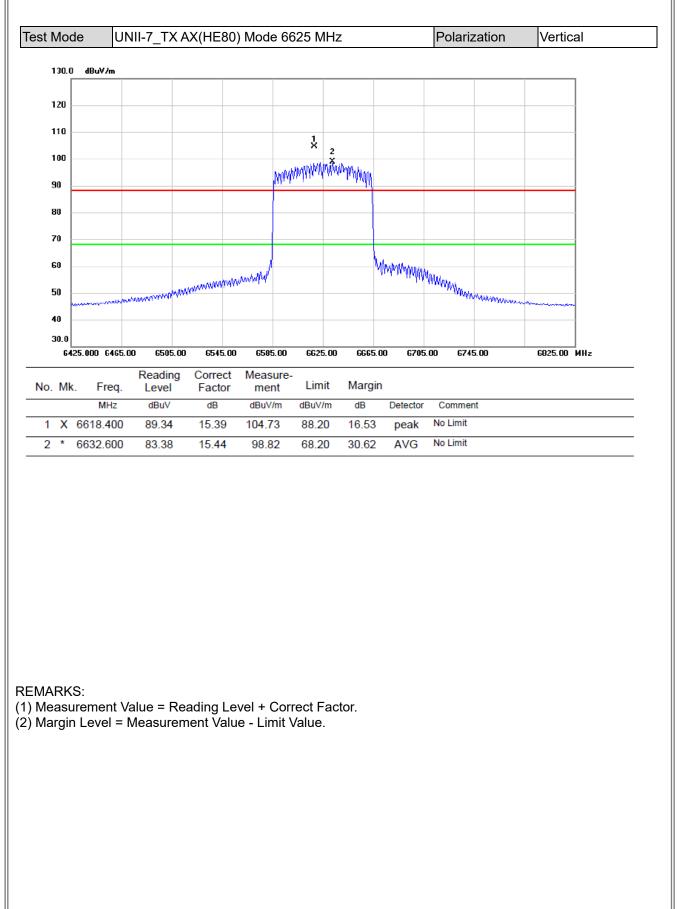

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

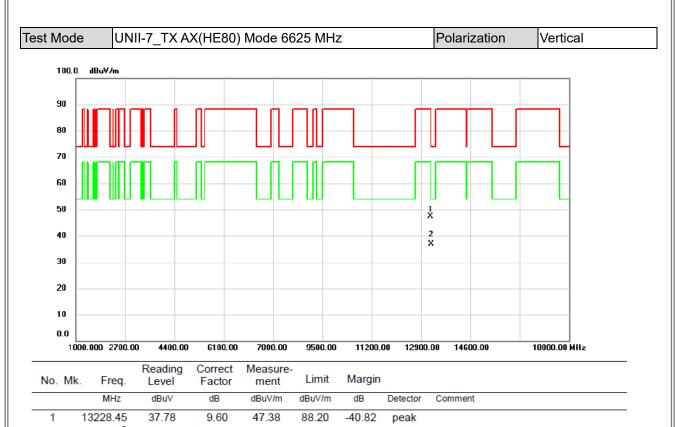

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Page 120 of 289

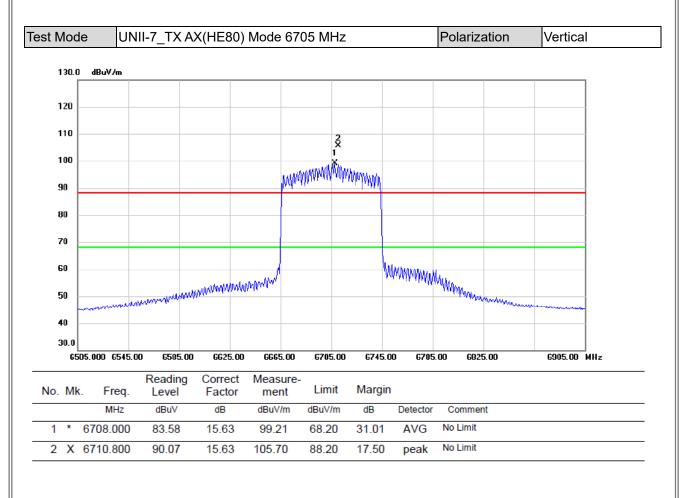
13250.05

2 *

27.20

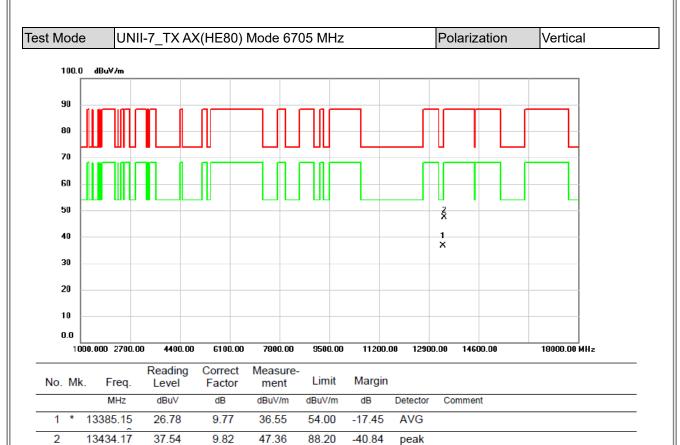
9.63

36.83

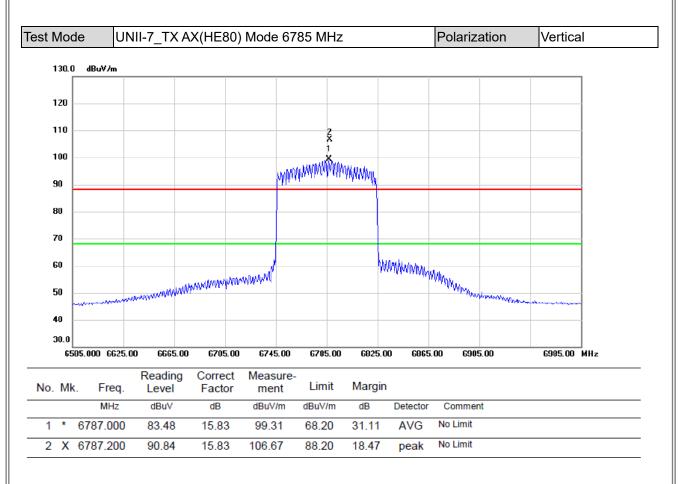

54.00

-17.17

AVG

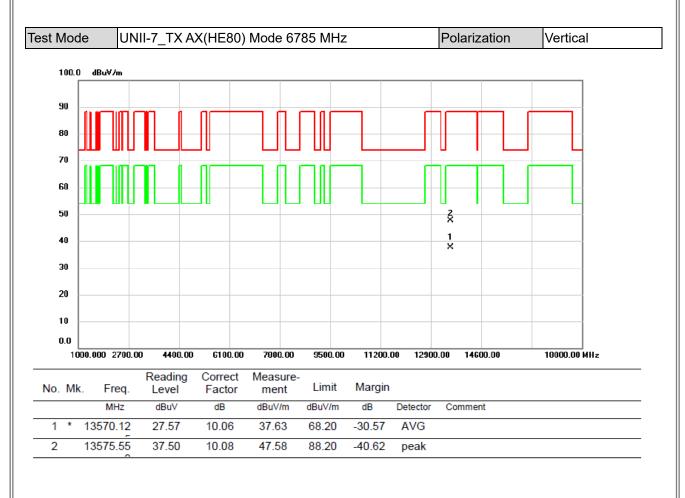

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

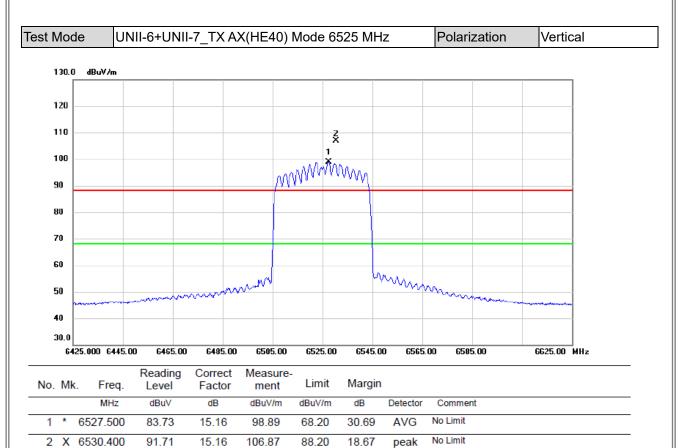
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

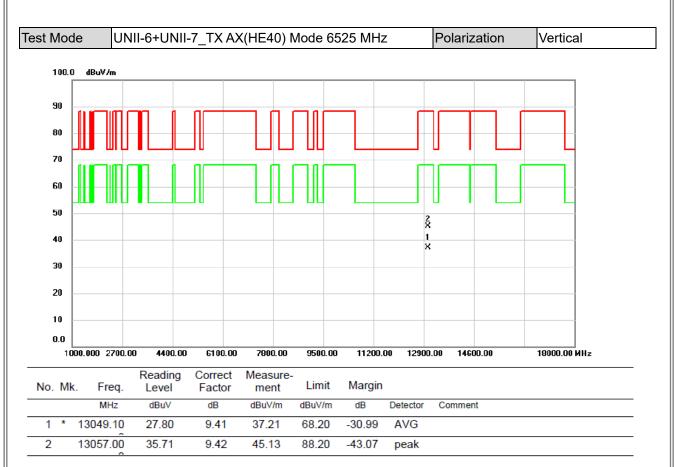


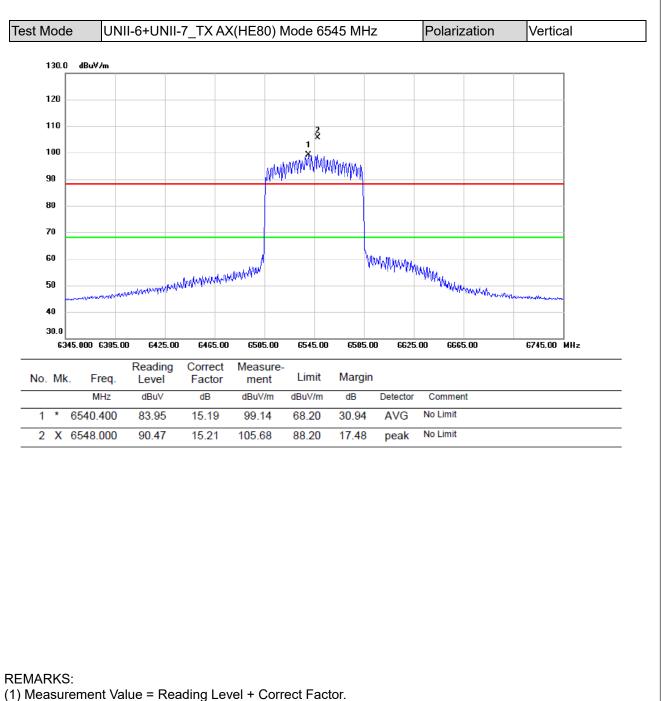
peak

REMARKS:

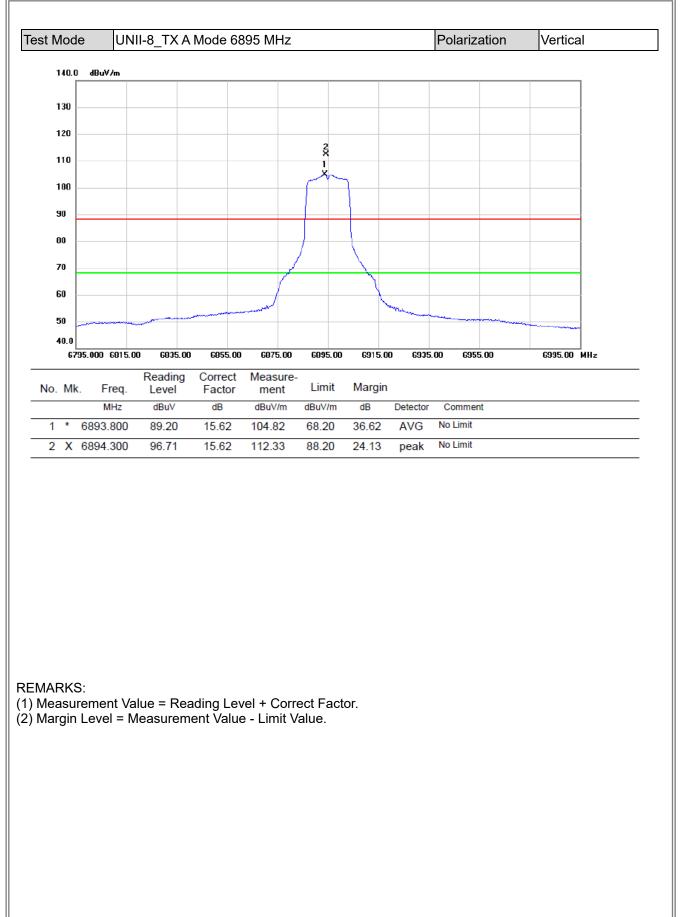

(1) Measurement Value = Reading Level + Correct Factor.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

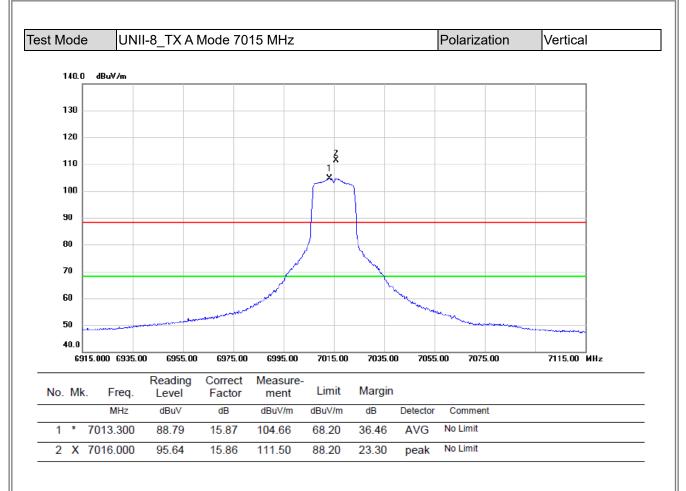

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



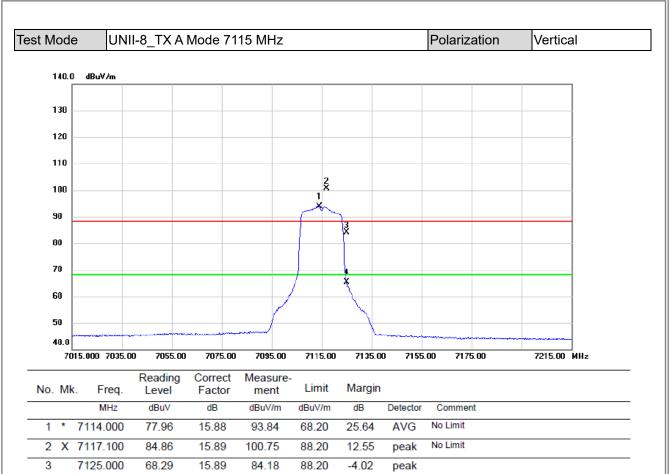
(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

BIL



(1) Measurement Value = Reading Level + Correct Factor.

BIL


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BIL

REMARKS:

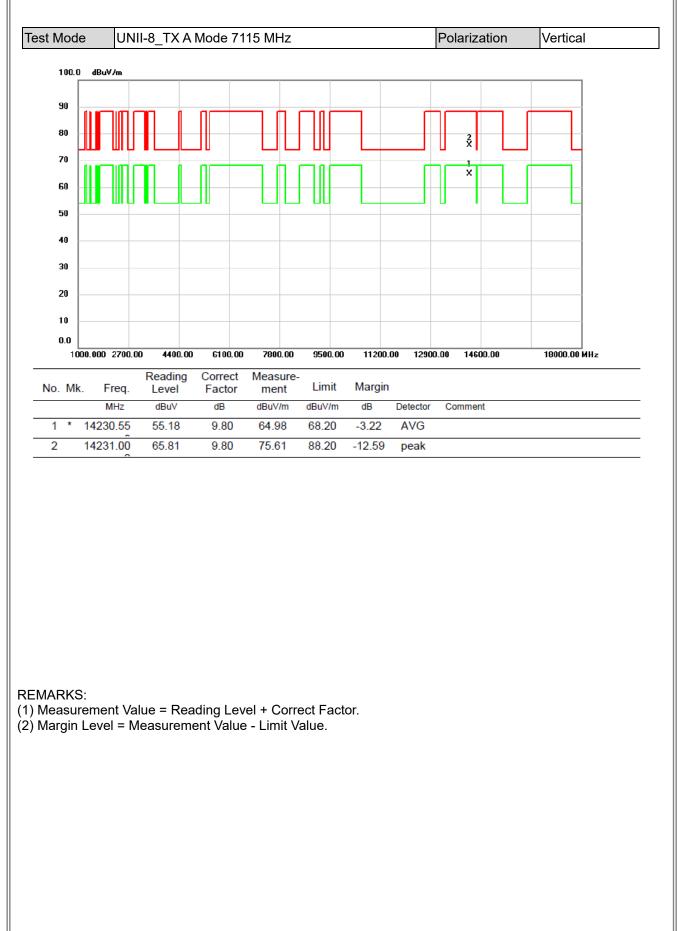
4

7125.000

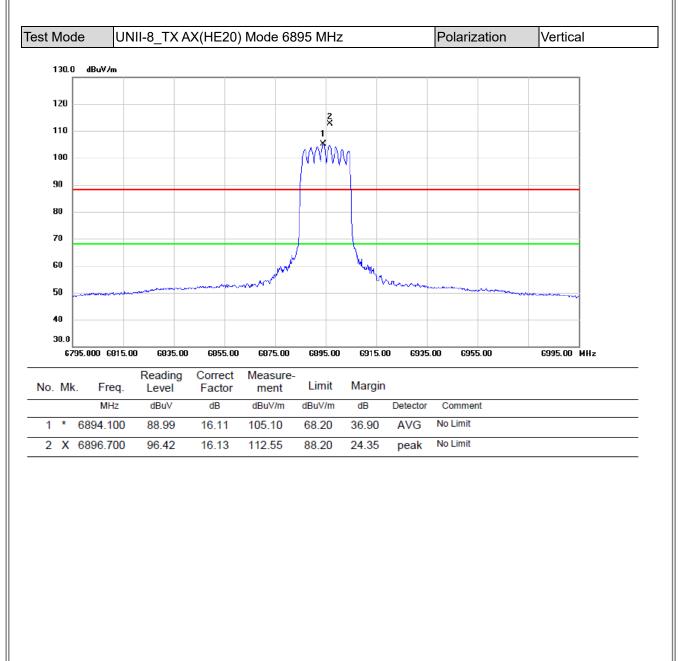
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

49.56

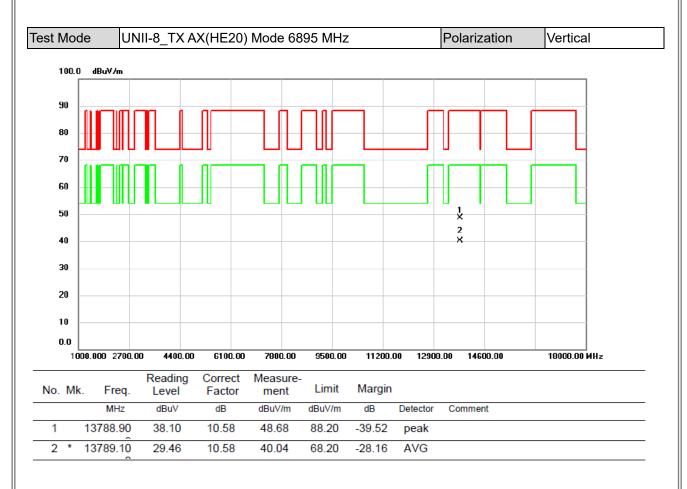
15.89

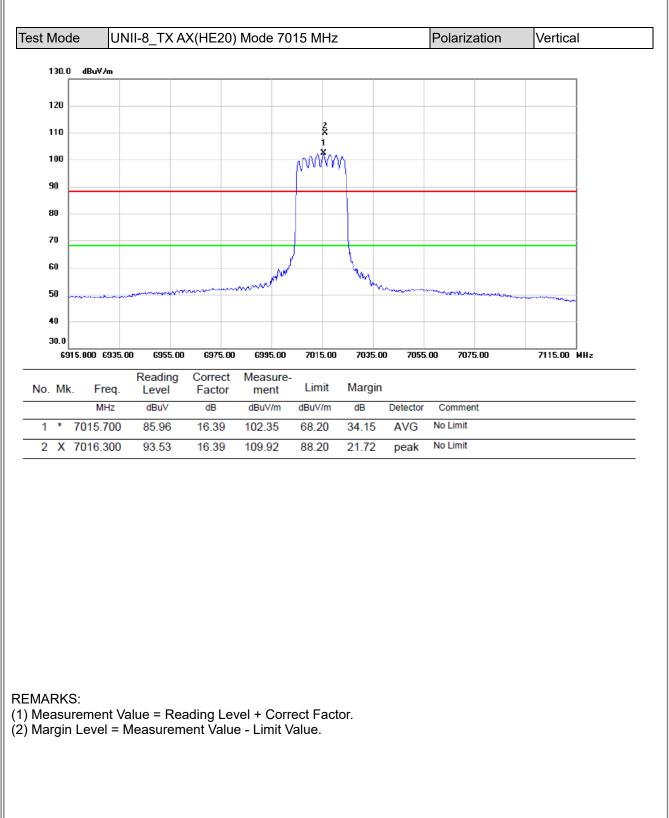

65.45

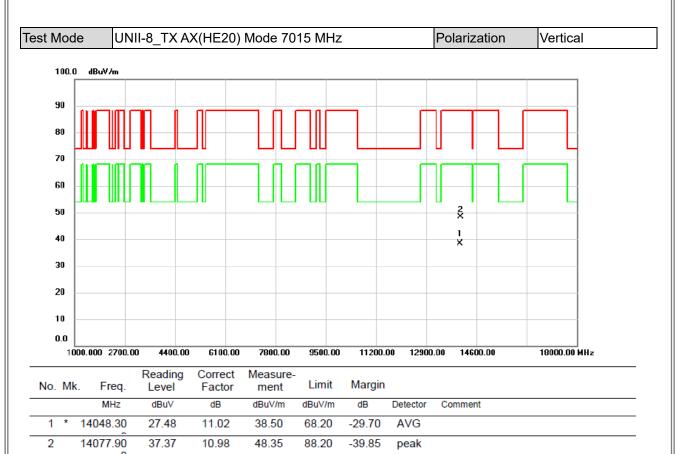
68.20


-2.75

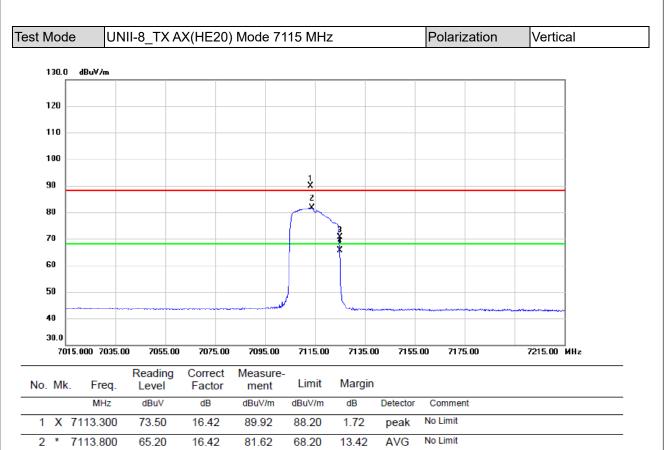
AVG




- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



(1) Measurement Value = Reading Level + Correct Factor.



- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

3

4

7125.000

7125.000

54.15

49.14

16.43

16.43

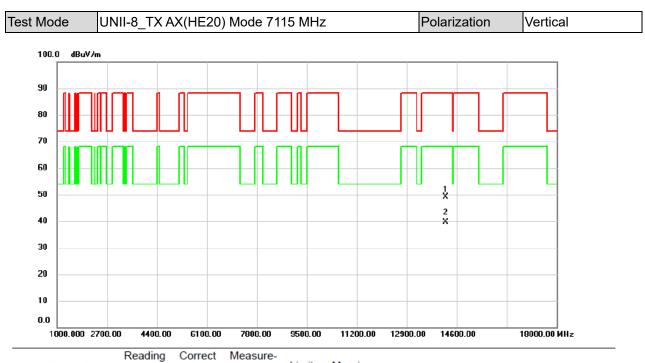
70.58

65.57

88.20

68.20

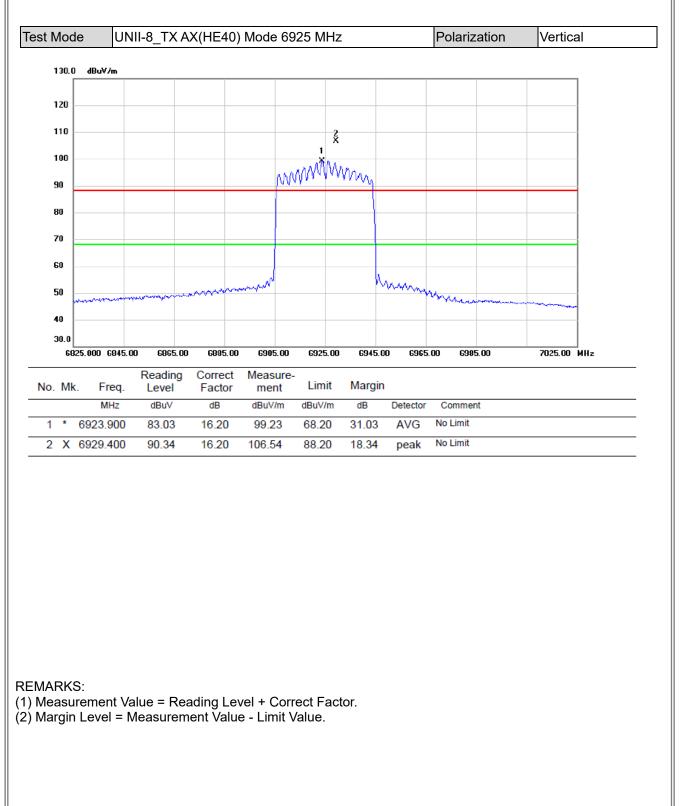
-17.62

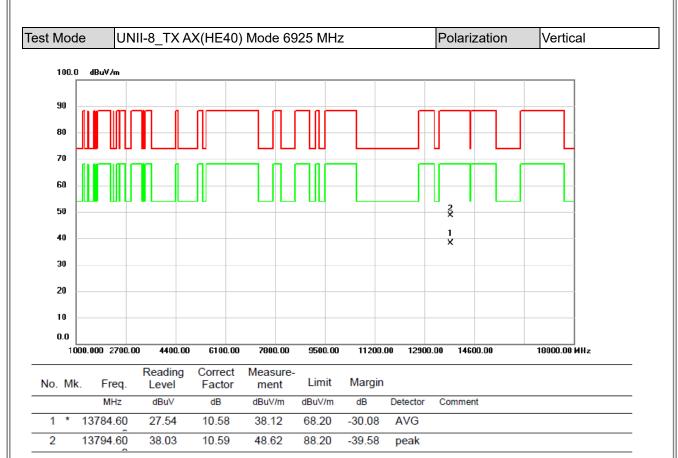

-2.63

peak

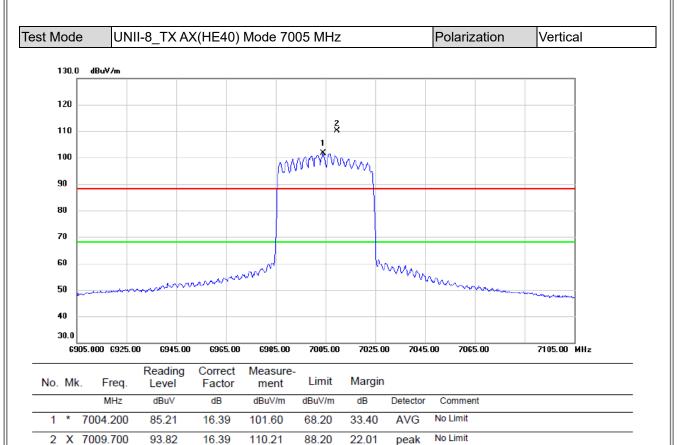
AVG

(1) Measurement Value = Reading Level + Correct Factor.

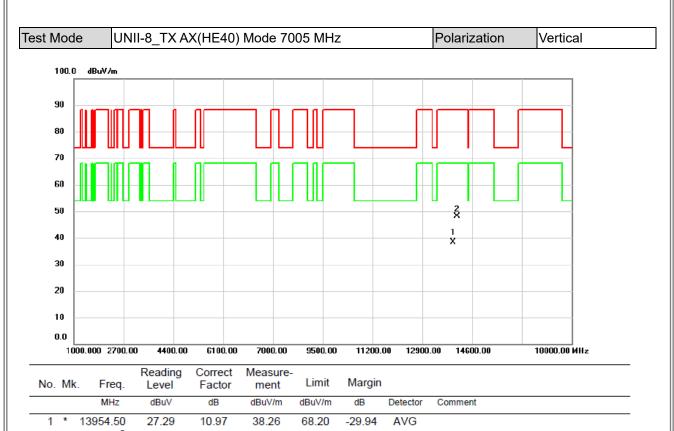



	No. M	1k.	Freq.	Level	Factor	ment	Limit	Margin		
_			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	1	14	225.10	38.22	10.79	49.01	88.20	-39.19	peak	
	2 *	14	229.90	28.89	10.78	39.67	68.20	-28.53	AVG	

(1) Measurement Value = Reading Level + Correct Factor.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



(1) Measurement Value = Reading Level + Correct Factor.

2

14095.40

37.10

10.96

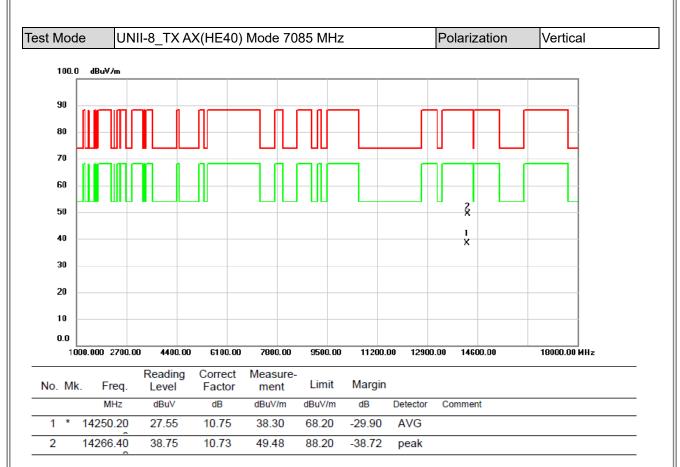
48.06

88.20

-40.14

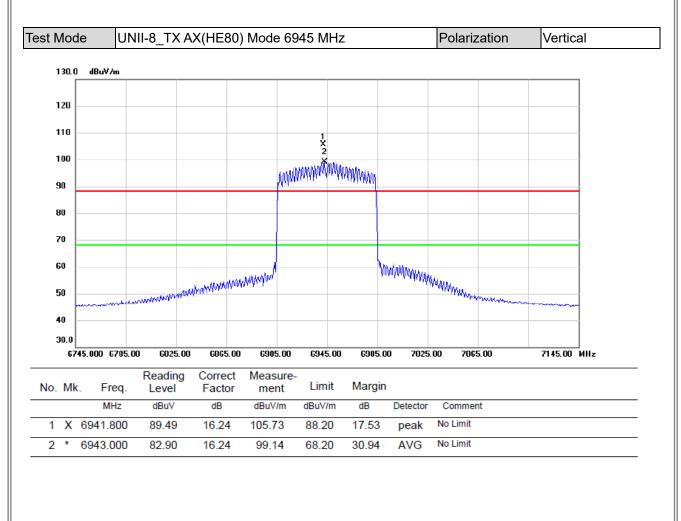
peak

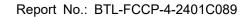
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

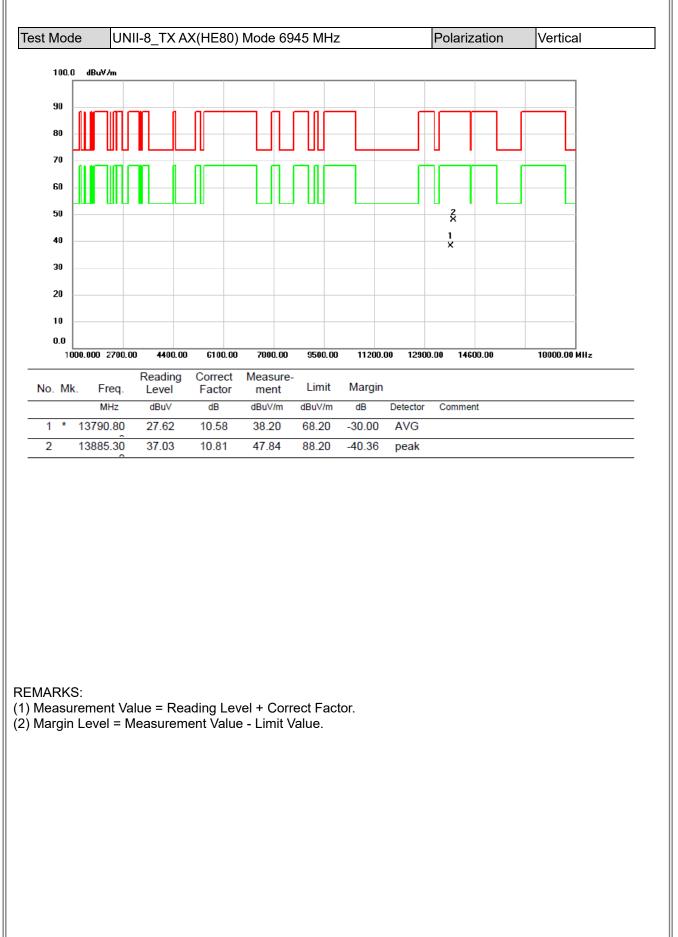


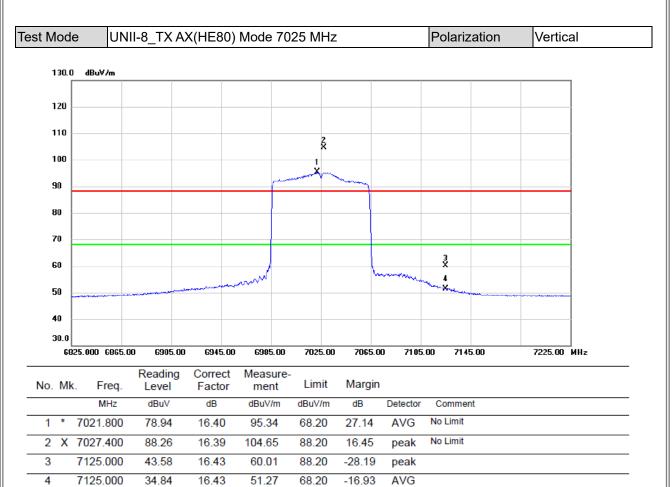
t Moo	le UN	II-8_TX A	X(HE40)	Mode 70	85 MHz			Polariz	ation	Vertica	l
130.0	0 dBuV/m										
											1
120											-
110					2						-
100					2×						-
90				perma	and the second second	Margaret .					
80											
70											
											1
60				and			×	į			
50			mound	and the			· ·····	and the second		****	-
40											
30.0											
69	985.000 7005.0		7045.00	7065.00	7095.00	7105	.00 7129	5.00 714	15.00	7185.00	MHz
lo. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Marg	in				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent		
1 *	7085.700	79.94	16.42	96.36	68.20	28.16	AVG	No Limit			
2 X	7090.600	87.53	16.41	103.94	88.20	15.74	peak	No Limit			
3	7125.000	42.39	16.43	58.82	88.20	-29.38	B peak				
4	7125.000	34.37	16.43	50.80	68.20	-17.4() AVG				
5	7125.600	36.60	16.43	53.03	88.20	-35.17	7 peak				
6	7125.600	34.92	16.43	51.35	68.20	-16.8	5 AVG				

- REMARKS: (1) Measurement Value = Reading Level + Correct Factor. (2) Margin Level = Measurement Value Limit Value.

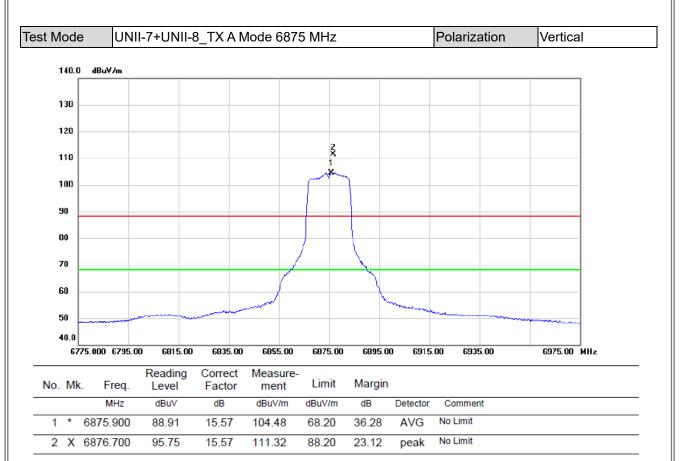



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

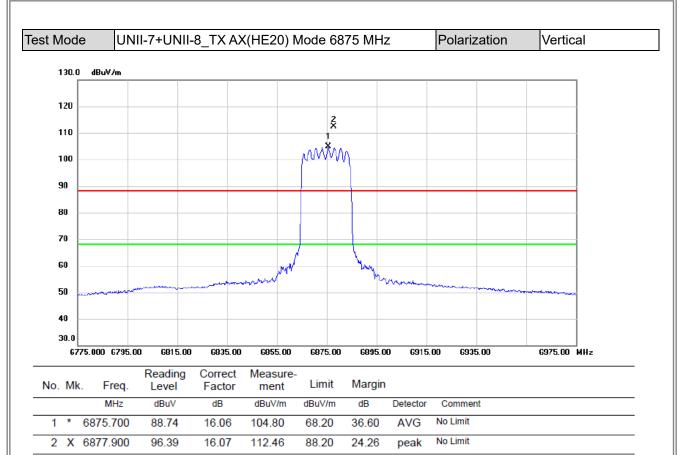


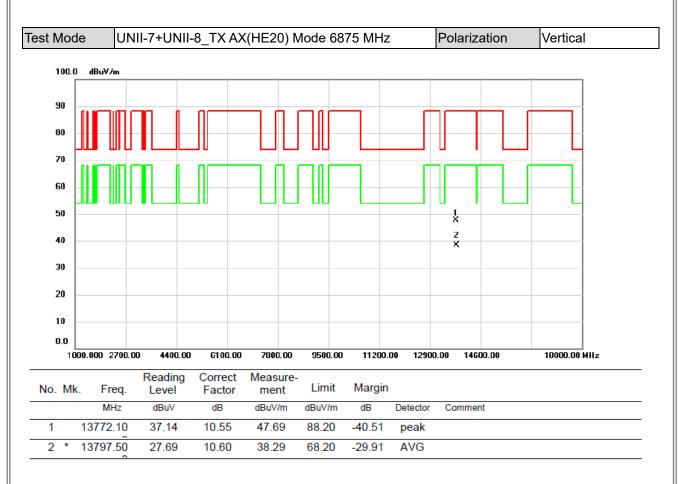

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

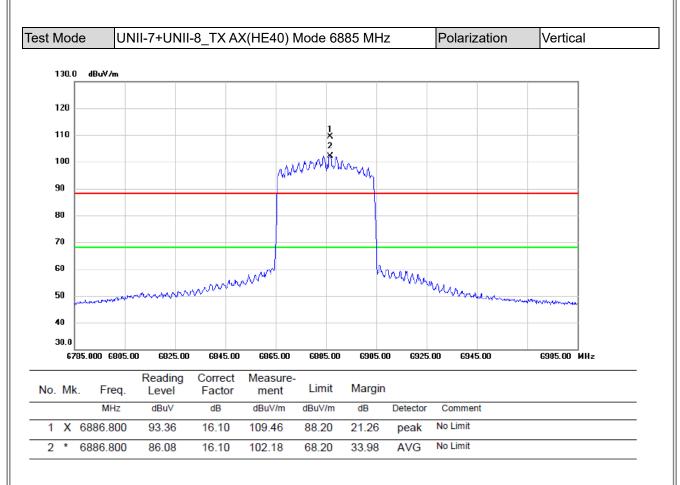

(2) Margin Level = Measurement Value - Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

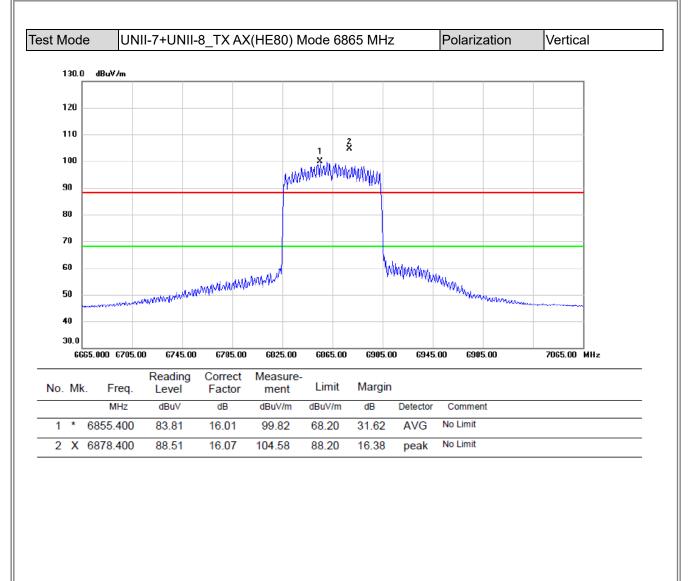

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BL


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BIL

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

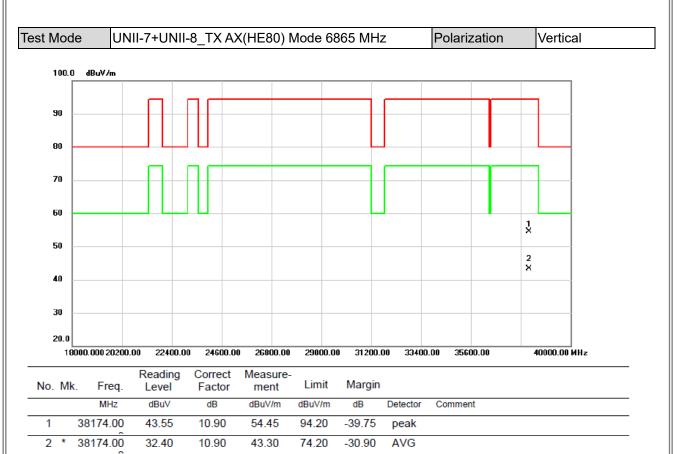
2

13647.40

38.24

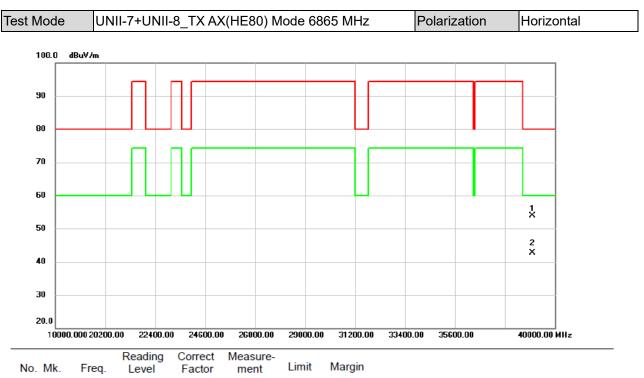
10.25

48.49


88.20

-39.71

peak


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

NO. MR. TTCq.		x. ricy.	Level	Factor	ment	Linne	margin		
-		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	1		42.39	11.60	53.99	80.00	-26.01	peak	
-	2 *	39021.00	31.15	11.60	42.75	60.00	-17.25	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX E - BANDWIDTH

(MHz)(MHz)(MHz)(MHz)(MHz)01595524.5817.42320Cd45617525.2817.99320Cd93641523.9617.36320CdCH0CH3CH45CH3CH45CH3CH45CH3CH45CH3CH45CH3CH45CH3CH45CH3CH45CH3CH45CH3CH3CH3CH3CH3CH3CH3CH3C	Result
Chainmain (MHz) (Mz) (Mz) </td <td>Result</td>	Result
45 6175 25.28 17.99 320 Cd 93 6415 23.96 17.36 320 Cd CH01 CH3 CH3 CH3 Light colspan="2">CH3 CH01 CH3 CH3 CH3 CH45 CH3 CH3 CH	
	Complie
<figure></figure>	Complies
<figure><figure></figure></figure>	Complie
Alter Freg S 5500000 GHz	нонисе 875 Септонос Сеп
The second secon	0.50 PM/Mg/01, 2004 Freque
Control 6.05 GHz Egyn as 0 MHz Span 36 MHz <td>-banke BTS - Center - C</td>	-banke BTS - Center - C