EUmmWV4 - SN:9626

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6
11003	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	10.24	±9.6
11004	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	±9.6
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	±9.6
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	±9.6
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.46	±9.6
11008	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.51	±9.6
11009	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.76	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.95	±9.6
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.96	±9.6
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	±9.6
11013	AAA	IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
11014	AAA	IEEE 802.11be (320 MHz, MCS2, 99pc duty cycle)	WLAN	8.45	±9.6
11015	AAA	IEEE 802.11be (320 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
11016	AAA	IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle)	WLAN	8.44	±9.6
11017	AAA	IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle)	WLAN	8.41	±9.6
11018	AAA	IEEE 802.11be (320 MHz, MCS6, 99pc duty cycle)	WLAN	8.40	±9.6
11019	AAA	IEEE 802.11be (320 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
11020	AAA	IEEE 802.11be (320 MHz, MCS8, 99pc duty cycle)	WLAN	8.27	±9.6
11021	AAA	IEEE 802.11be (320 MHz, MCS9, 99pc duty cycle)	WLAN	8.46	±9.6
11022	AAA	IEEE 802.11be (320 MHz, MCS10, 99pc duty cycle)	WLAN	8.36	±9.6
11023	AAA	IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle)	WLAN	8.09	±9.6
11024	AAA	IEEE 802.11be (320 MHz, MCS12, 99pc duty cycle)	WLAN	8.42	±9.6
11025	AAA	IEEE 802.11be (320 MHz, MCS13, 99pc duty cycle)	WLAN	8.37	±9.6
11026	AAA	IEEE 802.11be (320 MHz, MCS0, 99pc duty cycle)	WLAN	8.39	±9.6

 $^{^{\}mathsf{E}}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z21-60224

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 919

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 28, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

	200		
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Reference Probe EX3DV4	SN 3846	6-Apr-21(CTTL-SPEAG,No.Z21-60084)	Apr-22
DAE4	SN 777	8-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22
		lei	

Name **Function** Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Qi Dianyuan SAR Project Leader

Issued: June 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +\$6-10-62304633-2504 http://www.chinattl.cn

Glossary:

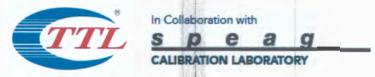
TSL

tissue simulating liquid

ConvF N/A sensitivity in T\$L / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz


Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.6Ω+ 2.17jΩ
Return Loss	- 24.8dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.070 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	' '		1
3.0 0 1 13		SPEAG	
Manufactured by	1	SPEAG	
Manufactured by		0, 5,0	
		1	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 919

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\varepsilon_r = 38.82$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

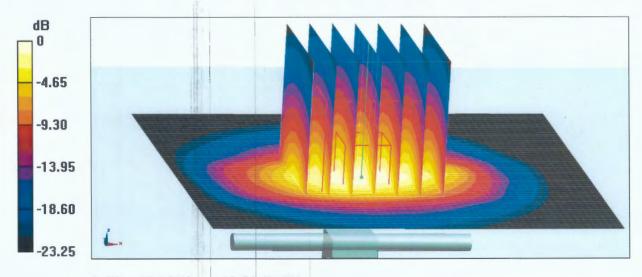
 Probe: EX3DV4 - SN3846; ConvF(7.45, 7.45, 7.45) @ 2450 MHz; Calibrated: 2021-04-26

Date: 05.28.2021

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 2021-01-08
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.10 V/m; Power Drift = -0.09 dB

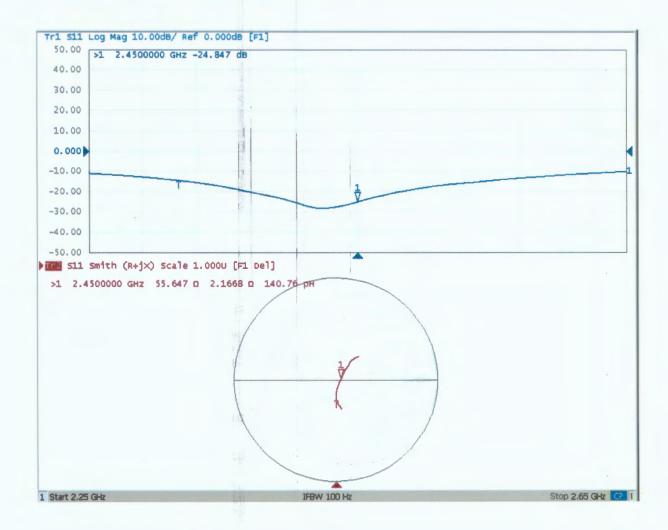

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.95 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 45.9%

Maximum value of SAR (measured) = 22.6 W/kg


0 dB = 22.6 W/kg = 13.54 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

Impedance Measurement Plot for Head TSL

Asset No.:	E-434	Model No.:	D2450V2	Serial No.:	919
Environmental		Original Cal.	May 28, 2021	Next Cal. Date:	May 28, 2024
nvii onmentai	22.20, 00 %			Next Cal. Date:	May 20, 2024
		Standar		D1- C+:-1 A	1 C: 6: - Al:
1	IEEE Std 1528-2013		tice for Determining the Human Head from Wirele	•	
1	TEEE 5td 1020 2019	Rate (Sint) In the	Texhniques,		ices. measurement
		Procedure to determi	ne the Specific Absorpt:		ireless communicatio
2	IEC 62209-2	devices used in close	e proximity to the human	body (frequency rang	e of 30 MHz to 6 GHz
3	KDB865664	SA	R Measurement Requiremen	its for 100 MHz to 6	GHz
		Equipment I	nformation		
Equipment:	Manufacturer:	Model No.:	Serial No.:	Cal. Organization:	Cal. Date:
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	N/A	July 8, 2023
DC Source metter	1teck	IT6154	006104126768201001	N/A	July 8, 2023
ector Network Anal	Agilent	E5071C	MY46102965	N/A	February 11, 2023
Signal Generator	Agilent	N5172B	MY53050758	N/A	February 11, 2023
Smart Power Sensor	R&S	NRP18S	726174	N/A	June 12, 2023
ielectric Assessment	Speag	DAK-3.5	1226	N/A	January 24, 2022
Directional Coupler	Woken	TS-PCCOM-05	0107090019	N/A	February 11, 2023
Coupler	Woken	0110A056010-10	COM5BNW1A2	N/A	February 11, 2023
Digital Themometer	TES	TES-1310	210706071	N/A	November 3, 2023
Model No			For Head Tissue		
	Item	Original Cal. Result	Verified on 2023/12/13	Deviation	Result
	Impedance, transformed	55. 6 Ω +2. 17 j Ω	55. 59 Ω +2. 14 j Ω	<5Ω	Pass
	to feed point			\ J \$2	1 d55
D2450V2	Return Loss(dB)	-24.8	-24. 91	0.4%	Pass
	SAR Value for 1g(mW/g)	13. 1	12. 7	-3.1%	Pass
	SAR Value for	5 . 95	5. 86	-1,5%	Pass
	10g (mW/g)				
Tetrange State State	Impedance Test-Head			Return Loss-Head	
5071G Network Analyzer Ive Ch/Trace 2 Response 3 Stimulus 4 MizjAnalysis 5 Instr	Salte :		■ 15074C Network Analyzer 1 Active Ch/Trace 2 Response 1 Stinulus 4 Net/Analysis 5 Instr St	ate	
1 511 5mith (R+jx) Scale 1.0000 [F1] 1 2.4500000 GHz 55.598 0 2.1435 0 1	39r25 pH	Format Smith (R+jX)	Marker 1 2,450000000 GHz		HAIX Male
		Log Mag	30-00 >1 7.4500000 GHz -24.910 dB		J Marke
		Phase	20.00		Abries
		Croup Delay	10.00		Marke
		• Smith R+yr			Mank
		Polar	0.000		More M
		Lin Mag	-10.00		1. Ref Ma
	′ 0	SWR	-20,00		Chier Mile
		Réal		,	Market Ref Ma
		Imaginary	-10.00		(Kelf Market CFF
Erpand Phase			-40.00		Patr
		Positive Phase	-50,00		
		Poten			
			-60.00		
that 2.25 GHz	FEW 70 ksc	Stop 2.65 GH 100 T	-70.00	FEW 70 k-c	Stop 2.65 GHz [177]

Validation Report for Head TSL

Test Laboratory: BTL Inc.

System Check_H2450_1213

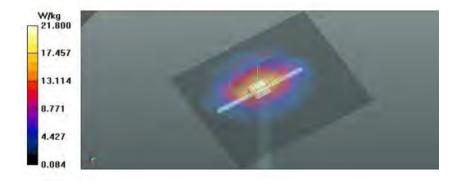
DUT: Dipole 24500 MHz D2450V2;SN:919;

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; σ = 1.826 S/m; ε = 39.336; ρ = 1000 kg/m³ Ambient Temperature: 22.2 °C; Liquid Temperature: 22.1 °C

DASY Configuration:

- Probe: EX3DV4 SN7544; ConvF(7.57, 7.57, 7.57) @ 2450 MHz; Calibrated: 2023/2/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1390; Calibrated: 2023/11/20
- Phantom: SAM Mid v5.0; Type: QD000P40CD; Serial: S/N:1896
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 20.9 W/kg

Zoom Scan (5x5x7) /Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 94.65 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.86 W/kg Maximum value of SAR (measured) = 21.8 W/kg

Calibrator:

Justin Huang

Approver:

Date: 2023/12/13

Herbort lin

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Client

BTL Inc .

Certificate No:

Z21-60226

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1160

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 27, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
Power sensor NRP8S	104291	23-Sep-20 (CTTL, No.J20X08336)	Sep-21
ReferenceProbe EX3DV4	SN 3617	27-Jan-21(SPEAG,No.EX3-3617_Jan21)	Jan-22
DAE4	SN 777	08-Jan-21(CTTL-SPEAG,No.Z21-60003)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
NetworkAnalyzerE5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22

Name Function Signature

Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: June 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com

http://www.chinattl.cn

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

- 11	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.68 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	7.78 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	78.0 W/kg ± 24.4 % (<i>k</i> =2)	
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition		
SAR measured	100 mW input power	2.23 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 24.2 % (k=2)	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	5.06 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied

9	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.22 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.5 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.6 W/kg ± 24.2 % (k=2)

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.9Ω - 6.08jΩ		
Return Loss	- 24.1dB		

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.2Ω - 1.85jΩ		
Return Loss	- 27.1dB		

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	53.1Ω - 1.51jΩ		
Return Loss	- 29.6dB		

General Antenna Parameters and Design

	1844	
Electrical Delay (one direction)	1	1.105 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	1000		
Manufactured by	1	SPEAG	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Date: 05.27.2021

Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.683 S/m; ϵ_r = 36.33; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.061 S/m; ϵ_r = 35.72; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.224 S/m; ϵ_r = 35.5; ρ = 1000 kg/m³,

Phantom section: Center Section

DASY5 Configuration:

Probe: EX3DV4 - SN3617; ConvF(5.4, 5.4, 5.4) @ 5250 MHz; ConvF(5, 5, 5)
 @ 5600 MHz; ConvF(5.12, 5.12, 5.12) @ 5750 MHz; Calibrated: 2021-01-27

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn777; Calibrated: 2021-01-08

Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062

 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.64 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.23 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 64.8%

Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.46 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.3 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

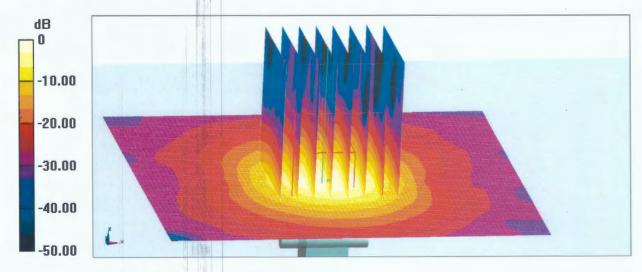
Ratio of SAR at M2 to SAR at M1 = 62.4%

Maximum value of SAR (measured) = 19.7 W/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax; +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.41 V/m; Power Drift = -0.08 dB

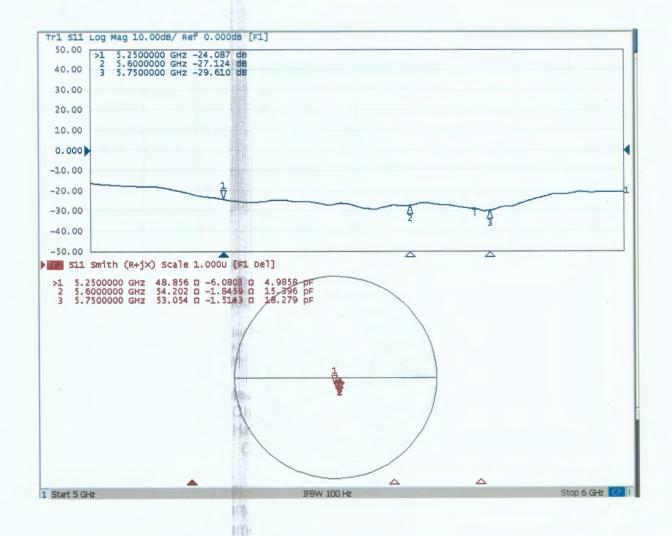

Peak SAR (extrapolated) = 35.0 W/kg

SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.16 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 61.4%

Maximum value of SAR (measured) = 18.6 W/kg


0 dB = 18.6 W/kg = 12.70 dBW/kg

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

自劇

碘

sset No.:	E-436	Model No.:	D5GHzV2	Serial No.:	1160			
nvironmental		Original Cal. Date:	May 27, 2021	Next Cal. Date:	May 27, 2024			
	31.7	Standar		HONE COIL DOVE.	may arry avair			
				the Peak Spatial-Average	ed Specific Absorpite			
1	IEEE Std 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate(SAR) in the Human Head from Wireless Communication Devices: Measurement Texhniques, June 2013						
2	IEC 62209-2		Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz),					
3	KDB865664	SA	AR Measurement Requirer	ments for 100 MHz to 6 G	Hz			
		Equipment 1	Information	1	1			
Equipment:	Manufacturer:	Model No.:	Serial No.:	Cal. Organization:	Cal. Date:			
Power Amplifier	Talent Microwave	TLPA1G18G-40-33-HS	220330003	N/A	February 11, 202			
DC Source metter	1teck	IT6154	006104126768201001	N/A	July 8, 2023			
ctor Network Analy	Agilent	E5071C	MY46102965	N/A	February 11, 202			
Signal Generator	Agilent	N5172B	MY53050758	N/A	February 11, 202			
Smart Power Sensor	R&S	NRP18S	726174	N/A	June 12, 2023			
ielectric Assessment	Speag	DAK-3.5	1226	N/A	January 24, 2022			
irectional Coupler	Woken	TS-PCCOM-05	0107090019	N/A	February 11, 202			
Coupler	Woken	0110A056010-10	COM5BNW1A2	N/A	February 11, 202			
Digital Themometer	TES	TES-1310	210706071	N/A	November 3, 2023			
Model No			For Head Tissue		1			
Model No	Item	Originak Cal. Result	Verified on 2023/12/10	B Deviation	Result			
	Impedance, transformed to feed point	48. 9 Ω -6. 08 j Ω	48. 9 Ω -6. 08 j Ω	<5 Ω	Pass			
D5GHzV2(5250MHz)	Return Loss(dB)	-24.1	-24. 966	3.6%	Pass			
	SAR Value for 1g(mW/g)	7. 78	7. 45	-4.2%	Pass			
	SAR Value for	2. 23	2. 15	-3.6%	Pass			
Impedance, trans to feed point		54. 2 Ω -1. 85 j Ω	55. 5 Ω -1. 84 j Ω	<5 Ω	Pass			
D5GHzV2(5600MHz)	Return Loss(dB)	-27.1	-27. 13	0.1%	Pass			
	SAR Value for 1g(mW/g)	8.05	8.09	0.5%	Pass			
	SAR Value for	2. 3	2. 3	0.0%	Pass			
	Impedance, transformed to feed point	53.1Ω-1.5jΩ	54. 4 Ω -1. 48 j Ω	<5 Ω	Pass			
D5GHzV2(5750MHz)	Return Loss(dB)	-29. 6	-29. 798	0.7%	Pass			
	SAR Value for 1g(mW/g)	7. 65	8	4.6%	Pass			
	SAR Value for	2. 16	2. 27	5. 1%	Pass			
071C Harwark Analyzas	Impedance Test-Head	TANK.	1501 (C Harrison Analyzer	Return Loss-Head	-			
	52		the second secon	212				
1 5.2500000 GHZ 48.892 D -6.0756 D . 2 5.6000000 GHZ 55.459 D -1.8401 D . 3 5.7500000 GHZ 54.369 D -1.4821 D .	4,0897 pF 15,445 pF	Smith R + pt Lin /Phase	Marker 3 5,750000000 GHz	ij	/ Market			
3 5.7500000 GHZ 54.369 G -1.4821 G 1	L8.676 pr	Log / Phase	1 5.2500000 GHz -24.966 dB 2 5.6000000 GHz -27.130 dB >3 5.7500000 GHz -29.798 dB		√ Marion			
		Real / Irrag	40,00		/ Marker			
		• R+JX	30.00		Market			
		G+B Carnott	26,60		More Ma			
			10,00		Ref Mar			
	®		10.00		Clear Ma			
	*		0.000		Menu Marker Markets			
			-10,00		Rof Marker Ref Marker			
			-20.00		Return			
		7	4					
			-31/,00	Ý				
			-3(t,00 -40,00	1				

3) start

Test Laboratory: BTL Inc.

Date: 2023/12/16

2System Check_H5250_1216

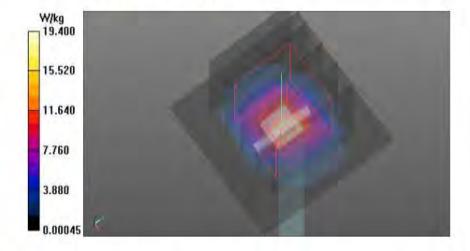
DUT: Dipole D5GHzV2;SN;1160;

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5250 MHz; σ = 4.832 S/m; ϵ_ϵ = 35.636; ρ = 1000

kg/m³

Ambient Temperature: 22.7 °C; Liquid Temperature: 22.4 °C

DASY Configuration:


- Probe: EX3DV4 SN7544; ConvF(5.35, 5.35, 5.35) @ 5250 MHz; Calibrated: 2023/2/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1423; Calibrated: 2023/3/17
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 1128
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (6x6x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 12.0 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 68.90 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 34.5 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 19.4 W/kg

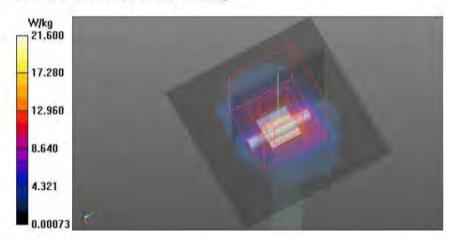
Test Laboratory: BTL Inc.

Date: 2023/12/16

1System Check_H5600_1216

DUT: Dipole D5GHzV2;SN;1160;

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 5.075$ S/m; $\epsilon_r = 35.471$; $\rho = 1000$ kg/m³


Ambient Temperature: 22.7 °C; Liquid Temperature: 22.4 °C

DASY Configuration:

- Probe: EX3DV4 SN7544; ConvF(4.8, 4.8, 4.8) @ 5600 MHz; Calibrated: 2023/2/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1423; Calibrated: 2023/3/17
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 1128
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (6x6x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.2 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 71.18 V/m; Power Drift = -0.07 dB
Peak SAR (extrapolated) = 41.4 W/kg
SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.3 W/kg
Maximum value of SAR (measured) = 21.6 W/kg

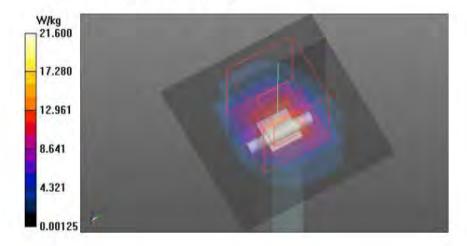
Test Laboratory: BTL Inc.

Date: 2023/12/16

1System Check_H5750_1216

DUT: Dipole D5GHzV2;SN;1160;

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; σ = 5.439 S/m; ϵ_r = 34.425; ρ = 1000 kg/m³


Ambient Temperature: 22.7 °C; Liquid Temperature: 22.4 °C

DASY Configuration:

- Probe: EX3DV4 SN7544; ConvF(4.87, 4.87, 4.87) @ 5750 MHz; Calibrated: 2023/2/16
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1423; Calibrated: 2023/3/17
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 1128
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (6x6x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.3 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 68.87 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 42.6 W/kg SAR(1 g) = 8 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 21.6 W/kg

Calibrator:	Justin	Huang,	Approver:	Herbort lin
-------------	--------	--------	-----------	-------------

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client BTL-CN (Auden)

Certificate No: D6.5GHzV2-1052 Nov21

CALIBRATION CERTIFICATE

Object D6.5GHzV2 - SN:1052

Calibration procedure(s) QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: November 01, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Power sensor R&S NRP33T	SN: 100967	08-Apr-21 (No. 217-03293)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7405	30-Dec-20 (No. EX3-7405_Dec20)	Dec-21
DAE4	SN: 908	24-Jun-21 (No. DAE4-908_Jun21)	Jun-22
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator Anapico APSIN20G	SN: 669	28-Mar-17 (in house check Dec-18)	In house check: Dec-21
Network Analyzer Keysight E5063A	SN:MY54504221	31-Oct-19 (in house check Oct-19)	In house check: Oct-22

Calibrated by:

Approved by:

Name Function

Jeton Kastrati Laboratory Technician

Katja Pokovic Technical Manager

Issued: November 2, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D6.5GHzV2-1052_Nov21

Page 1 of 6

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL

sensitivity in TSL / NORM x,v,z ConvF not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.

 Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.

Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty

SAR measured: SAR measured at the stated antenna input power.

SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.

SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.0	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	5 mm	with Spacer	
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)	
Frequency	6500 MHz ± 1 MHz	h	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	32.7 ± 6 %	6.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	29.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	290 W/kg ± 24.7 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.6 W/kg ± 24.4 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω - 6.3 jΩ		
Return Loss	- 24.0 dB		

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	289 W/m ²
APD measured	normalized to 1W	2890 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	133 W/m ²
APD measured	normalized to 1W	1330 W/m ² ± 28.9 % (k=2)

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

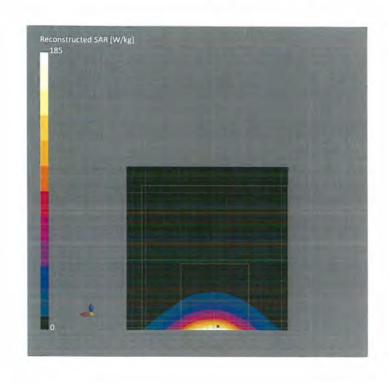
A Complete Property of the Complete Com	
Manufactured by	SPEAG
, entre of the control of the contro	0. 27.0

DASY6 Validation Report for Head TSL

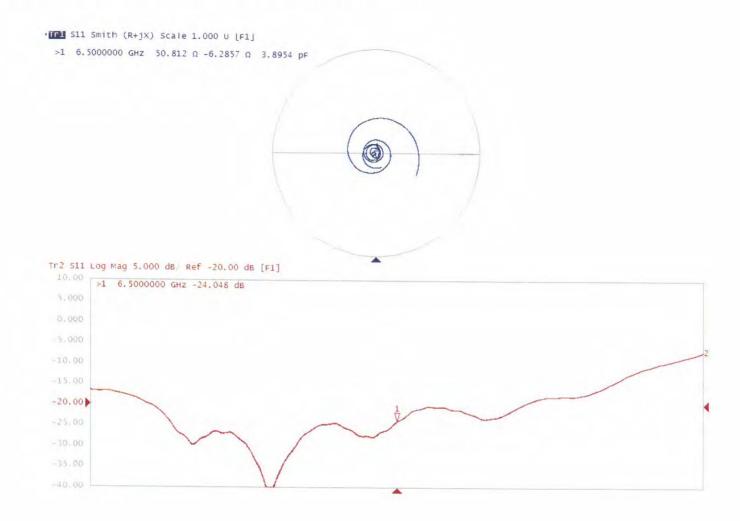
Measurement Report for D6.5GHz-1052, UID 0 -, Channel 6500 (6500.0MHz)

Device	under	Test	Properties
--------	-------	------	-------------------

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
D6.5GHz	16.0 x 6.0 x 300.0	SN: 1052	


Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.75	6.03	32.7


Hardware Setup

Phantom	TSL	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center - 1182	HBBL600-10000V6	EX3DV4 - SN7405, 2020-12-30	DAE4 Sn908, 2021-06-24
Scan Setun		Management Describe	

Jean Jetup		ivieasurement Results	
	Zoom Scan		Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2021-11-01, 12:59
Grid Steps [mm]	$3.4 \times 3.4 \times 1.4$	psSAR1g [W/Kg]	29.3
Sensor Surface [mm]	1.4	psSAR10g [W/Kg]	5.43
Graded Grid	Yes	Power Drift [dB]	0.02
Grading Ratio	1.4	Power Scaling	Disabled
MAIA	N/A	Scaling Factor [dB]	
Surface Detection	VMS + 6p	TSL Correction	No correction
Scan Method	Measured	M2/M1 [%]	51.5
		Dist 3dB Peak [mm]	4.6

Impedance Measurement Plot for Head TSL

