FCC SAR TEST REPORT

APPLICANT : Greater Goods,LLC

EQUIPMENT : LTE-M Scale W
Brand Name : Greater Goods

Model Name : 0028

FCC ID : 2ADUL0028

STANDARD : FCC 47 CFR PART 2 (2.1093)

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Approved by: Si Zhang

ACCREDITED Cert #5145.02

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158
FCC ID: 2ADUL0028

Page 1 of 26
Issued Date : Sep. 20, 2023
Form version: 200414

Report No.: FA381608

Report No. : FA381608

Table of Contents

1. Statement of Compliance	4
2. Administration Data	5
3. Guidance Applied	
4. Equipment Under Test (EUT) Information	
4.1 General Information	6
4.2 General LTE SAR Test and Reporting Considerations	7
5. RF Exposure Limits	
5.1 Uncontrolled Environment	
5.2 Controlled Environment	
6. Specific Absorption Rate (SAR)	9
6.1 Introduction	9
6.2 SAR Definition	
7. System Description and Setup	
7.1 E-Field Probe	
7.2 Data Acquisition Electronics (DAE)	11
7.3 Phantom	
7.4 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	14
8.2 Power Reference Measurement	15
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	16
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	18
10.1 Tissue Simulating Liquids	
10.2 Tissue Verification	19
10.3 System Performance Check Results	19
11. RF Exposure Positions	20
11.1 Extremity Exposure	
12. Conducted RF Output Power (Unit: dBm)	21
13. Antenna Location	
14. SAR Test Results	23
14.1 Extremity SAR	
15. Uncertainty Assessment	
16. References	26
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	
Appendix E. Conducted RF Output Power Table	

TEL: +86-512-57900158 FCC ID: 2ADUL0028 Page 2 of 26
Issued Date : Sep. 20, 2023

Form version: 200414

History of this test report

Report No. : FA381608

Report No.	Version	Description	Issued Date
FA381608	01	Initial issue of report	Sep. 20, 2023

 Sporton International Inc. (Kunshan)
 Page
 3 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Greater Goods,LLC, LTE-M Scale W, 0028**, are as follows.

Report No.: FA381608

Highest Standalone 10g SAR Summary					
Equipment Class	Frequ	ency Band	Extremity 10g SAR (W/kg) (Separation 0mm)		
		LTE Band 2	0.81		
Licensed	LTE LTE Band 4 LTE Band 12		0.86		
			0.32		
Date of T	esting:	2	2023/9/5		

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (4.0 W/kg for Extremity 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

 Sporton International Inc. (Kunshan)
 Page
 4 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

2. Administration Data

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: FA381608

Testing Laboratory						
Test Firm	Sporton International Inc.	Sporton International Inc. (Kunshan)				
Test Site Location		oad, Kunshan Economic Develo People's Republic of China	opment Zone			
T4 014- N-	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
Test Site No.	SAR05-KS	CN1257	314309			

	Applicant
Company Name	Greater Goods, LLC
Address	4427 Chouteau Ave.,St. Louis MO 63110,United States

	Manufacturer
Company Name	Greater Goods, LLC
Address	4427 Chouteau Ave.,St. Louis MO 63110,United States

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 941225 D05 SAR for LTE Devices v02r05

 Sporton International Inc. (Kunshan)
 Page
 5 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

4. Equipment Under Test (EUT) Information

4.1 General Information

	Product Feature & Specification
Equipment Name	LTE-M Scale W
Brand Name	Greater Goods
Model Name	0028
FCC ID	2ADUL0028
IMEI Code	01648700000035
Wireless Technology and Frequency Range	LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 12: 699 MHz ~ 716 MHz
Mode	LTE: QPSK, 16QAM
HW Version	V02
SW Version	A01
EUT Stage	Identical Prototype
Remark: 1. This device has no voice	e function.

Report No.: FA381608

 Sporton International Inc. (Kunshan)
 Page
 6 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

4.2 General LTE SAR Test and Reporting Considerations

			Sur	nmarized	necessa	ry items addr	essed in Kl	DB 94	1225	D05 v02r)5		
FC	C ID			2.	ADUL002	28							
Eq	uipment Na	: Name			TE-M Sca	ale W							
	erating Fre nsmission l		Range of eac	h L I L	LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 12: 699 MHz ~ 716 MHz								
Ch	annel Band	dwidth		L'	LTE Band 2:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 12:1.4MHz, 3MHz, 5MHz, 10MHz								
up	link modula	itions us	ed	Q	PSK / 16	6QAM							
LT	E release			R	13, Cat N	M1							
CA	support			N	ot Suppo	orted							
LT	E Voice / D	ata requ	rements	D	ata only								
					Ta	able 6.2.3E-1:	Maximum F	Power	Red	uction (Mi	PR) for Pow	er Clas	ss 3
					Modulat		hannel band						MPR (dB)
LT	E MPR per	manentl	/ built-in by de	esign		1.4 MHz	3.0 MHz	MH		10 MHz	15 MHz	20 MHz	
					QPSK		>2	>	_	>4	7-	177	≤1
				-	QPSK 16 QAI		>5 ≤ 2	>1	_	>3	-	•	≤2 ≤1
				-	16QAN		>2	>3	_	>5		84	≤2
	E A-MPR	ts for RE	configuration	A (N A	-MPR du Maximum properly	uring SAR tes n TTI) ly configured	ting and the	e LTE	SAF mula	tor was	used for t	ng on he SA	all TTI frames
		ts for RE	configuration Transm	A (N A m	-MPR du Maximum properly neasurem ot include	uring SAR tes n TTI) ly configured nent; therefore, ed in the SAR r nannel numbe	base stati spectrum preport.	on sin	SAI mula or ead	tor was ch RB alloc	used for the	ng on he SA	all TTI frames
	ectrum plot		Transm	A (N A m no nission (H,	-MPR du Maximum properly neasurem ot include M, L) ch	uring SAR tes n TTI) y configured nent; therefore, ed in the SAR n nannel numbe	base stati spectrum preport. rs and frequency	on sin	SAF mula or ead	tor was character RB alloc	s transmitti used for the cation and co	ng on he SA offset co	all TTI frames R and power onfiguration are
			Transm	A (N A m	-MPR du Maximum properly neasurem ot include M, L) ch	uring SAR tes n TTI) ly configured nent; therefore, ed in the SAR n nannel numbe LTE Ba width 5 MHz	base stati spectrum preport.	on sin	mula or each	tor was character RB alloc	used for the	ng on he SA offset co	all TTI frames R and power onfiguration are width 20 MHz
	ectrum plot Bandwidth	ո 1.4 Mե Freq.	Transm Z Bandwid Ch. #	ission (H,	-MPR du Maximum properly neasurem ot include M, L) ch	uring SAR tes n TTI) ly configured nent; therefore, ed in the SAR i nannel numbe LTE Ba width 5 MHz Freq. (MHz)	base static spectrum preport. rs and frequency	on sin	mula or each es in IHz q.	tor was ch RB alloc each LTE	s transmitti used for the cation and comband th 15 MHz Freq.	ng on he SA offset co	all TTI frames R and power onfiguration are width 20 MHz # Freq. (MHz)
Sp	ectrum plot Bandwidth Ch. #	n 1.4 MH Freq. (MHz	Transm Z Bandwid Ch. #	ission (H, th 3 MHz Freq. (MHz)	-MPR du Maximum properly neasurem ot include M, L) ch Bando Ch. #	uring SAR tes n TTI) ly configured nent; therefore, ed in the SAR in nannel numbe LTE Ba width 5 MHz Freq. (MHz) 5 1852.5 0 1880	base stati spectrum peport. rs and freq and 2 Bandwidtl Ch. #	on sin	mula or each es in 1Hz q. Hz)	tor was to RB allow each LTE Bandwid Ch. # 18675 18900	band th 15 MHz Freq. (MHz) 1857.5	Band Ch. 1870	R and power onfiguration are width 20 MHz # Freq. (MHz) 1860 1880
Sp	Bandwidth Ch. #	1.4 MF Freq. (MHz 1850.	Z Bandwid Ch. # 18615 18900	th 3 MHz Freq. (MHz) 1851.5	-MPR du Maximum properly neasurem ot include M, L) ch Bando Ch. #	uring SAR tes n TTI) ly configured nent; therefore, ed in the SAR in nannel numbe LTE Ba width 5 MHz # Freq. (MHz) 5 1852.5 0 1880 5 1907.5	base static spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150	on sinolots for uencion 10 M Fre (MH 185	mula or each es in 1Hz q. 4z) 55	tor was to RB allow each LTE Bandwid Ch. # 18675	s transmitti used for the cation and comband th 15 MHz Freq. (MHz) 1857.5	he SA ffset co Band Ch. 1870	R and power onfiguration are width 20 MHz # Freq. (MHz) 1860 1880
Sp L M	Bandwidth Ch. # 18607 18900 19193	1.4 MH Freq. (MHz 1850. 1880 1909.	Transm Z Bandwid Ch. # 18615 18900 19185	A (N A M A M N A M A M A M A M A M A M A M	-MPR du Maximum properly neasurem ot include M, L) ch Bands Ch. # 18629 18900	uring SAR tes (TTI) ly configured (HTI) ly config	base static spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150 and 4	on simple to the control of the cont	safemula mula or each es in 1Hz q. Hz) 55 30 05	each LTE Bandwid Ch. # 18675 18900 19125	s transmitti used for the eation and comband th 15 MHz Freq. (MHz) 1857.5 1880 1902.5	Band Ch. 1870	all TTI frames R and power onfiguration are width 20 MHz # Freq. (MHz) 00 1860 00 1880 00 1900
Sp L M	Bandwidth Ch. # 18607 18900	1.4 MH Freq. (MHz 1850. 1880 1909.	Transm Z Bandwid Ch. # 18615 18900 19185	A (N A m n.e.) iission (H, sth 3 MHz Freq. (MHz) 1851.5 1880 1908.5	-MPR du Maximum properly neasurem ot include M, L) ch Bands Ch. # 18629 18900	uring SAR tes n TTI) ly configured nent; therefore, ed in the SAR nannel numbe LTE Bawidth 5 MHz # Freq. (MHz) 5 1852.5 0 1880 5 1907.5 LTE Bawidth 5 MHz	base static spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150	on since of	mula pr each in the state of th	each LTE Bandwid Ch. # 18675 18900 19125	band th 15 MHz Freq. (MHz) 1857.5 1880 1902.5	Band Ch. 1870	all TTI frames R and power onfiguration are width 20 MHz # Freq. (MHz) 00 1860 00 1880 00 1900 width 20 MHz
Sp L M	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. #	1.4 MH Freq. (MHz 1850. 1880 1909. 1.4 MH Freq. (MHz	Transm z Bandwid Ch. # 18615 18900 19185 z Bandwid Ch. #	A (N A M A M A M A M A M A M A M A M A M A	-MPR du Maximum properly neasurem ot include M, L) ch Bando Ch. # 18625 18900 19175 Bando Ch. #	uring SAR tes n TTI) ly configured nent; therefore, ed in the SAR nannel numbe LTE Bawidth 5 MHz # Freq. (MHz) 5 1852.5 0 1880 5 1907.5 LTE Bawidth 5 MHz # Freq. (MHz) # Freq. (MHz)	base static spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150 and 4 Bandwidtl Ch. #	on since of the si	mula mula mula mula mula mula mula mula	each LTE Bandwid Ch. # 18675 18900 19125 Bandwid Ch. #	band th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz)	Band Ch. 1890 Band Ch. Band	all TTI frames R and power onfiguration are width 20 MHz # Freq. (MHz) 00 1860 00 1880 00 1900 width 20 MHz # Freq. (MHz)
Sp L M H	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957	1.4 MH Freq. (MHz 1850. 1880 1909. 1.4 MH Freq. (MHz 1710.	Z Bandwid Ch. # 18615 18900 19185 Z Bandwid Ch. # 19965	A (N A M A M A M A M A M A M A M A M A M A	-MPR du Maximum properly neasurem ot include M, L) ch Bandy Ch. # 18900 19175 Bandy Ch. # 19975	uring SAR tes n TTI) ly configured nent; therefore, ed in the SAR n nannel numbe LTE Balwidth 5 MHz # Freq. (MHz) 5 1852.5 0 1880 5 1907.5 LTE Balwidth 5 MHz # Freq. (MHz) 5 1712.5	base statis spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150 and 4 Bandwidtl Ch. # 20000	on since of the control of the contr	mula pread the second s	each LTE Bandwid Ch. # 18675 18900 19125 Bandwid Ch. # 20025	band th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz)	Band Ch. 1890 Band Ch. 2005	# Freq. (MHz) 00 1880 00 1900 width 20 MHz # Freq. (MHz) 00 1870 00 1880 00 1900 width 20 MHz # Freq. (MHz) 00 1720
Sp L M H	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175	1.4 MH Freq. (MHz 1850. 1880 1909. 1.4 MH Freq. (MHz 1710.	Transm Z Bandwid Ch. # 18615 18900 19185 Z Bandwid Ch. # 19965 20175	A (N A m n.e.) iission (H,	-MPR du Maximum properly neasurem ot include M, L) ch Bandy Ch. # 18628 18900 19178 Bandy Ch. # 19978 20178	uring SAR tes (a TTI) ly configured (nent; therefore, ed in the SAR (nannel number (MHz)) 5 1852.5 0 1880 5 1907.5 LTE Barwidth 5 MHz # Freq. (MHz) 5 1712.5 1732.5	base statis spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150 and 4 Bandwidtl Ch. # 20000 20175	on simple	mula pr each in the state of th	each LTE Bandwid Ch. # 18675 18900 19125 Bandwid Ch. # 20025 20175	band th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5 1732.5	Band Ch. Band Ch. 2005	# Freq. (MHz) # Freq. (MHz) 00 1880 00 1900 width 20 MHz # Freq. (MHz) 10 1720 # Freq. (MHz) 1732.5
Sp L M H	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957	1.4 MH Freq. (MHz 1850. 1880 1909. 1.4 MH Freq. (MHz 1710.	Transm Z Bandwid Ch. # 18615 18900 19185 Z Bandwid Ch. # 19965 20175	A (N A M A M A M A M A M A M A M A M A M A	-MPR du Maximum properly neasurem ot include M, L) ch Bandy Ch. # 18900 19175 Bandy Ch. # 19975	uring SAR tes (17TI) ly configured (18TI) LTE Base (18TI) ly Freq. (18TI) ly Fr	base statis spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150 and 4 Bandwidtl Ch. # 20000 20175 20350	on since of the control of the contr	mula pr each in the state of th	each LTE Bandwid Ch. # 18675 18900 19125 Bandwid Ch. # 20025	band th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz)	Band Ch. 1890 Band Ch. 2005	# Freq. (MHz) # Freq. (MHz) 00 1880 00 1900 width 20 MHz # Freq. (MHz) 10 1720 # Freq. (MHz) 1732.5
Sp L M H	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175 20393	1.4 MH Freq. (MHz 1850. 1880 1909. 1.4 MH Freq. (MHz 1710. 1732. 1754.	Transm Z Bandwid Ch. # 18615 18900 19185 Z Bandwid Ch. # 19965 20175 20385	A (N A m n.	-MPR du Maximum properly neasurem ot include M, L) ch Bando Ch. # 18629 18900 19175 Bando Ch. # 19978 20178	uring SAR tes n TTI) ly configured nent; therefore, ed in the SAR in the same	base statis spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150 and 4 Bandwidtl Ch. # 20000 20175 20350 and 12	on since of the si	mula pread es in IHz q. dz. dz. dz. dz. dz. dz. dz. dz. dz. dz	each LTE Bandwid Ch. # 18675 18900 19125 Bandwid Ch. # 20025 20175 20325	band th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5	Band Ch. 1870 1910 Band Ch. 2005 2017	# Freq. (MHz) 00 1860 00 1880 00 1900 width 20 MHz # Freq. (MHz) 01 1700 02 1720 03 1745
Sp L M H	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175 20393	1.4 MH Freq. (MHz 1850. 1880 1909. 1.4 MH Freq. (MHz 1710. 1732. 1754.	Transm Z Bandwid Ch. # 18615 18900 19185 Z Bandwid Ch. # 19965 20175 20385	A (N A m n.	-MPR du Maximum properly neasurem ot include M, L) ch Bandy Ch. # 18629 18900 19175 Bandy Ch. # 20175 20378	uring SAR tes n TTI) ly configured nent; therefore, ed in the SAR in the same	base statis spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150 and 4 Bandwidtl Ch. # 20000 20175 20350 and 12	on since of the control of the contr	mula or each es in Hz q. Hz) 555 80 05 1Hz q. Hz) 15 50 15 15 15 15 15 15 15 15 15 15 15 15 15	each LTE Bandwid Ch. # 18675 18900 19125 Bandwid Ch. # 20025 20175 20325	band th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5	Band Ch. 1870 Band Ch. 2005 2017 2030	# Freq. (MHz) # Freq. (MHz) 00 1880 00 1900 width 20 MHz # Freq. (MHz) 10 1720 # Freq. (MHz) 1732.5
Sp L M H	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175 20393	1.4 MH Freq. (MHz 1850. 1880 1909. 1.4 MH Freq. (MHz 1710. 1732. 1754.	Transm Z Bandwid Ch. # 18615 18900 19185 Z Bandwid Ch. # 19965 20175 20385	A (N A M A M A M A M A M A M A M A M A M A	-MPR du Maximum properly neasurem ot include M, L) ch Bandy Ch. # 18625 18900 19175 Ch. # 19975 20175 20375	uring SAR tes (TTI) ly configured (nent; therefore, ed in the SAR (nannel number LTE Barbon (MHz) 5 1852.5 0 1880 5 1907.5 LTE Barbon (MHz) 5 1712.5 5 1732.5 5 1752.5 LTE Barbon (MHz) 5 1752.5 LTE Barbon (MHz)	base static spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150 and 4 Bandwidtl Ch. # 20000 20175 20350 and 12 Bard	on since of the control of the contr	mula reaction reactio	each LTE Bandwid Ch. # 18675 18900 19125 Bandwid Ch. # 20025 20175 20325	th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5	Band Ch. 1890 1910 Band Ch. 2005 2017 2030	# Freq. (MHz) 00 1880 00 1900 width 20 MHz # Freq. (MHz) 00 1880 00 1900 width 20 MHz # Freq. (MHz) 50 1720 75 1732.5 00 1745
Sp L M H	Bandwidth Ch. # 18607 18900 19193 Bandwidth Ch. # 19957 20175 20393 Banc Ch. #	1.4 MH Freq. (MHz 1850. 1880 1909. 1.4 MH Freq. (MHz 1710. 1732. 1754.	Transm Z Bandwid Ch. # 18615 18900 19185 Z Bandwid Ch. # 19965 20175 20385 4 MHz Freq. (MHz)	A (N A M A M M A M M A M M M A M M A M M A M M A M	-MPR du Maximum properly neasurem ot include M, L) ch Bandy Ch. # 18625 18900 19175 Bandy Ch. # 20175 20375	uring SAR tes (a TTI) ly configured (nent; therefore, ed in the SAR (nannel number (MHz)) 5 1852.5 0 1880 5 1907.5 LTE Batwidth 5 MHz # Freq. (MHz) 5 1712.5 5 1732.5 5 1752.5 LTE Batwidth 5 MHz # Freq. (MHz) # Freq. (MHz) # Freq. (MHz) 5 1712.5 5 1752.5 LTE Batwidth 5 MHz # Freq. (MHz)	ting and the base static spectrum preport. rs and frequent 2 Bandwidtl Ch. # 18650 18900 19150 and 4 Bandwidtl Ch. # 20000 20175 20350 and 12 Bar Ch. #	on since of the control of the contr	Mula mula mula mula mula mula mula mula m	each LTE Bandwid Ch. # 18675 18900 19125 Bandwid Ch. # 20025 20175 20325	band th 15 MHz Freq. (MHz) 1857.5 1880 1902.5 th 15 MHz Freq. (MHz) 1717.5 1732.5 1747.5 Bar Ch. #	Band Ch. 1890 1910 Band Ch. 2005 2017 2030	# Freq. (MHz) # Freq. (MHz) 00 1880 00 1900 width 20 MHz # Freq. (MHz) 10 1720 75 1732.5 10 MHz Freq. (MHz)

Report No. : FA381608

 Sporton International Inc. (Kunshan)
 Page 7 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA381608

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

 Sporton International Inc. (Kunshan)
 Page
 8 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA381608

6.2 SAR Definition

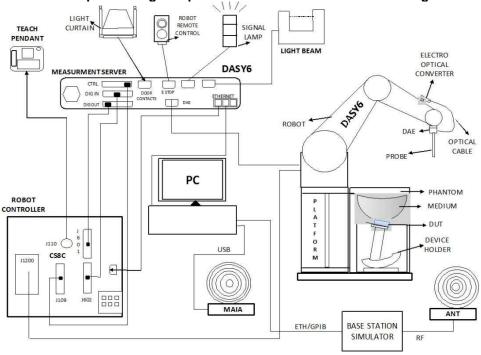
The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.


 Sporton International Inc. (Kunshan)
 Page
 9 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA381608

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 or Win10 and the DASY5 or DASY6 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

 Sporton International Inc. (Kunshan)
 Page
 10 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

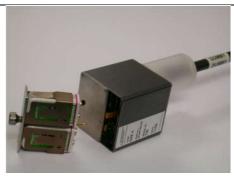
 FCC ID: 2ADUL0028
 Form version: 200414

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz – >6 GHz Linearity: ±0.2 dB (30 MHz – 6 GHz)
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm



Report No.: FA381608

7.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Photo of DAE

 Sporton International Inc. (Kunshan)
 Page
 11 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

7.3 Phantom

<SAM Twin Phantom>

TO ANTI TWILL I HALLONIP		
Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	J. 100
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA381608

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 + 0.2 mm (conging, <10/)	
	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices or for evaluating transmitters operating at low frequencies. ELI is fully compatible with standard and all known tissue simulating liquids.

 Sporton International Inc. (Kunshan)
 Page
 12 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA381608

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

 Sporton International Inc. (Kunshan)
 Page
 13 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA381608

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

 Sporton International Inc. (Kunshan)
 Page
 14 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA381608

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz: } \le 12 \text{ mm}$ $4 - 6 \text{ GHz: } \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

 Sporton International Inc. (Kunshan)
 Page
 15 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA381608

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤3 GHz	> 3 GHz	
Maximum zoom scan s	spatial reso	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz}: \le 3 \text{ mm}$ $4 - 5 \text{ GHz}: \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz}: \le 2 \text{ mm}$	
- 561 POYONG COTOLO	grid	Δz _{Zoom} (n>1): between subsequent points	≤1.5·Δa	z _{Zoom} (n-1)	
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	$3 - 4 \text{ GHz}$: $\geq 28 \text{ mm}$ $4 - 5 \text{ GHz}$: $\geq 25 \text{ mm}$ $5 - 6 \text{ GHz}$: $\geq 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

 Sporton International Inc. (Kunshan)
 Page
 16 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufacturer	Name of Equipment	Turno/Marshall	Serial Number	Calib	ration		
Manufacturer	Name of Equipment	Type/Model	Seriai Number	Last Cal.	Due Date		
SPEAG	750MHz System Validation Kit	D750V3	1087	2022/2/24	2025/2/23		
SPEAG	1750MHz System Validation Kit	D1750V2	1090	2022/2/24	2025/2/23		
SPEAG	1900MHz System Validation Kit	D1900V2	5d118	2022/3/30	2025/3/29		
SPEAG	Data Acquisition Electronics	DAE4	1691	2022/12/12	2023/12/11		
SPEAG	Dosimetric E-Field Probe	EX3DV4	7774	2023/7/26	2024/7/25		
SPEAG	ELI Phantom	ELI V8.0	TP-2151	NCR	NCR		
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR		
Anritsu	Radio Communication Analyzer	MT8821C	6262306175	2023/7/5	2024/7/4		
Agilent	ENA Series Network Analyzer	E5071C	MY46111157	2023/7/5	2024/7/4		
SPEAG	Dielectric Probe Kit	DAK-3.5	1071	2023/2/20	2024/2/19		
Anritsu	Vector Signal Generator	MG3710A	6201682672	2023/1/5	2024/1/4		
Rohde & Schwarz	Power Meter	NRVD	102081	2023/7/5	2024/7/4		
Rohde & Schwarz	Power Sensor	NRV-Z5	100538	2023/7/5	2024/7/4		
Rohde & Schwarz	Power Sensor	NRV-Z5	100539	2023/7/5	2024/7/4		
CHIGO	Thermo-Hygrometer	HTC-1	55011	2023/1/8	2024/1/7		
TES	DIGITAC THERMOMETER	1310	220305411	N/A	N/A		
BONN	POWER AMPLIFIER	BLMA 0830-3	087193A	Not	te 1		
BONN	POWER AMPLIFIER	BLMA 2060-2	087193B	Not	te 1		
ARRA	Power Divider	A3200-2	N/A	Not	te 1		
Agilent	Dual Directional Coupler	778D	20500	Not	te 1		
Agilent	Dual Directional Coupler	11691D	MY48151020	Not	te 1		
MCL	Attenuation1	BW-S10W5+	N/A	Not	Note 1		
MCL	Attenuation2	BW-S10W5+	N/A	Not	Note 1		
MCL	Attenuation3	BW-S10W5+	N/A	Not	te 1		

Report No.: FA381608

Note:

- 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.
- 2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.

 Sporton International Inc. (Kunshan)
 Page
 17 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1.

Report No.: FA381608

Fig 10.1 Photo of Liquid Height for Body SAR

 Sporton International Inc. (Kunshan)
 Page
 18 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)					
For Head For Head													
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9					
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0					

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
750	Head	22.7	0.890	42.200	0.89	41.90	0.00	0.72	±5	2023/9/5
1750	Head	22.8	1.320	40.200	1.37	40.10	-3.65	0.25	±5	2023/9/5
1900	Head	22.9	1.400	40.200	1.40	40.00	0.00	0.50	±5	2023/9/5

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DE DAE 100 SAB 100 SAB		Targeted 10g SAR (W/kg)	Normalized 10g SAR (W/kg)	Deviation (%)
2023/9/5	750	Head	50	1087	7774	1691	0.260	5.65	5.2	-7.96
2023/9/5	1750	Head	50	1090	7774	1691	0.942	19.50	18.84	-3.38
2023/9/5	1900	Head	50	5d118	7774	1691	0.984	20.40	19.68	-3.53

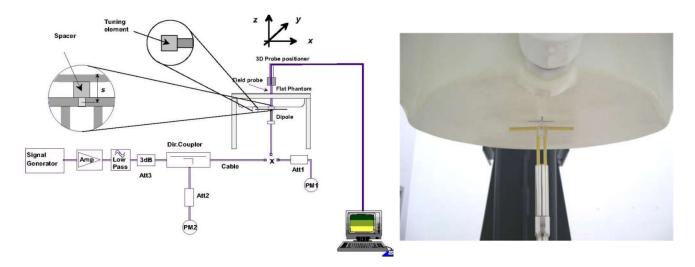


Fig 10.3.1 System Performance Check Setup

Fig 10.3.2 Setup Photo

Report No. : FA381608

 Sporton International Inc. (Kunshan)
 Page
 19 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

11. RF Exposure Positions

11.1 Extremity Exposure

Devices that are designed or intended for use on extremities, or mainly operated in extremity only exposure conditions, i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When extremity SAR testing is required, a flat phantom must be used if the exposure condition is more conservative than the actual use conditions.

Report No.: FA381608

<EUT Setup Photos>

Please refer to Appendix D for the test setup photos.

 Sporton International Inc. (Kunshan)
 Page
 20 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

12. Conducted RF Output Power (Unit: dBm)

The detailed conducted power table can refer to Appendix E.

<LTE Conducted Power>

General Note:

 Anritsu MT8821C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.

Report No.: FA381608

- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 8. For LTE B4 / B12 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

 Sporton International Inc. (Kunshan)
 Page
 21 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

13. Antenna Location

The detailed antenna location information can refer to SAR Test Setup Photos.

<SAR test exclusion table>

General Note:

1. The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW"

Report No.: FA381608

- 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold.
- 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz

	Wireless Interface	LTE Band 12	LTE Band 4	LTE Band 2			
Exposure Position	Calculated Frequency (MHz)	715	1754	1909			
	Maximum power (dBm)	24.0	24.0	24.0			
	Maximum rated power(mW)	251.19	251.19	251.19			
	Separation distance(mm)		101.1				
Edge 1	exclusion threshold	421.0	624.0	620.0			
	Testing required?	No	No	No			
	Separation distance(mm)	19.3					
Edge 2	exclusion threshold	11.0	17.2	18.0			
	Testing required?	Yes	Yes	Yes			
	Separation distance(mm)		97.5				
Edge 3	exclusion threshold	404.0	588.0	584.0			
	Testing required?	No	No	No			
	Separation distance(mm)		263.7				
Edge 4	exclusion threshold	1196.0	2250.0	2246.0			
	Testing required?	No	No	No			

 Sporton International Inc. (Kunshan)
 Page
 22 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

14. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA381608

- b. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, if the extremity repeated SAR is necessary, the same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

LTF Note:

- 1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 6. For LTE B4 / B12 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

 Sporton International Inc. (Kunshan)
 Page
 23 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

14.1 Extremity SAR

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Power Reduction	Ch.	Freq. (MHz)	Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle	Duty Cycle Scaling Factor	Drift		Reported 10g SAR (W/kg)
	LTE Band 2	20M	QPSK	1	0	Front	0mm	Full Power	18900	1880	22.87	24.50	1.455	-	1.000	0.08	0.556	0.809
01	LTE Band 2	20M	QPSK	3	3	Front	0mm	Full Power	18900	1880	23.78	24.50	1.180	ı	1.000	-0.09	0.689	0.813
	LTE Band 2	20M	QPSK	1	0	Edge 2	0mm	Full Power	18900	1880	22.87	24.50	1.455	-	1.000	0.02	0.074	0.108
	LTE Band 2	20M	QPSK	3	3	Edge 2	0mm	Full Power	18900	1880	23.78	24.50	1.180	-	1.000	0.01	0.075	0.089
	LTE Band 4	20M	QPSK	1	0	Front	0mm	Full Power	20175	1732.5	22.87	24.50	1.455	-	1.000	0.01	0.578	0.841
02	LTE Band 4	20M	QPSK	3	3	Front	0mm	Full Power	20175	1732.5	23.76	24.50	1.186	-	1.000	-0.04	0.725	0.860
	LTE Band 4	20M	QPSK	1	0	Edge 2	0mm	Full Power	20175	1732.5	22.87	24.50	1.455	-	1.000	0.02	0.132	0.192
	LTE Band 4	20M	QPSK	3	3	Edge 2	0mm	Full Power	20175	1732.5	23.76	24.50	1.186	-	1.000	0.03	0.149	0.177
	LTE Band 12	10M	QPSK	1	0	Front	0mm	Full Power	23095	707.5	22.89	24.50	1.449	-	1.000	-0.08	0.205	0.297
03	LTE Band 12	10M	QPSK	3	3	Front	0mm	Full Power	23095	707.5	23.65	24.50	1.216	-	1.000	0.02	0.261	0.317
	LTE Band 12	10M	QPSK	1	0	Edge 2	0mm	Full Power	23095	707.5	22.89	24.50	1.449	-	1.000	0.01	0.066	0.096
	LTE Band 12	10M	QPSK	3	3	Edge 2	0mm	Full Power	23095	707.5	23.65	24.50	1.216	-	1.000	-0.08	0.072	0.088

Report No. : FA381608

Test Engineer: Martin Li, Varus Wang, Light Wang, Ricky Gu

 Sporton International Inc. (Kunshan)
 Page
 24 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

15. <u>Uncertainty Assessment</u>

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report.

Report No. : FA381608

 Sporton International Inc. (Kunshan)
 Page
 25 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414

16. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No. : FA381608

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [8] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015

 Sporton International Inc. (Kunshan)
 Page
 26 of 26

 TEL: +86-512-57900158
 Issued Date: Sep. 20, 2023

 FCC ID: 2ADUL0028
 Form version: 200414