

FCC TEST REPORT

Test report
On Behalf of

Shenzhen Yunlink Technology Co., Ltd.

For

Wireless Access Point

Model No.: XD3200, XD1200, XD8508HR, XD750, XD751, CPE3200, CPE1200,HWAP80, HWAP70, RP750, PW750, A930, A750, AC3000, AC6000

FCC ID: 2ADUG-XD3200

Prepared for: Shenzhen Yunlink Technology Co., Ltd.

B3 Building, An'le Industrial Zone, Hangcheng Road, Gushu, Xixiang Town, Bao'an, Shenzhen Guangdong Province, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

F1-008, Tai Yi Building, No.1, Haicheng West Road, Xixiang Street, Bao'an

District, Shenzhen City, China

Date of Test: Apr. 20, 2016 ~ Apr. 28, 2016

Date of Report: Apr. 24, 2018

Report Number: HUAK160429056-1E

TEST RESULT CERTIFICATION

Applicant's name	Shenzhen Yunlink Technology Co., Ltd.
Address	B3 Building, An'le Industrial Zone, Hangcheng Road, Gushu, Xixiang Town, Bao'an, Shenzhen Guangdong Province, China
Manufacture's Name	Shenzhen Yunlink Technology Co., Ltd.
Address	B3 Building, An'le Industrial Zone, Hangcheng Road, Gushu, Xixiang Town, Bao'an, Shenzhen Guangdong Province, China
Product description	
Trade Mark:	1
Product name	Wireless Access Point
Model and/or type reference	XD3200, XD1200, XD8508HR, XD750, XD751, CPE3200, CPE1200, HWAP80, HWAP70, RP750, PW750, A930, A750, AC3000, AC6000
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

 Date of Test
 Apr. 20, 2016 ~ Apr. 28, 2016

 Date (s) of performance of tests
 Apr. 20, 2016 ~ Apr. 28, 2016

 Date of Issue
 Apr. 28, 2016

 Test Result
 Pass

Testing Engineer : 2 m Xie

(Eric Xie)

Technical Manager : Dota Qin

(Dora Qin)

Authorized Signatory:

(Kait Chen)

Table of Contents	Page
1 . TEST SUMMARY	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 General description of EUT	7
2.2 Carrier frequency of channels	8
2.3 Operation of EUT during testing	8
2.4 Description of test setup	8
2.5 Measurement instruments list	9
3 . 6DB BANDWIDTH MEASUREMENT	11
3.1 Block diagram of test setup	11
3.2 Limit	11
3.3 Block diagram of test setup	11
3.4 Test result	11
4 . MAXIMUM PEAK OUTPUT POWER	19
4.1 Block diagram of test setup	19
4.2 Limits	19
4.3 Test procedure	19
4.4 Test result	19
5 . POWER SPECTRAL DENSITY TEST	25
5.1 Block diagram of test setup	25
5.2 Limits	25
5.3 Test procedure	25
5.4 Test result	25
6 . BAND EDGE COMPLIANCE TEST	31
6.1 Block diagram of test setup	31
6.2 Limits	31
6.3 Test procedure	31
6.4 Test result	31
7 . RADIATED SPURIOUS EMISSION TEST	40
7.1 Block diagram of test setup	40
7.2 Limits	41

Table of Contents	Page
7.3 Restricted bands of operation	41
7.4 Test procedure	42
25GHz per FCC PART 15.33(a)	42
7.5 Test result	42
8 . CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	47
8.1 Block diagram of test setup	47
8.2 Limits	47
8.3 Test procedure	47
8.4 Test Result	47
9 . AC POWER LINE CONDUCTED EMISSION	50
9.1 Block diagram of test setup	50
9.2 Limits	50
9.3 Test procedure	50
9.4 Test Result	50
10 . ANTENNA REQUIREMENT	53
11 . POTOGRAPH OF TEST	54
11.1 Radiated Emission	54
11.2 Conducted Emission	55

1. TEST SUMMARY

FCC Rules	Description of Test	Result
Section 15.247(a)(2)		
And Part 2.1049	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)		
And Part 2.1046	Maximum Peak Output Power Test	Compliant
Section 15.247(d)		
And Part 2.1051,		
Part 2.1057	Band Edge Compliance Tes	Compliant
Section 15.247(d)		
Section 15.209)		
Part 2.1051, Part		
2.1053, Part 2.1057	Radiated Spurious Emission Test	Compliant
Section 15.247(d)		
Part 2.1051, Part		
2.1053, Part 2.1057	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

1.1 TEST FACILITY

Test Firm : Shenzhen WST Testing Technology Co., Ltd.

Certificated by FCC, Registration No.: 939433

Address : 1F,No.9 Building,TGK Science & Technology Park,Yangtian Rd.,

NO.72 Bao'an Dist., Shenzhen, Guangdong, China. 518101

1.2 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2. GENERAL INFORMATION

2.1 General description of EUT

Equipment	Wireless Access Point
Model Name	XD3200
Serial Model	XD1200, XD8508HR, XD750, XD751, CPE3200,CPE1200, HWAP80, HWAP70, RP750, PW750, A930, A750,AC3000, AC6000
Model Difference	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: XD3200
FCC ID	2ADUG-XD3200
Modulation Type	WIFI:DBPSK,DQPSK,CCK,BPSK,
Antenna Type	MIMO Antenna
WLA Operation frequency	802.11b: 2412-2462MHz 802.11g: 2412-2462MHz 802.11n HT20: 2412-2462MHz 802.11n HT40: 2422-2452MHz
Number of Channels	802.11b/g/n (HT20):11 802.11n (HT40): 7
Data Rate	802.11b: 11, 5.5, 2, 1 Mbps 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps 802.11n: up to 150Mbps
Modulation Type	CCK, OFDM
Power Source	DC Voltage
Power Rating	DC 12V, 1.5A from Adapter
Adapter Model	1

2.2 Carrier frequency of channels

	Channel List for 802.11b/g/n(20 MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

	Channel List for 802.11n(40MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
03	2422	06	2437	09	2452		
04	2427	07	2442				
05	2432	80	2447				

2.3 Operation of EUT during testing

Operating Mode

The mode is used: 802.11b Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

802.11g Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

802.11n (HT20) Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

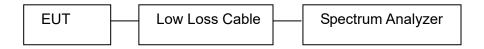
802.11n (HT40) Transmitting mode

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

2.4 Description of test setup

2.5 Measurement instruments list

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
2.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
4.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
5.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
6.	Trilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	May 17, 2015	1 Year
7.	Pre-amplifier	Compliance Direction	PAP-0203	22008	May 19, 2015	1 Year
8.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
9.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
10.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
11.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
12.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
13.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
14.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
15.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
16.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
17.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
18.	Programmable AC Power source	SOPH POWER	PAG-1050	630250	May 26, 2015	1 Year
19.	Harmonic and Flicker Analyzer	LAPLACE	AC2000A	272629	May 26, 2015	1 Year
20.	Harmonic and Flicker Test Software AC 2000A	LAPLACE	N/A	N/A	N/A	N/A
21.	ESD Simulators	KIKUSUI	KES4021	LJ003477	May 25, 2015	1 Year
22.	EFT Generator	EMPEK	EFT-4040B	0430928N	May 19, 2015	1 Year
23.	Shielding Room	ChangZhou ZhongYu	JB88	SEL0166	May 19, 2015	1 Year
24.	Signal Generator 9KHz~2.2GHz	R&S	SML02	SEL0143	May 19, 2015	1 Year
25.	Signal Generator 9KHz~1.1GHz	R&S	SML01	SEL0135	May 19, 2015	1 Year
26.	Power Meter	R&S	NRVS	SEL0144	May 19, 2015	1 Year
27.	RF Level Meter		URV35	SEL0137	May 19, 2015	1 Year
28.	Audio Analyzer	R&S	UPL	SEL0136	May 19, 2015	1 Year
29.	RF-Amplifier 150KHz~150MH z	BONN Elektronik	BSA1515-25	SEL0157	May 19, 2015	1 Year
30.	Stripline Test Cell	Erika Fiedler	VDE0872	SEL0167	N/A	N/A
			ı	ı		1



TV Test Transmitter R&S SFM SEL0159 May 17, 2015 1 Year TV Generator PAL R&S **SGPF** SEL0138 May 19, 2015 32. 1 Year TV Generator Ntsc R&S **SGMF** SEL0140 33. May 19, 2015 1 Year TV Generator R&S SGSF SEL0139 34. May 19, 2015 1 Year Secam TV Test Transmitter R&S **SFQ** SEL0142 35. May 19, 2015 1 Year 0.3MHz~3300MHz MPEG2 R&S DVG SEL0141 36. Measurement May 19, 2015 1 Year Generator Spectrum Analyzer R&S FSP SEL0177 37. May 19, 2015 1 Year SEL0146 N/A Matching R&S **RAM** 38. N/A R&S RAM SEL0148 N/A N/A Matching 39. Absorbing Clamp R&S MDS21 SEL0158 May 17, 2015 40. 1 Year Coupling Set Erika Fiedler Rco, Rci, SEL0149 N/A N/A 41. MC, AC, LC Filters N/A SEL0150 42. Erika Fiedler Sr, LBS N/A N/A Matching Network SEL0151 N/A 43. Erika Fiedler MN, XD3200 Fully Anechoic ChangZhou SEL0169 Jun. 10, 2015 44. 854 1 Year Room ZhongYu Signal Generator May 17, 2015 1 Year SEL0068 45. R&S SML03 RF-Amplifier Amplifier SEL0066 Oct. 24, 2015 46. 250W1000A 1 Year 30M~1GHz Reasearch RF-Amplifier Amplifier SEL0065 Oct. 24, 2015 1 Year 47. 60S1G3 0.8~3.0GHz Reasearch NRVD May 17, 2015 Power Meter R&S SEL0069 48. 1 Year Power Sensor R&S SEL0071 May 17, 2015 1 Year URV5-Z2 49. Power Sensor R&S SEL0072 May 17, 2015 50. URV5-Z2 1 Year Software R&S SEL0082 N/A N/A 51. EMC32-S EMC32 N/A Log-periodic Amplifier SEL0073 52. AXD3200080 N/A Antenna Reasearch Antenna Tripod Amplifier SEL0074 N/A N/A 53. TP1000A Reasearch High Gain Horn SEL0075 N/A 54. Amplifier Antenna(0.8-5G AT4002A N/A Reasearch Hz)

3. 6DB BANDWIDTH MEASUREMENT

3.1 Block diagram of test setup

3.2 Limit

Part 2.1049 and Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz

3.3 Block diagram of test setup

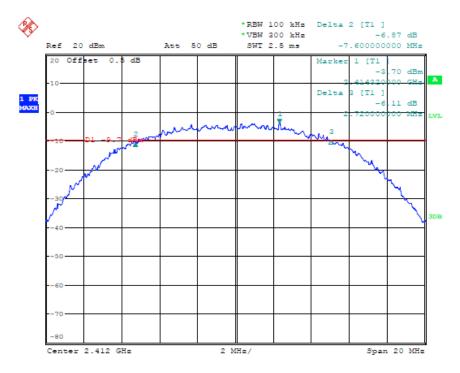

- 3.3.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 3.3.2. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
- 3.3.3. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

3.4 Test result

Antenna 1 is worst

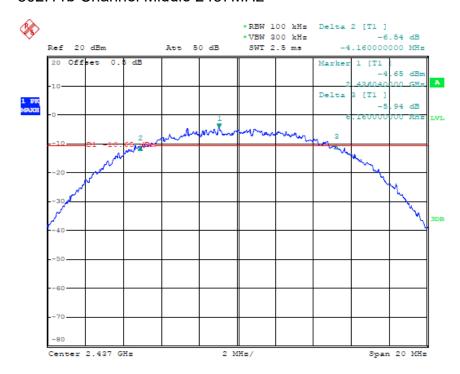
802.11b			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2412	10.32	>0.5MHz
Middle	2437	10.32	>0.5MHz
High	2462	10.32	>0.5MHz

802.11g			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2412	16.60	>0.5MHz
Middle	2437	16.60	>0.5MHz
High	2462	16.60	>0.5MHz

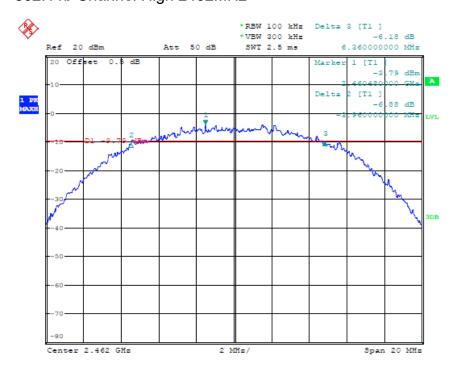


802.11n (HT20)			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2412	17.80	>0.5MHz
Middle	2437	17.80	>0.5MHz
High	2462	17.80	>0.5MHz

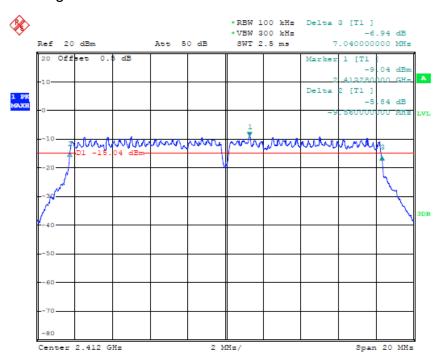
802.11n (HT40)			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2422	36.56	>0.5MHz
Middle	2437	36.56	>0.5MHz
High	2452	36.56	>0.5MHz


The spectrum analyzer plots are attached as below.

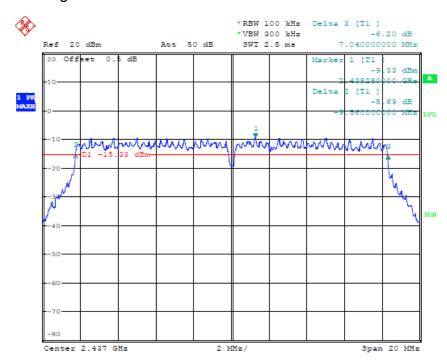
802.11b Channel Low 2412MHz



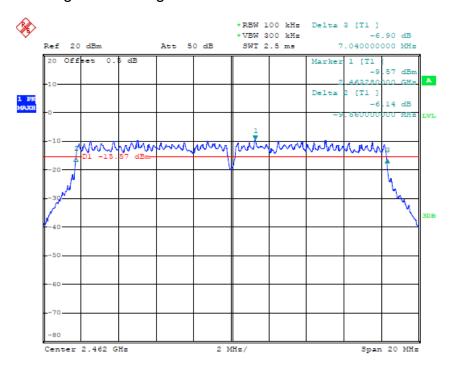
802.11b Channel Middle 2437MHz



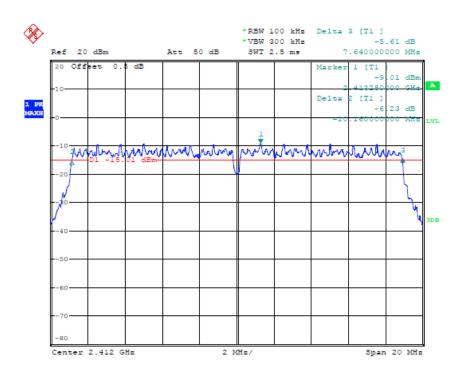
802.11b Channel High 2462MHz



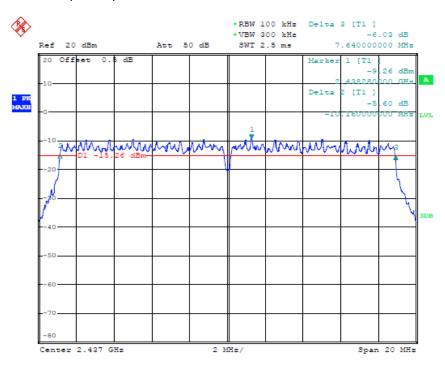
802.11g Channel Low 2412MHz



802.11g Channel Middle 2437MHz

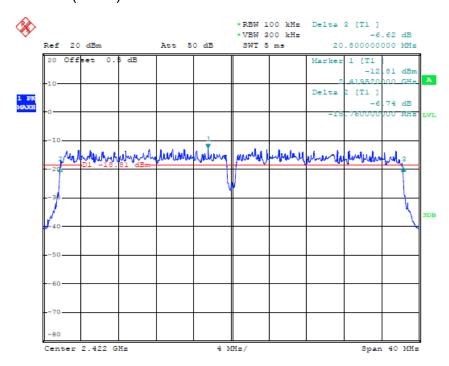


802.11g Channel High 2462MHz

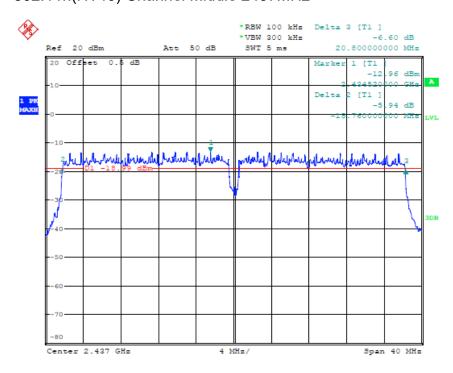


802.11n(HT20) Channel Low 2412MHz

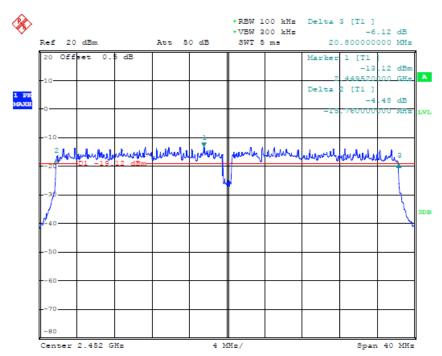
802.11n(HT20) Channel Middle 2437MHz



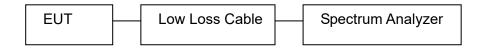
802.11n(HT20) Channel High 2462MHz



802.11n(HT40) Channel Low 2422MHz



802.11n(HT40) Channel Middle 2437MHz


802.11n(HT40) Channel High 2452MHz

4. MAXIMUM PEAK OUTPUT POWER

4.1 Block diagram of test setup

4.2 Limits

Part 2.1046 and Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

4.3 Test procedure

- a. According to section 15.247(b)-power output of the KDB NO. 558074 DTS D01 Meas. Guidance v03r04.(channel integration method) When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth
- b. Set span to at least 1.5 times the OBW
- c. Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- d. Set VBW ≥ 3 x RBW
- e. Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- f. Sweep time = auto
- g. Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h. If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only On full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run
- i. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- j. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

4.4 Test result Pass

802.11b				
Channel	Frequency	Antenna 1	Antenna2	Limit
	(MHz)	output power	output power	(dBm)
		(average)(dBm)	(average)(dBm)	
Low	2412	9.24	7.50	30
Middle	2437	9.97	8.31	30
High	2462	9.53	9.88	30

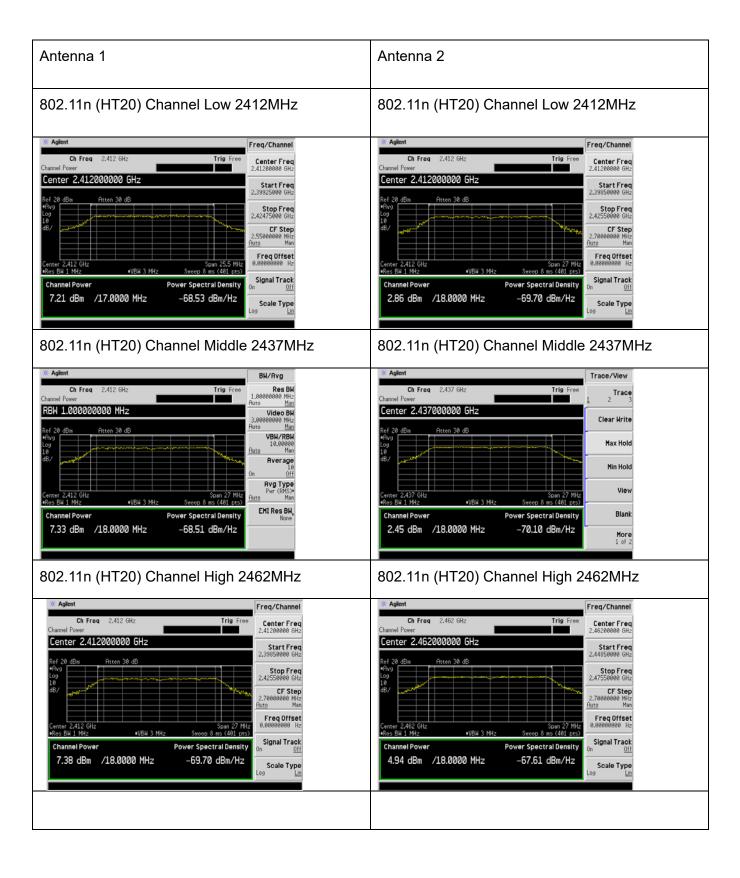
802.11g				
Channel	Frequency	Antenna 1	Antenna2	Limit
	(MHz)	output power	output power	(dBm)
		(average)(dBm)	(average)(dBm)	
Low	2412	8.05	3.09	30
Middle	2437	7.75	4.33	30
High	2462	9.23	5.81	30

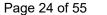
802.11n (HT20)				
Channel	Frequency (MHz)	Antenna 1 output power	Antenna2 output power	Total output Power	Limit (dBm)
		(average)(dBm)	(average)(dBm)	(average)(dBm)	
Low	2412	7.21	2.86	8.56	30
Middle	2437	7.33	2.45	8.54	30
High	2462	7.38	4.94	9.33	30

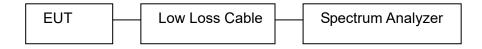
802.11n (HT40))				
Channel	Frequency	Antenna 1	Antenna2	Total output	Limit
	(MHz)	output power	output power	Power	(dBm)
		(average)(dBm)	(average)(dBm)	(average)(dBm)	
Low	2422	6.83	3.27	8.38	30
Middle	2437	6.97	3.61	8.61	30
High	2452	7.83	4.38	9.44	30

Page 21 of 55 Report No.: HUAK160429056-1E

Antenna 2 Antenna 1 802.11b Channel Low 2412MHz 802.11b Channel Low 2412MHz Trace/View Trace Trig Fr Trig Fre Trace RBW 1.0000000000 MHz RBW 1.0000000000 MHz Clear Write Clear Write Max Hold Max Hold Min Hold Min Hold View View Power Spectral Density Blank Power Spectral Density Blank 9.24 dBm /15.0000 MHz -64.18 dBm/Hz 7.50 dBm /15.0000 MHz -64.18 dBm/Hz More 1 of 2 802.11b Channel Middle 2437MHz 802.11b Channel Middle 2437MHz Freq/Channel Center Freq 2.43700000 GHz Trig Free Center Freq 2.43700000 GHz Center 2.437000000 GHz Start Freq 2.42575000 GHz Center 2.437000000 GHz Stop Freq 2.44825000 GHz Stop Freq 2.44825000 GHz Freq Offset Freq Offset 0.000000000 Hz •VBW 3 MHz Power Spectral Density Power Spectral Density 9.97 dBm /15.0000 MHz -63.45 dBm/Hz 8.31 dBm /15.0000 MHz -63.45 dBm/Hz Scale Type 802.11b Channel High 2462MHz 802.11b Channel High 2462MHz BW/Avg BW/Ava Res BH Res BM Trig F Ch Freq 2.462 GH: Trig F RBW 1.0000000000 MHz RBW 1.0000000000 MHz Video BW Video BW VBW/RBW 10.00000 Average Avg Type Pwr (RMS)* EMI Res BW, EMI Res BW Power Spectral Density Power Spectral Density 9.53 dBm /15.0000 MHz -61.88 dBm/Hz 9.88 dBm /15.0000 MHz -61.88 dBm/Hz







Antenna 2 Antenna 1 802.11n (HT40) Channel Low 2422MHz 802.11n (HT40) Channel Low 2422MHz Trig Free Trace Ch Freq 2.422 GHz Trig Free Trace Ref Level 20.00 dBm Ref Level 20.00 dBm Clear Write Clear Write Max Hold Max Hold View View Blank Blank Power Spectral Density 6.83 dBm /37.0000 MHz -72.41 dBm/Hz 3.27 dBm /37.0000 MHz -72.41 dBm/Hz 802.11n (HT40) Channel Middle 2437MHz 802.11n (HT40) Channel Middle 2437MHz Freq/Channel Trig Fr Center Freq 2,43700000 GHz Center 2.437000000 GHz Start Freq 2.40925000 GHz Center 2.437000000 GHz Start Freq 2.40925000 GHz Stop Freq 2.46475000 GHz Stop Freq 2.46475000 GHz Freq Offset Freq Offset Signal Track Power Spectral Density Power Spectral Density -72.07 dBm/Hz 3.61 dBm /37.0000 MHz 6.97 dBm /37.0000 MHz -72.07 dBm/Hz 802.11n (HT40) Channel High 2452MHz 802.11n (HT40) Channel High 2452MHz Freq/Channel Center Freq Center Freq Center 2.452000000 GHz Center 2.452000000 GHz Start Freq 2,42425000 GHz Start Freq 2.42425000 GHz Stop Freq 2.47975000 GHz Freq Offset Freq Offset Signal Track Power Spectral Density Power Spectral Density -71.30 dBm/Hz -71.30 dBm/Hz 7.83 dBm /37.0000 MHz 4.38 dBm /37.0000 MHz Scale Type

5. POWER SPECTRAL DENSITY TEST

5.1 Block diagram of test setup

5.2 Limits

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3 Test procedure

According to the KDB 558074 D01 DTS Meas Guidance v03r04, such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density. The test method of power spectral density as below:

- a. Set instrument center frequency to DTS channel center frequency.
- b. Set span to at least 1.5 times the OBW.
- c. Set RBW to: 3 kHz \leq RBW \leq 100 kHz.
- d. Set VBW $\geq 3 \times RBW$.
- e. Detector = Peak
- f. Sweep time = auto couple.
- g. Use the peak marker function to determine the maximum amplitude level within the RBW.
- h. Use the peak marker function to determine the maximum amplitude level.
- i. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat

5.4 Test result

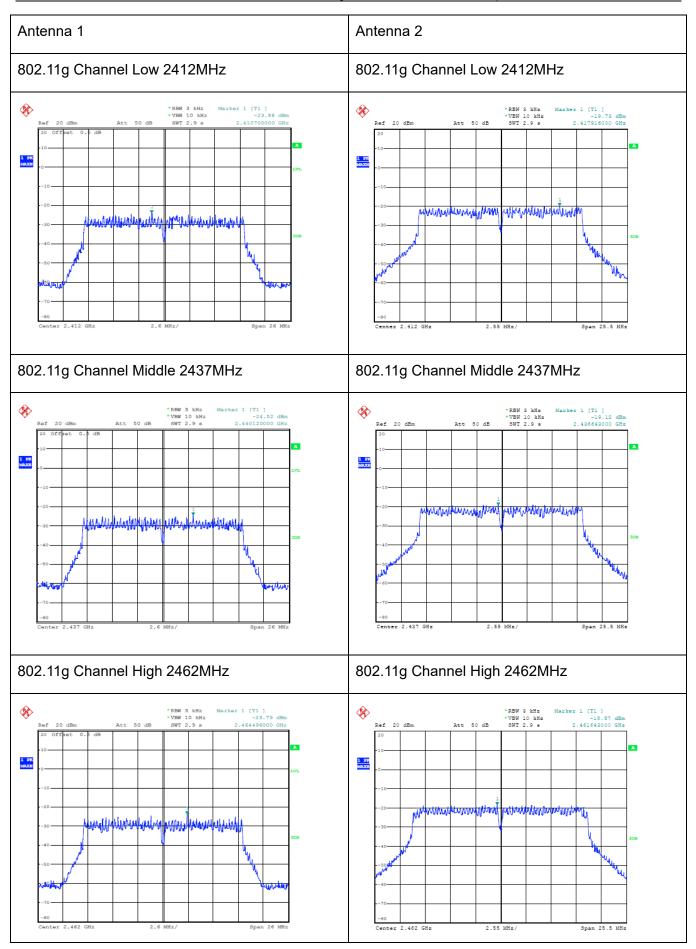
Pass

802.11b				
Channel	Frequency	Antenna 1	Antenna 2	Limit
	(MHz)	Power Spectral Density	Power Spectral Density	(dBm)
		(dBm)	(dBm)	
Low	2412	-19.36	-23.99	8
Middle	2437	-19.20	-24.70	8
High	2462	-20.11	-25.42	8

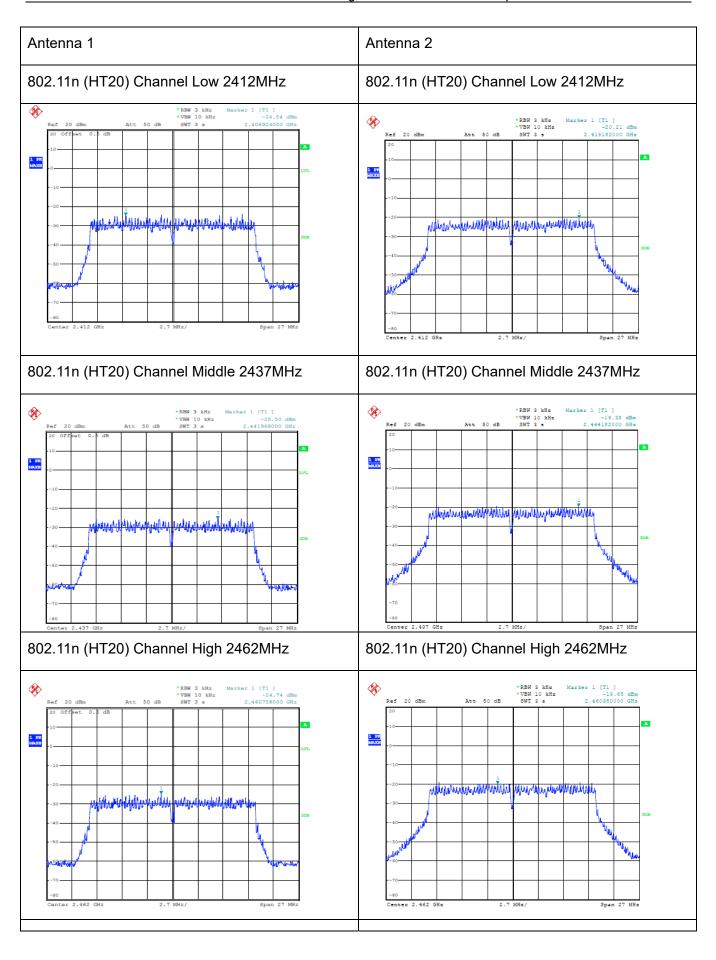
802.11g Channel Frequency Antenna 1 Antenna 2 Limit **Power Spectral Density Power Spectral Density** (dBm) (MHz) (dBm) (dBm) Low 2412 -23.88 -19.73 8 Middle 2437 -24.52 -19.12 8 High 2462 -23.79 8 -18.57

802.11n (H	B02.11n (HT20)					
Channel	Frequency (MHz)	Antenna 1 Power Spectral	Antenna 2 Power Spectral	Total Power Spectral Density	Limit (dBm)	
		Density	Density	(dBm)		
		(dBm)	(dBm)			
Low	2412	-24.54	-20.21	-18.85	8	
Middle	2437	-25.50	-19.38	-18.43	8	
High	2462	-24.74	-19.65	-18.49	8	

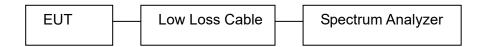
802.11n (H	T40)				
Channel	Frequency	Antenna 1	Antenna 2	Total Power Spectral	Limit
	(MHz)	Power Spectral	Power Spectral	Density	(dBm)
		Density	Density	(dBm)	
		(dBm)	(dBm)		
Low	2422	-29.52	-22.02	-21.31	8
Middle	2437	-29.55	-22.35	-21.59	8
High	2452	-30.52	-22.44	-21.81	8



Antenna 2 Antenna 1 802.11b Channel Low 2412MHz 802.11b Channel Low 2412MHz *RBW 3 kHs *VBW 10 kHs SWT 1.9 s Marker 1 [T1] -23.99 dBm 2.411286000 GHz Ref 20 dBm 802.11b Channel Middle 2437MHz 802.11b Channel Middle 2437MHz *RBW 3 kHz *VBW 10 kHz SWT 2.25 s *RBW 3 kHs *VBW 10 kHs SWT 1.9 s 1 PK MAXII 1 PK MAXH 802.11b Channel High 2462MHz 802.11b Channel High 2462MHz Marker 1 [T1] -25.42 dBm 2.461286000 GHz Center 2.462 GHz



Page 28 of 55 Report No.: HUAK160429056-1E



Antenna 1 Antenna 2 802.11n (HT40) Channel Low 2422MHz 802.11n (HT40) Channel Low 2422MHz **%** 1 PK MAXH والمرابع والم والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمراب play to be the house of the territory of 802.11n (HT40) Channel Middle 2437MHz 802.11n (HT40) Channel Middle 2437MHz *RBW 3 kHs *VBW 10 kHs SWT 6.2 s 1 PK MAXH And the supplementable of the state of the s يطيكوا بالقوال المخالف والمقال المقاومة المرا por il primi proprieta de la primi de la p 802.11n (HT40) Channel High 2452MHz 802.11n (HT40) Channel High 2452MHz **%** 1 PK MAXH سأريز الوائد وروسان مراسان والمعارف أحداث والمتواطات الزيادية phylogiches tragorifol-philariona, monorthiches tragorifol philariphi

6. BAND EDGE COMPLIANCE TEST

6.1 Block diagram of test setup

6.2 Limits

Part 2.1051, Part 2.105 and Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

6.3 Test procedure

Conducted Band Edge:

- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

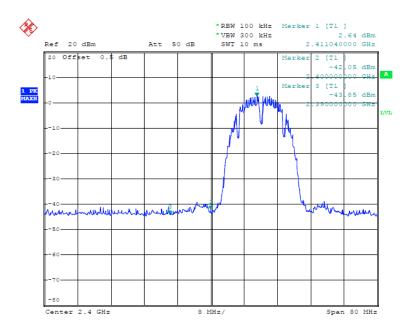
Radiate Band Edge:

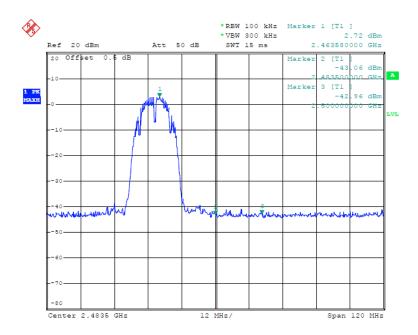
- a. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- b. The turntable was rotated for 360 degrees to determine the position of maximum emission level
- c. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- d. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: RBW=1MHz, VBW=1MHz
- e. The band edges was measured and recorded.

6.4 Test result

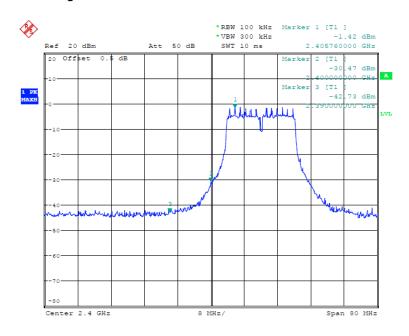
Pass

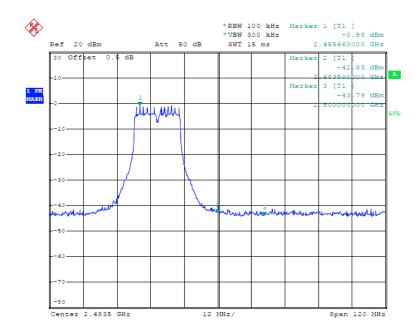
802.11b			
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2412	44.69	>30dBc
High	2462	45.78	>30dBc

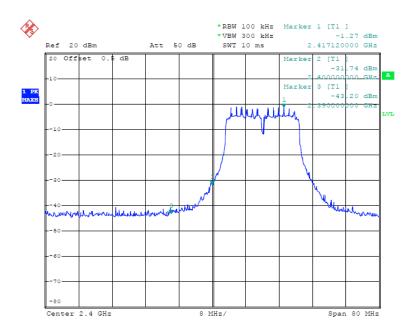

802.11g			
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2412	31.89	>30dBc
High	2462	43.81	>30dBc

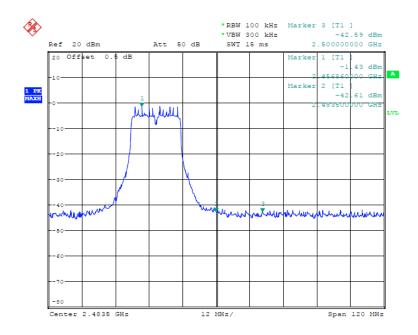

802.11n (HT20MH	z)		
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2412	33.01	>30dBc
High	2462	44.02	>30dBc

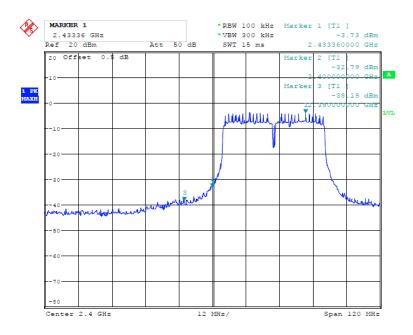
802.11n (HT40MH	z)		
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2422	36.57	>30dBc
High	2452	44.00	>30dBc

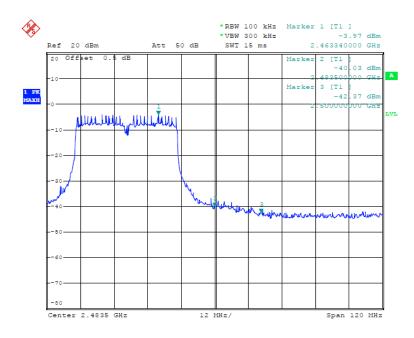

802.11 b




802.11 g




802.11 n (HT20)



802.11 n (HT40)

Radiated Band Edge Result

802.11 b, low CH, Horizontal

•		• · · · · · · · · · · · ·								
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2392.350	50.26	-6.77	43.49	74.00	-30.51	peak			
2	2392.350	45.11	-6.77	38.34	54.00	-15.66	AVG			
3	2400.000	56.78	-6.76	50.02	74.00	-23.98	peak			
4	2400.000	50.20	-6.76	43.44	54.00	-10.56	AVG			

Vertical

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2392.800	52.93	-6.77	46.16	74.00	-27.84	peak			
2	2392.800	47.31	-6.77	40.54	54.00	-13.46	AVG			
3	2400.000	60.39	-6.76	53.63	74.00	-20.37	peak			
4	2400.000	53.25	-6.76	46.49	54.00	-7.51	AVG			

802.11 g, low CH, Horizontal

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2387,100	50.46	-6,79	43.67	74.00	-30.33	peak			
2	2387,100	44.78	-6.79	37.99	54.00	-16.01	AVG		1	
3	2400.000	63.86	-6.76	57.10	74.00	-16.90	peak			
4	2400.000	57.01	-6.76	50.25	54.00	-3.75	AVG			

Vertical

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2397.450	53.50	-6.76	46.74	74.00	-27.26	peak			
2	2397.450	47.98	-6.76	41.22	54.00	-12.78	AVG			
3	2400.000	61.60	-6.76	54.84	74.00	-19.16	peak			
4	2400.000	54.52	-6.76	47.76	54.00	-6.24	AVG			

802.11 n(HT20), low CH, Horizontal

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2394.900	50.46	-6.76	43.70	74.00	-30.30	peak			
2	2394.900	45.11	-6.76	38.35	54.00	-15.65	AVG			
3	2400.000	59.53	-6.76	52.77	74.00	-21.23	peak			
4	2400.000	52.51	-6.76	45.75	54.00	-8.25	AVG			

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2383.350	50.78	-6.80	43.98	74.00	-30.02	peak			
2	2383.350	45.21	-6.80	38.41	54.00	-15.59	AVG			
3	2400.000	63.49	-6.76	56.73	74.00	-17.27	peak			
4	2400.000	56.45	-6.76	49.69	54.00	-4.31	AVG			

802.11 n(HT40), low CH, Horizontal

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.100	53.86	-6.78	47.08	74.00	-26.92	peak			
2	2390.100	48.12	-6.78	41.34	54.00	-12.66	AVG			
3	2400.000	58.16	-6.76	51.40	74.00	-22.60	peak			
4	2400.000	51.25	-6.76	44.49	54.00	-9.51	AVG			

Vertical

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2396.100	51.46	-6.76	44.70	74.00	-29.30	peak			
2	2396.100	45.33	-6.76	38.57	54.00	-15.43	AVG			
3	2400.000	55.12	-6.76	48.36	74.00	-25.64	peak			
4	2400.000	48.49	-6.76	41.73	54.00	-12.27	AVG			

802.11 b, High CH, Horizontal

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	46.13	-6.54	39.59	74.00	-34.41	peak			
2	2483.500	39.23	-6.54	32.69	54.00	-21.31	AVG			
3	2487.120	47.35	-6.53	40.82	74.00	-33.18	peak			
4	2487.120	42.13	-6.53	35.60	54.00	-18.40	AVG		7	

Vertical

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	43.33	-6.54	36.79	74.00	-37.21	peak			
2	2483.500	36.26	-6.54	29.72	54.00	-24.28	AVG			
3	2487.400	43.46	-6.53	36.93	74.00	-37.07	peak			
4	2487.400	38.98	-6.53	32.45	54.00	-21.55	AVG			

802.11 g, High CH, Horizontal

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	43.90	-6.54	37.36	74.00	-36.64	peak			
2	2483.500	36.81	-6.54	30.27	54.00	-23.73	AVG			
3	2486.210	44.58	-6.54	38.04	74.00	-35.96	peak			
4	2486.210	39.21	-6.54	32.67	54.00	-21.33	AVG			

Vertical

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	47.25	-6.54	40.71	74.00	-33.29	peak			
2	2483.500	40.74	-6.54	34.20	54.00	-19.80	AVG			
3	2491.110	46.64	-6.51	40.13	74.00	-33.87	peak			
4	2491.110	41.22	-6.51	34.71	54.00	-19.29	AVG			

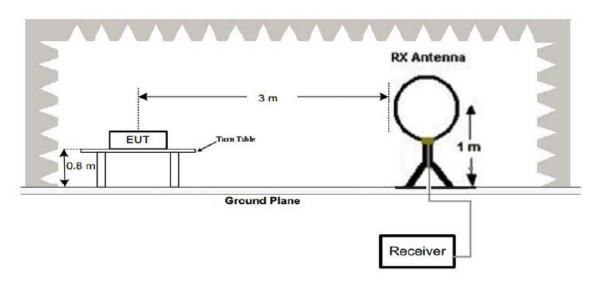
802.11 n(HT20), High CH, Horizontal

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	48.30	-6.54	41.76	74.00	-32.24	peak			
2	2483.500	41.29	-6.54	34.75	54.00	-19.25	AVG			
3	2489.010	45.91	-6.52	39.39	74.00	-34.61	peak			
4	2489.010	40.38	-6.52	33.86	54.00	-20.14	AVG			

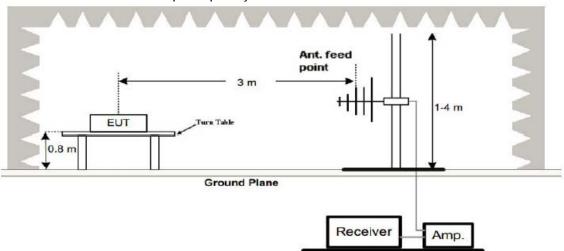
Vertical

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	43.12	-6.54	36.58	74.00	-37.42	peak			
2	2483.500	36.10	-6.54	29.56	54.00	-24.44	AVG			
3	2485.650	44.69	-6.54	38.15	74.00	-35.85	peak			
4	2485.650	39.21	-6.54	32.67	54.00	-21.33	AVG			

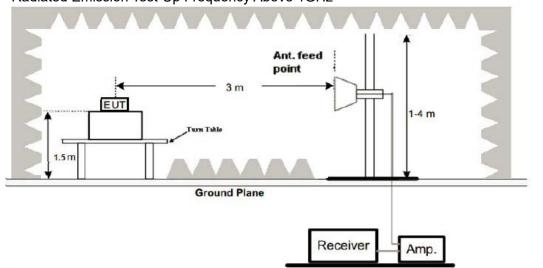
802.11 n(HT40), High CH, Horizontal


No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	44.38	-6.54	37.84	74.00	-36.16	peak			
2	2483.500	37.77	-6.54	31.23	54.00	-22.77	AVG			
3	2486.140	45.54	-6.54	39.00	74.00	-35.00	peak			
4	2486.140	40.21	-6.54	33.67	54.00	-20.33	AVG			

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	47.66	-6.54	41.12	74.00	-32.88	peak			
2	2483.500	40.79	-6.54	34.25	54.00	-19.75	AVG			
3	2485.440	47.91	-6.54	41.37	74.00	-32.63	peak			
4	2485.440	42.41	-6.54	35.87	54.00	-18.13	AVG			



7. RADIATED SPURIOUS EMISSION TEST


- 7.1 Block diagram of test setup
- (1) Radiated Emission Test-Up Frequency Below 30MHz

(2) Radiated Emission Test-Up Frequency 30MHz~1GHz

(3) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limits

Part 2.1051, Part 2.1053, Part 2.1057 and Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

7.3 Restricted bands of operation

FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495 - 0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 ²Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

7.4 Test procedure

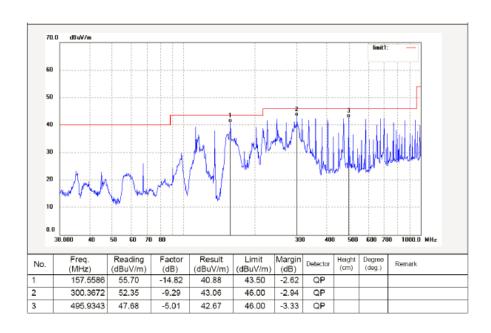
1, The EUT is placed on a turntable, which is 0.8m above ground plane below 1GHz and 1.5m above ground plane above 1GHz..

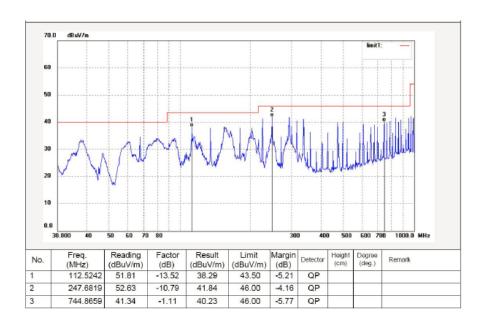
- 2, The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3, EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions
- 4, For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 5, Maximum procedure was performed on the six highest emissions to ensure EUT compliance
- 6, And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical
- 7, Repeat above procedures until the measurements for all frequencies are complete.
- 8, Based on the Frequency Generator in the device include 16MHz. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a)

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

7.5 Test result Pass

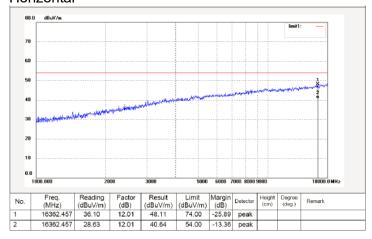


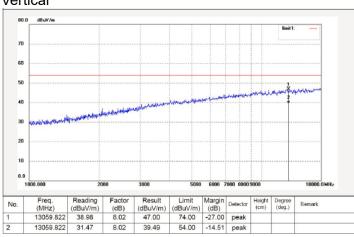


Test mode: 802.11b For Below 30MHz

Freq.(MHz)	Reading (dBuV/m) (QP)	Factor(dB) Corr.	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
/	/	/	/	/	/

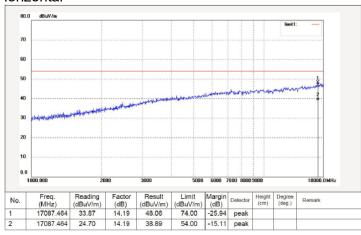
Test mode: 802.11b For 30MHz-1000MHz

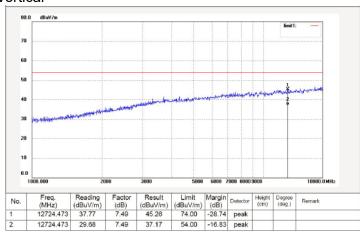




Test mode: 802.11b For 1GHz-25GHz

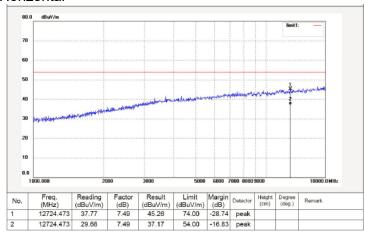
CH low Horizontal

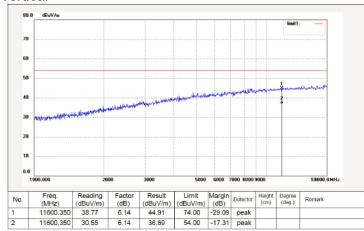




CH Middle

Horizontal

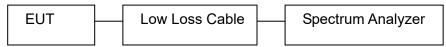




CH High

Horizontal

Vertical



Note: "802.11b" mode is worst mode

8. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

8.1 Block diagram of test setup

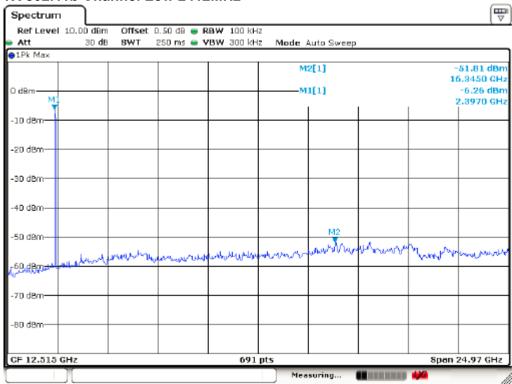
8.2 Limits

Se Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section. the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

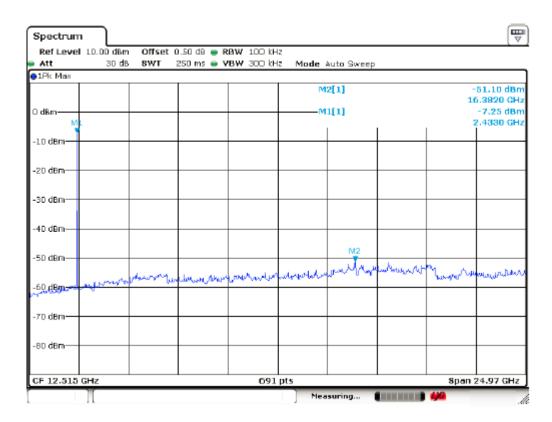
8.3 Test procedure

- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.
- c. The Conducted Spurious Emission was measured and recorded.

8.4 Test Result

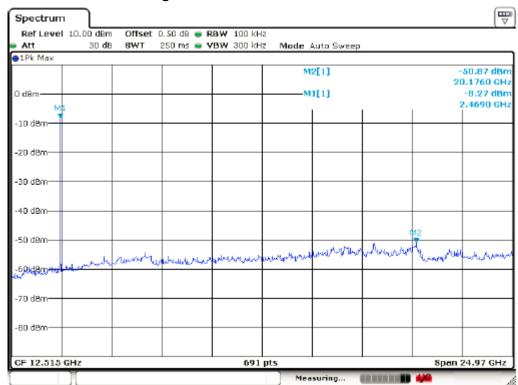

Pass

The spectrum analyzer plots are attached as below.



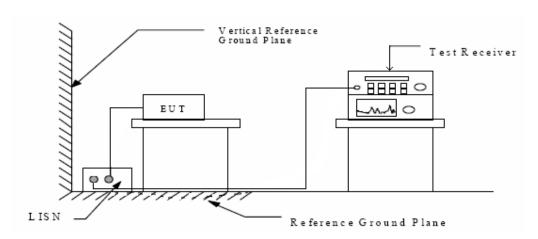
The worst test mode: 802.11b

TX 802.11b Channel Low 2412MHz



TX 802.11b Channel Middle 2437MHz

TX 802.11b Channel High 2462MHz



Page 50 of 55 Report No.: HUAK160429056-1E

9. AC POWER LINE CONDUCTED EMISSION

9.1 Block diagram of test setup

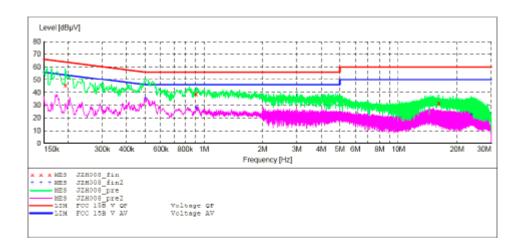
9.2 Limits

Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limits (dBμV)	
MHz	Quasi-peak Level	Average Level
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*
0.50 ~ 5.00	56	46
5.00 ~ 30.00	60	50

^{*} Decreases with the logarithm of the frequency.

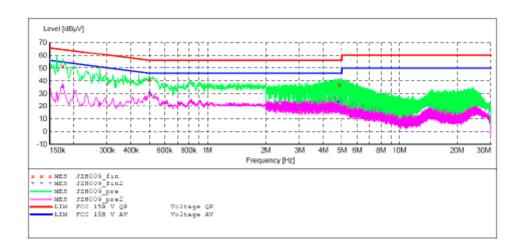
9.3 Test procedure


The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2003 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESPI) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

9.4 Test Result **PASS**


MEASUREMENT RESULT:

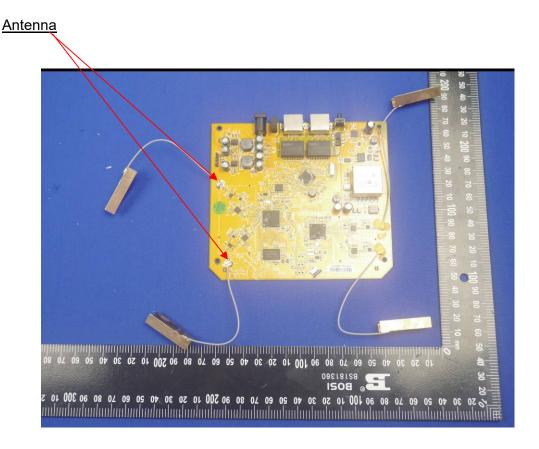
Frequency MHz	Level dBµV			Margin dB	Detector	Line	PE
0.194000 0.912000 16.130000	38.50	10.6 11.6 11.9	56	17.5	QP	N N N	GND GND GND

MEASUREMENT RESULT:

Frequency MHz	Level dBµV			Margin dB	Detector	Line	PE
0.500000	35.70	11.5	46	10.3	AV	N	GND
0.920000	28.30	11.6	46	17.7	AV	N	GND
23.766500	22.40	12.0	50	27.6	AV	N	GND

MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PΕ
0.176000	51.60	10.5	65	13.1	QP	Ll	GND
0.498000	40.50	11.5	56	15.5	QP	Ll	GND
4.839500	36.80	11.8	56	19.2	QP	L1	GND

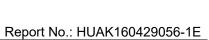

MEASUREMENT RESULT:

Frequency MHz	Level dBµV			Margin dB	Detector	Line	PΕ
0.176000 0.500000 4.754000	35.40 30.70 23.80	10.5 11.5 11.8	4.6	19.3 15.3 22.2	AV	L1 L1 L1	GND GND GND

10. ANTENNA REQUIREMENT

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. Antenna is fixed by enclosure, can not be changed except take apart the product.

Note: The 2.4 G TX and 5.8 G TX is not transmitter at the same time.



11. POTOGRAPH OF TEST

11.1 Radiated Emission

11.2 Conducted Emission

