

FCC SAR Report

Report No. : SESF1502036
Client : Tianjin RoamWiFi Technology Co., Ltd.
Address : 2018 Zhong Tian Road , Block 16 Unit 429, Ready built office, Tianjin Eco-city, Tianjin
Manufacturer : Tianjin RoamWiFi Technology Co., Ltd.
Address : 2018 Zhong Tian Road , Block 16 Unit 429, Ready built office, Tianjin Eco-city, Tianjin
Product : 3G Wireless Router
Brand : Roam WiFi
Model : RW-801
FCC ID : 2ADUB-ROAMWIFI
Standards : FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1992 / IEEE 1528-2003 / KDB 865664 D01 v01r03/KDB648474 D04 v01r02/ KDB 447498 D01 v05r02 / KDB 941225 D01 v03
Test Date : Feb 09th, 2015~Feb 11th, 2015

Statement of Compliance:

The SAR values measured for the test sample are below the maximum recommended level of 1.6W/kg averaged over any 1g tissue according to FCC Acknowledge Data Base/ FCC 47CFR Part 2 (2.1093)/ IEEE Std.1528-2003.

The test result only corresponds to the tested sample. It is not permitted to copy this report, in part or in full, without the permission of the test laboratory.

The testing described in this report has been carried out to the best of our knowledge and ability, and our responsibility is limited to the exercise of reasonable care. This certification is not intended to relieve the sellers from their legal and/or contractual obligations.

Prepared By: Leo Chen
Leo Chen

Approved By: Miro Chueh
Miro Chueh

Release Version

Report No.	Issue Date	Description
SESF1502036	2015-02-12	Initial release

Contents

1. Summary of Maximum SAR Value.....	4
2. Description of Equipment under Test	5
3. Basic restrictions and Standards	6
3.1. Test Standards	7
3.2. Environment Condition.....	7
3.3. RF Exposure Limits.....	7
4. General Information	8
5. DASY5 Measurement System	9
5.1. Uncertainty of Inter-/Extrapolation and Averaging	10
5.2. DASY5 E-Field Probe	10
5.3. Data Acquisition Electronics (DAE)	11
5.4. Robot.....	11
5.5. Light Beam Unit	11
5.6. Measurement Server	12
5.7. SAM Phantom.....	12
5.8. Device Holder	13
5.9. Test Equipment List.....	14
5.10. Annual Internal Check of Impedance and Return Loss	15
6. The SAR Measurement Procedure	18
6.1. System Performance Check	18
6.2. Test Requirements	23
7. Conducted Power<Average>	26
8. Analysis and Results	28
8.1. SAR exclusion.....	28
8.2. Estimated SAR.....	28
8.3. SAR Test Results Summary.....	29
9. Simultaneous Transmission Analysis.....	31
9.1. Simultaneous Transmission Scenario with Wi-Fi.....	31
9.2. Simultaneous Transmission Conclusion	32
10. Measurement Uncertainty	33
APPENDIX A. SAR System Verification Data	
APPENDIX B. SAR measurement Data	
APPENDIX C. Calibration Data for Probe, Dipole and DAE	
APPENDIX D. Photographs of EUT and Setup	

1. Summary of Maximum SAR Value

Highest Reported SAR	Body
WCDMA Band II	0.764W/kg
WCDMA Band IV	0.545W/kg
WCDMA Band V	0.763W/kg
Highest Simultaneous Transmission SAR	Body
WCDMA Band II+802.11b	1.160W/kg

2. Description of Equipment under Test

Product Name	3G Wireless Router
Model No.	RW-801
Brand Name	Roam WiFi
AM353 IMEI	357649060753814
AM526 IMEI	357648060558017
Main Board Version	SP918-V4 : Module A for WCDMA Band V, WCDMA Band II, WCDMA Band IV SP919-V5 : Module B for WCDMA Band V, WCDMA Band II
Hardware Version	SP918
Software Version	RoamWiFi_1.00.001
Antenna Type	Internal
Device Category	Portable
RF Exposure Environment	Uncontrolled

3G

Support Band	WCDMA Band II/WCDMA Band IV/WCDMA Band V
Uplink	WCDMA Band II: 1850~1910MHz WCDMA Band IV: 1710~1755MHz WCDMA Band V: 824~849MHz
Downlink	WCDMA Band II: 1930~1990MHz WCDMA Band IV: 2110~2155MHz WCDMA Band V: 869~894MHz
Release Version	Rel-6
Type of modulation	QPSK
Antenna Gain	WCDMA Band II: -0.8dBi WCDMA Band IV: -0.8dBi WCDMA Band V: -0.7dBi

Wi-Fi

Hotspots Function	YES
Wi-Fi Frequency	802.11b/g/n(20MHz): 2412 ~ 2462 MHz 802.11n(40MHz):2422~2452 MHz
Type of modulation	802.11b: DSSS; 802.11g/n: OFDM
Data Rate	802.11b: 1/2/5.5/11 Mbps 802.11g: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 150 Mbps
Antenna Gain	-1.96dBi

3. Simultaneous Transmission Configurations

Simultaneous Transmission Scenarios

Mode	WCDMA Band II	WCDMA Band IV	WCDMA Band V
2.4GHz WLAN	Yes	Yes	Yes

Simultaneous Transmission Condition

RF Exposure Condition	Capable Transmit Configurations
Head	N/A
Body-worn Accessory	N/A
Wireless Router (Hotspot)	WCDMA Band II/IV/V + WiFi 2.4GHz

Notes:

According to FCC KDB Publication 447498 D01v05r02 section5.3, transmitter are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneously transmission analysis.

4. Basic restrictions and Standards

4.1. Test Standards

1. IEEE 1528-2003
2. FCC KDB Publication 447498 D01 General RF Exposure Guidance v05r02
3. FCC KDB Publication 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
4. FCC KDB Publication 941225 D01 3G SAR Procedures v03

4.2. Environment Condition

Item	Target	Measured
Ambient Temperature(°C)	18~25	21.5±2
Temperature of Simulant(°C)	20~22	21±2
Relative Humidity(%RH)	30~70	52

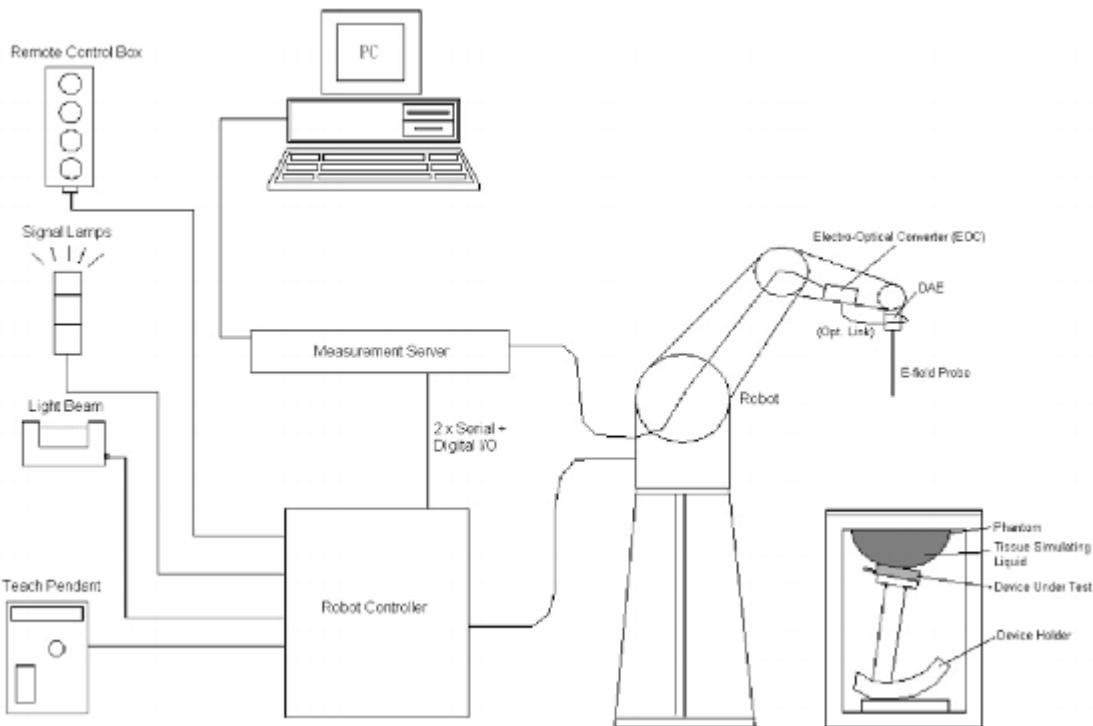
4.3. RF Exposure Limits

Human Exposure	Basic restrictions for electric, magnetic and electromagnetic fields. (Unit in mW/g or W/kg)
Spatial Peak SAR ¹ (Head and Body)	1.60
Spatial Average SAR ² (Whole Body)	0.08
Spatial Peak SAR ³ (Arms and Legs)	4.00

Notes:

1. The Spatial Peak value of the SAR averaged over any 1gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
2. The Spatial Average value of the SAR averaged over the whole body.
3. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over appropriate averaging time.

5. General Information


Our Lab,

Test Site	Cerpass Technology (Suzhou) Co.,Ltd
Test Site Location	No.66,Tangzhuang Road, Suzhou Industrial Park, Jiangsu 215006, China

6. DASY5 Measurement System

DASY5 Measurement System

Figure 2.1 SPEAG DASY5 System Configurations

The DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic(DAE)attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter(ECO)performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows 7
- DASY5 software
- Remove control with teach pendant additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

6.1. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f_1 , the spatially steep distribution f_3 and f_2 accounts for H-field cancellation on the phantom/tissue surface.

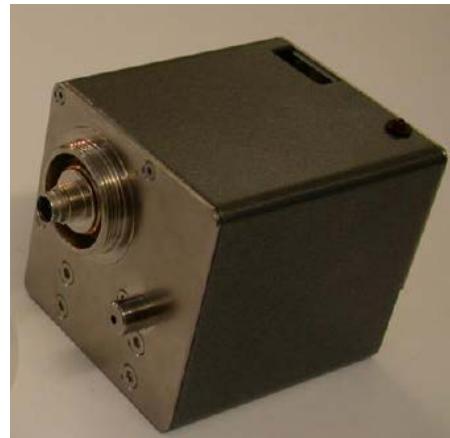
$$f_1(x, y, z) = Ae^{-\frac{z}{2a}} \cos^2 \left(\frac{\pi}{2} \frac{\sqrt{x'^2 + y'^2}}{5a} \right)$$
$$f_2(x, y, z) = Ae^{-\frac{z}{a}} \frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{a}} \right) \cos^2 \left(\frac{\pi}{2} \frac{y'}{3a} \right)$$
$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a + 2z)^2} \right)$$

6.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

Model	EX3DV4
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.



6.3. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

6.4. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

6.5. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

6.6. Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

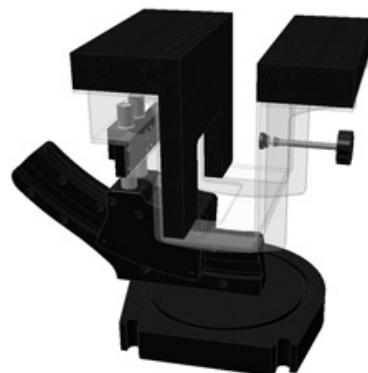
6.7. SAM Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The ELI4 Phantom also is a fiberglass shell phantom with 2mm shell thickness. It has 30 liters filling volume, and with a dimension of 600mm for major ellipse axis, 400mm for minor axis. It is intended for compliance testing of handheld and body-mounted wireless devices in frequency range of 30 MHz to 6GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

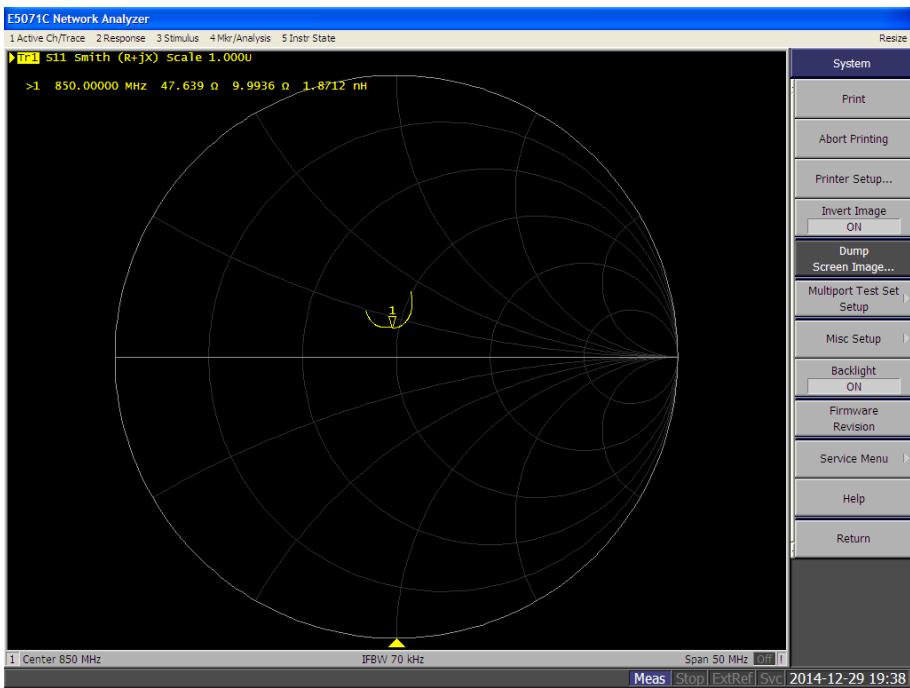
The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.



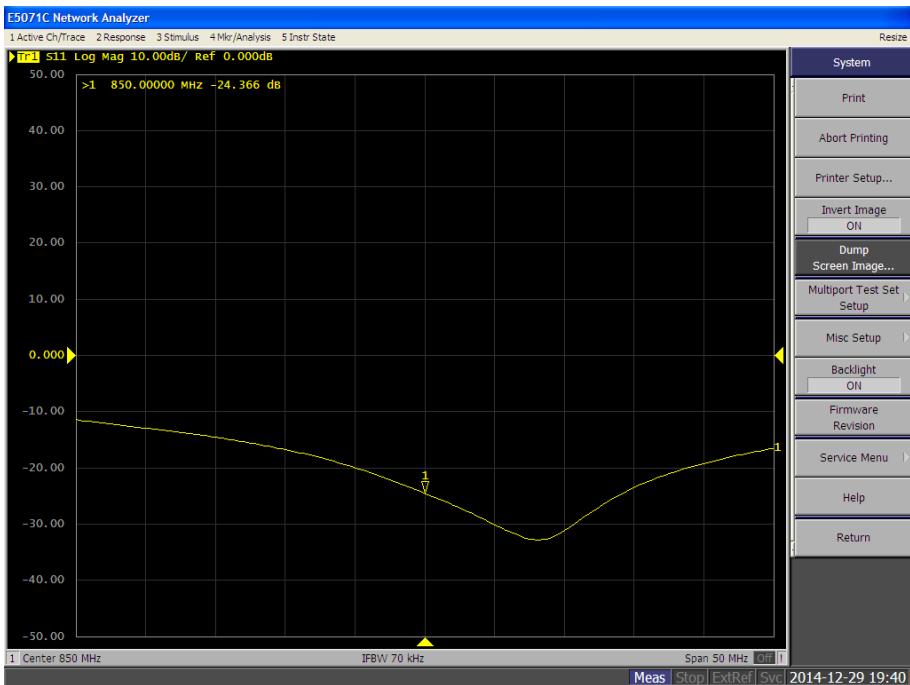
6.8. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles. The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The laptop extension is lightweight and made of POM, acrylic glass and foam. It fits easily on upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

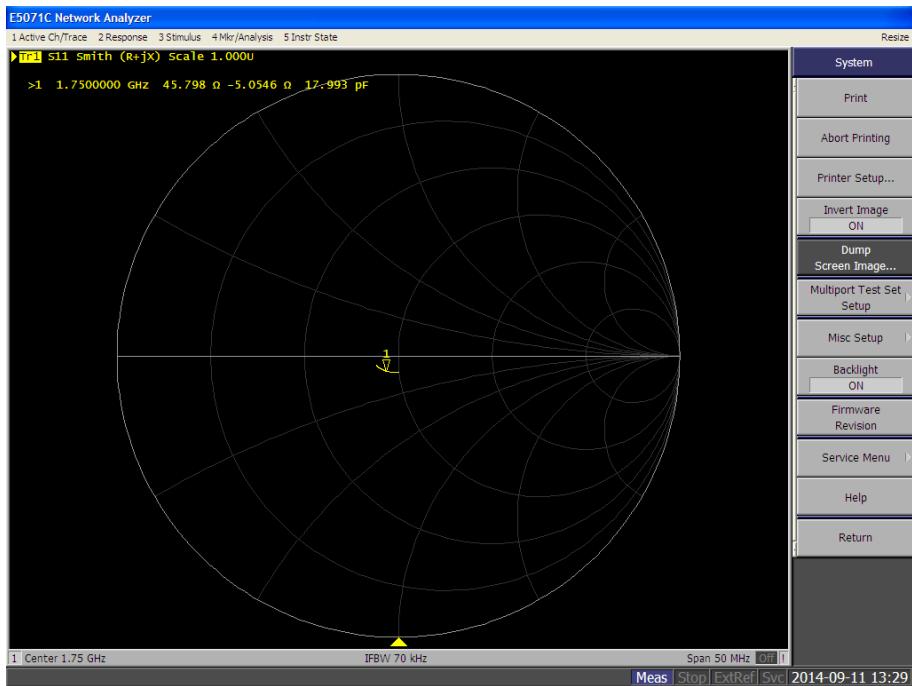

6.9. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	5P6VA1/A/01	only once
Robot Controller	Stäubli	CS8C	5P6VA1/C/01	only once
Dipole Validation Kits	Speag	D850V2	1008	2015.06.12
Dipole Validation Kits	Speag	D1750V2	1097	2015.06.10
Dipole Validation Kits	Speag	D1900V2	5d174	2015.06.09
SAM ELI Phantom	Speag	SAM	1211	N/A
Laptop Holder	Speag	SM LH1 001CD	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1379	2015.05.18
E-Field Probe	Speag	EX3DV4	3927	2015.05.22
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183W-S+	MN136701248	2015.09.03
Directional Coupler	Agilent	778D	MY52180185	2015.09.03
Spectrum Analyzer	R&S	FSP40	100324	2015.03.23
Vector Network	Agilent	E5071C	MY4631693	2015.01.15
Signal Generator	R&S	SML	103287	2015.03.09
Power Meter	R&S	NRP	101206	2015.11.10
AUG Power Sensor	R&S	NRP-Z91	100384	2015.03.09
SERIES POWER METER	AGILENT	E4416A	GB41292146	2015.03.26
POWER SENSOR	AGILENT	E9327A	US40441392	2015.03.26

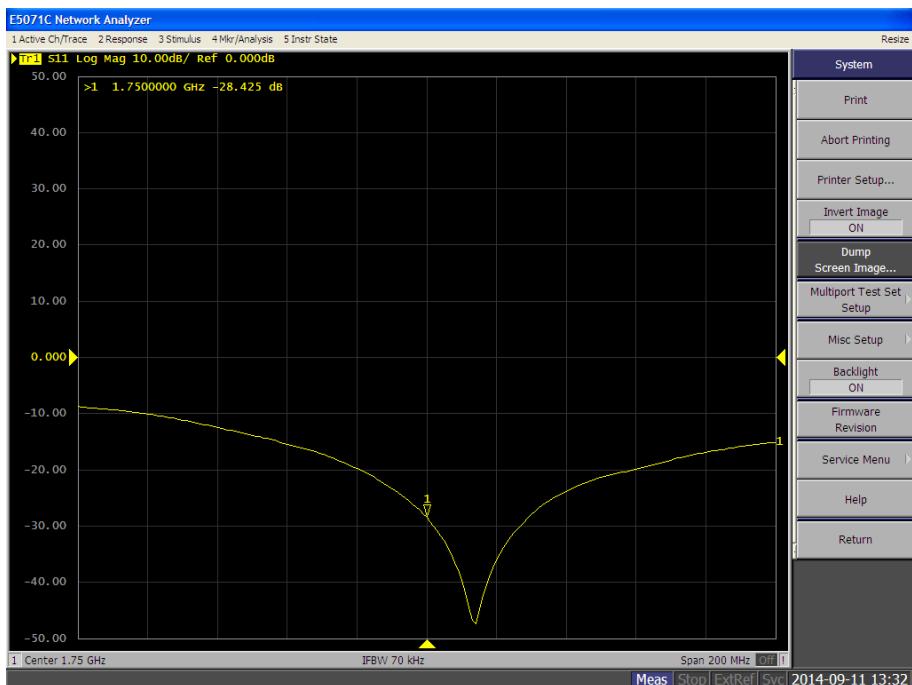


6.10. Annual Internal Check of Impedance and Return Loss

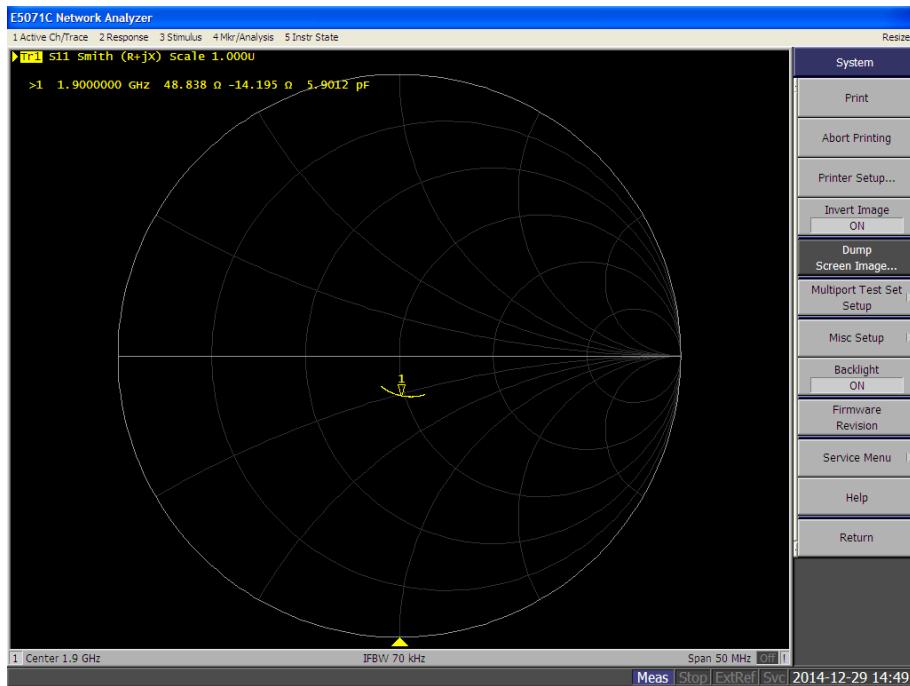
850MHz Body calibrated impedance 47.514Ω ; measured impedance: 47.639Ω (within 5Ω)



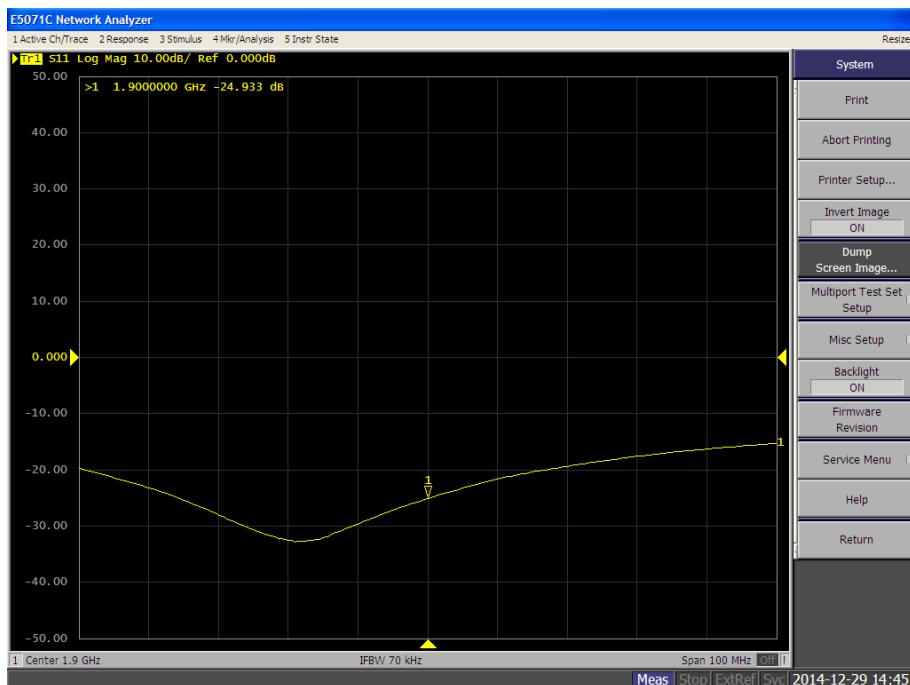
850MHz Body calibrated return loss: -24.393dB ; Measured return loss: -24.366dB (within 20%)



1750MHz Body calibrated impedance 46.645Ω; measured impedance: 45.798Ω (within 5Ω)



1750MHz Body calibrated return loss: -29.177 dB; Measured impedance: -28.425dB (within 20%)



1900MHz Body calibrated impedance 48.270Ω; measured impedance: 48.838Ω (within 5Ω)

1900MHz Body calibrated return loss: -25.381dB; Measured return loss: -24.933dB (within 20%)

7. The SAR Measurement Procedure

7.1. System Performance Check

7.1.1 Purpose

1. To verify the simulating liquids are valid for testing.
2. To verify the performance of testing system is valid for testing.

7.1.2 Tissue Dielectric Parameters for Head and Body Phantoms

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
850	41.5	0.92	55.2	0.99
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5200	36.0	4.66	49.0	5.30
5600	35.5	5.07	48.5	5.77
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000 \text{ kg/m}^3$)

7.1.3 Tissue Calibration Result

■ The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Assessment Kit and Agilent Vector Network Analyzer E5071C.

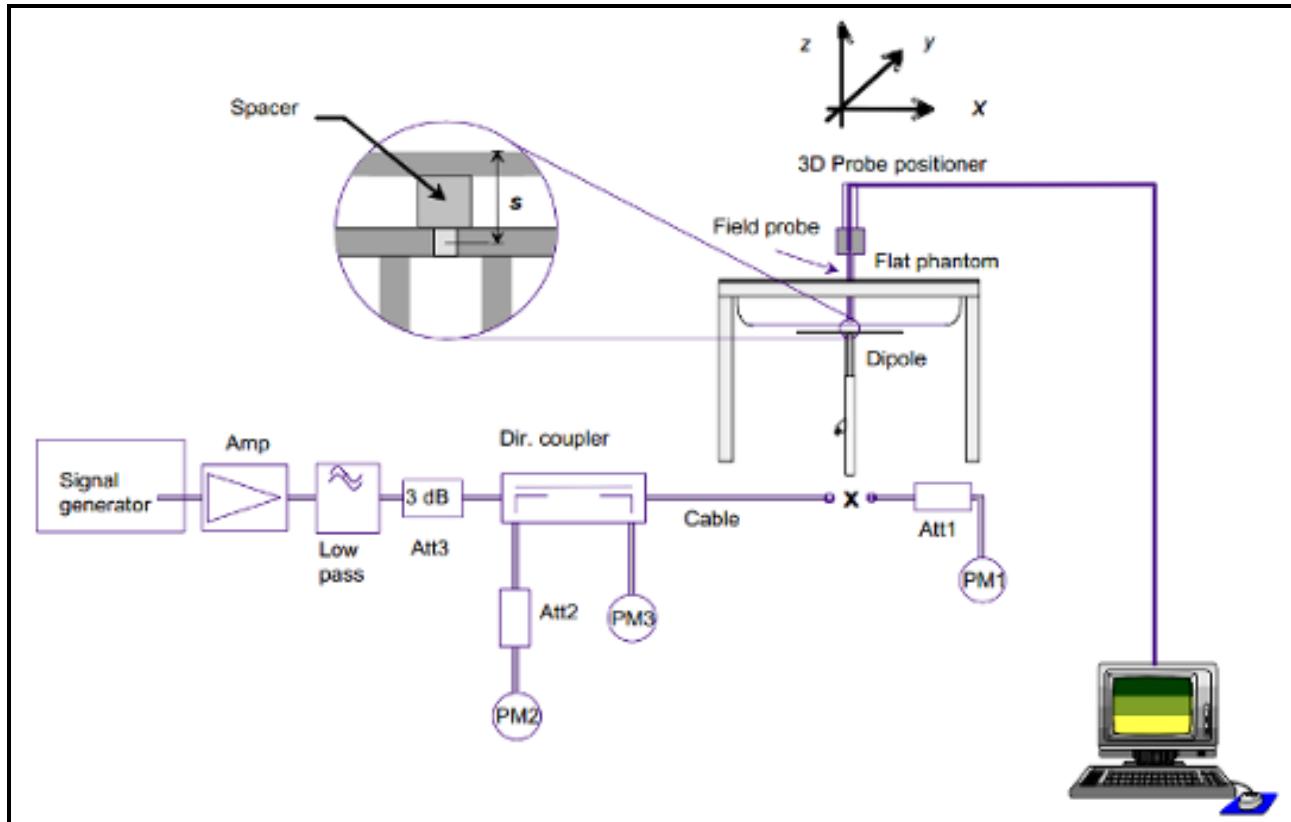
Body Tissue Simulant Measurement				
Frequency [MHz]	Description	Dielectric Parameters		Tissue Temp. [°C]
		ϵ_r	σ [s/m]	
850MHz	Reference result ± 5% window	55.2 52.44 to 57.96	0.99 0.94 to 1.04	N/A
	09-02-2015	55.06	0.99	21.0
1750MHz	Reference result ± 5% window	53.4 50.73 to 56.07	1.49 1.42 to 1.57	N/A
	10-02-2015	54.11	1.46	21.0
1900MHz	Reference result ± 5% window	53.3 50.64 to 55.97	1.52 1.44 to 1.60	N/A
	11-02-2015	52.46	1.52	21.0
1900MHz	Reference result ± 5% window	53.3 50.64 to 55.97	1.52 1.44 to 1.60	N/A
	25-03-2015	53.61	1.50	21.0

■ Refer to KDB 865664 D01 v01r03, The depth of body tissue-equivalent liquid in a phantom must be ≥ 15.0 cm with $\leq \pm 0.5$ cm variation for SAR measurements ≤ 3 GHz and ≥ 10.0 cm with $\leq \pm 0.5$ cm variation for measurements > 3 GHz.

7.1.4 System Performance Check Procedure

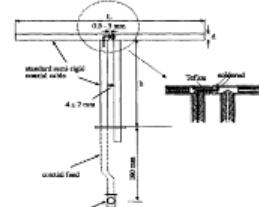
The DASY5 installation includes predefined files with recommended procedures for measurements and the system performance check. They are read-only document files and destined as fully defined but unmeasured masks, so the finished system performance check must be saved under a different name. The system performance check document requires the SAM Twin Phantom or ELI4 Phantom, so the phantom must be properly installed in your system. (User defined measurement procedures can be created by opening a new document or editing an existing document file). Before you start the system performance check, you need only to tell the system with which components (probe, medium, and device) you are performing the system performance check; the system will take care of all parameters.

■ **The Power Reference Measurement and Power Drift Measurement** jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the Dipole output power. If it is too high (above ± 0.2 dB), the system performance check should be repeated;


■ **The Surface Check** job tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). In that case it is better to abort the system performance check and stir the liquid;

■ **The Area Scan** job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable;

■ **The Zoom Scan** job measures the field in a volume around the peak SAR value assessed in the previous Area Scan job (for more information see the application note on SAR evaluation). If the system performance check gives reasonable results. The dipole input power(forward power) was 250mW, 1 g and 10 g spatial average SAR values normalized to 1W dipole input power give reference data for comparisons and it's equal to 10x(dipole forward power). The next sections analyze the expected uncertainties of these values, as well as additional checks for further information or troubleshooting.



7.1.5 System Performance Check Setup

7.1.6 Validation Dipoles

The dipoles use is based on the IEEE Std.1528-2003 and FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03standard, and is complied with mechanical and electrical specifications in line with the requirements of both EN62209-1 and EN62209-2. The table below provides details for the mechanical and electrical specifications for the dipoles.

7.1.7 Result of System Performance Check: Valid Result

System Performance Check at 850MHz, 1900MHz for Body.

Validation Dipole: D850V2-SN: 1008

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
850 MHz	Reference result ± 10% window	9.62 8.66 to 10.58	6.27 5.64 to 6.90	21.0
	09-02-2015	10.36	6.68	

Validation Kit: D1750V2-SN: 1097

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
1750MHz	Reference result ± 10% window	36.9 33.21 to 40.59	19.6 17.64 to 21.56	21.0
	10-02-2015	36.98	18.89	

Validation Kit: D1900V2-SN: 5d174

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
1900MHz	Reference result ± 10% window	40.4 36.36 to 44.44	21.5 19.35 to 23.65	21.0
	11-02-2015	40.15	19.68	
1900MHz	Reference result ± 10% window	40.4 36.36 to 44.44	21.5 19.35 to 23.65	21.0
	25-03-2015	40.47	20.95	

Note: All SAR values are normalized to 1W forward power.

7.2. Test Requirements

7.2.1 Test Procedures

Step 1 Setup a Connection

First, engineer should record the conducted power before the test. Then establish a call in handset at the maximum power level with a base station simulator via air interface, or make the EUT estimate by itself in testing band. Place the EUT to the specific test location. After the testing, must export SAR test data by SEMCAD. Then writing down the conducted power of the EUT into the report, also the SAR values tested.

Step 2 Power Reference Measurements

To measure the local E-field value at a fixed location which value will be taken as a reference value for calculating a possible power drift.

Step 3 Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01v01r01

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
	≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 4 Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 v01r03

		≤ 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$ graded grid	≤ 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
		$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm
Minimum zoom scan volume	x, y, z	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the reported SAR from the *area scan based 1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 5 Power Drift Measurements

Repetition of the E-field measurement at the fixed location mentioned in Step 1 to make sure the two results differ by less than ± 0.2 dB.

7.2.2 Test Channel

Per FCC KDB 941225 D03 v03, When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

Here are HSDPA/HSUPA sub-test setups as show blow, per FCC KDB 941225 D03 v03:

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	CM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: $\Delta_{ACK}, \Delta_{NACK}$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$
 Note 2: CM = 1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$.
 Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β_{ed} (SF)	β_{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1}: 47/15$ $\beta_{ed2}: 47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: $\Delta_{ACK}, \Delta_{NACK}$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.
 Note 2: CM = 1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
 Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.
 Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.
 Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.
 Note 6: β_{ed} cannot be set directly; it is set by Absolute Grant Value.

8. Conducted Power<Average>

■ WCDMA

Module A

Conducted Power (dBm)									
Band	WCDMA Band II			WCDMA Band IV			WCDMA Band V		
Channel	9262	9400	9538	1312	1413	1513	4132	4183	4233
Frequency	1852.4	1880.0	1907.6	1712.4	1732.6	1752.6	826.4	836.6	846.6
HSDPA Subtest-1	20.53	20.51	20.46	20.42	20.41	20.36	20.35	20.31	20.26
HSDPA Subtest-2	20.47	20.44	20.42	20.34	20.31	20.29	20.33	20.27	20.23
HSDPA Subtest-3	20.39	20.36	20.32	20.42	20.41	20.34	20.37	20.32	20.28
HSDPA Subtest-4	20.42	20.37	20.34	20.41	20.33	20.28	20.43	20.38	20.32

Module B

Conducted Power (dBm)						
Band	WCDMA Band II			WCDMA Band V		
Channel	9262	9400	9538	4132	4183	4233
Frequency	1852.4	1880.0	1907.6	826.4	836.6	846.6
HSDPA Subtest-1	20.46	20.41	20.34	20.56	20.53	20.51
HSDPA Subtest-2	20.53	20.51	20.46	20.45	20.42	20.41
HSDPA Subtest-3	20.43	20.41	20.38	20.48	20.43	20.37
HSDPA Subtest-4	20.45	20.41	20.37	20.43	20.36	20.32

Clarification: Due to module A and B are two different models with standalone modules, so they cannot transmit at the same time.

Module A

Mode	Band II <1900MHz> Channel	Average Burst Power<dBm>	Max. Tune-up Power<dBm>	Scaling Factor
Rel5 HSDPA	9262	20.53	21.0	1.11
	9400	20.51	21.0	1.12
	9538	20.46	21.0	1.13

Mode	Band IV <1750MHz> Channel	Average Burst Power<dBm>	Max. Tune-up Power<dBm>	Scaling Factor
Rel5 HSDPA	1312	20.42	21.0	1.14
	1413	20.41	21.0	1.15
	1513	20.36	21.0	1.16

Mode	Band V<850MHz> Channel	Average Burst Power<dBm>	Max. Tune-up Power<dBm>	Scaling Factor
Rel5 HSDPA	4132	20.35	21.0	1.16
	4183	20.31	21.0	1.17
	4233	20.26	21.0	1.19

Module B

Mode	Band II <1900MHz> Channel	Average Burst Power<dBm>	Max. Tune-up Power<dBm>	Scaling Factor
Rel5 HSDPA	9262	20.46	21.0	1.13
	9400	20.41	21.0	1.15
	9538	20.34	21.0	1.16

Mode	Band V<850MHz> Channel	Average Burst Power<dBm>	Max. Tune-up Power<dBm>	Scaling Factor
Rel5 HSDPA	4132	20.56	21.0	1.11
	4183	20.53	21.0	1.11
	4233	20.51	21.0	1.12

Clarification: Due to module A and B are two different models with standalone modules, so they cannot transmit at the same time.

■ WIFI

Mode	Channel	Frequency<MHz>	Data Rate <Mbps>	Average Burst Power<dBm>
802.11b	1	2412	1	9.81
	6	2437		9.47
	11	2462		9.39
802.11g	1	2412	6	8.4
	6	2437		8.36
	11	2462		8.31

9. Analysis and Results

9.1. SAR exclusion

■ Wi-Fi/Bluetooth

Per FCC KDB 447498 D01v05r02, the SAR exclusion threshold for distances<50mm is defined by the following equation:

$$\frac{\text{Max Power of Channel}(mW)}{\text{Test Separation Distance}(mm)} \times \sqrt{\text{Frequency}(GHz)} \leq 3.0$$

Based on the maximum conducted power and the antenna to use separation distance, Max. Average output power 802.11b and Bluetooth are lower the P_{re} , therefore WiFi/BT SAR is not required;

$$[(9.571mW/5) * \sqrt{2.412}] = 2.97 < 3.0, \text{ WiFi for Body}$$

Note: 9.571mW comes from 9.81dBm

■ Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is capable of QPSK HSUPA/HSDPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA/HSDPA in KDB 941225 D01 v03.

When the user utilizes multiple services in UMTS 3G mode, it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.

9.2. Estimated SAR

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is $\leq 1.6\text{W/kg}$. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r02 4.3.2 2, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

$$\text{Estimated SAR} = \frac{\sqrt{f(\text{GHz})} * (\text{Max Power of channel, mW})}{7.5 * \text{Min. Separation, mm}}$$

Mode	Frequency	Maximum Power	Separation Distance	Estimated SAR
	[MHz]	[dBm]	[mm]	[W/kg]
WIFI	2412	9.81	5	0.396

9.3. SAR Test Results Summary

■ WCDMA Band II Body

Module A

Test Mode	Test Position Body	CH.	Fre. <MHz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling Factor	Power Drift(dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
WCDMA Band II	Back	9262	1852.4	Fixed	0.00	20.53	21.00	1.02	N/A	N/A	N/A
	Back	9400	1880.0	Fixed	0.00	20.51	21.00	1.02	0.18	0.746	0.764
	Back	9538	1907.6	Fixed	0.00	20.46	21.00	1.03	N/A	N/A	N/A
	Front	9400	1880.0	Fixed	0.00	20.51	21.00	1.02	-0.08	0.147	0.151
	Edge_1	9400	1880.0	Fixed	0.00	20.51	21.00	1.02	-0.01	0.347	0.355
	Edge_2	9400	1880.0	Fixed	0.00	20.51	21.00	1.02	0.10	0.63	0.645
	Edge_3	9400	1880.0	Fixed	1.00	20.51	21.00	1.02	-0.11	0.472	0.483
	Edge_4	9400	1880.0	Fixed	0.00	20.51	21.00	1.02	0.18	0.292	0.299

Module B

Test Mode	Test Position Body	CH.	Fre. <MHz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling Factor	Power Drift(dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
WCDMA Band II	Back	9262	1852.4	Fixed	0	20.46	21.0	1.03	N/A	N/A	N/A
	Back	9400	1880	Fixed	0	20.41	21.0	1.03	0.13	0.130	0.134
	Back	9538	1907.6	Fixed	0	20.34	21.0	1.03	N/A	N/A	N/A
	Front	9400	1880	Fixed	0	20.41	21.0	1.03	-0.01	0.563	0.579
	Edge_1	9400	1880	Fixed	0	20.41	21.0	1.03	-0.05	0.380	0.391
	Edge_2	9400	1880	Fixed	0	20.41	21.0	1.03	0.12	0.217	0.223
	Edge_3	9400	1880	Fixed	1	20.41	21.0	1.03	0.11	0.096	0.099
	Edge_4	9400	1880	Fixed	0	20.41	21.0	1.03	-0.02	0.417	0.429

Note:

1.when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;

■ WCDMA Band IV Body

Module A

Test Mode	Test Position Body	CH.	Fre. <MHz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling Factor	Power Drift(dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
WCDMA Band IV	Back	1312	1712.4	Fixed	0	20.42	21.0	1.03	N/A	N/A	N/A
	Back	1413	1732.6	Fixed	0	20.41	21.0	1.03	0.10	0.530	0.545
	Back	1513	1752.6	Fixed	0	20.36	21.0	1.03	N/A	N/A	N/A
	Front	1413	1732.6	Fixed	0	20.41	21.0	1.03	-0.03	0.434	0.447
	Edge_1	1413	1732.6	Fixed	0	20.41	21.0	1.03	0.06	0.022	0.023
	Edge_2	1413	1732.6	Fixed	0	20.41	21.0	1.03	-0.01	0.445	0.458
	Edge_3	1413	1732.6	Fixed	0	20.41	21.0	1.03	0.03	0.299	0.308
	Edge_4	1413	1732.6	Fixed	0	20.41	21.0	1.03	0.04	0.056	0.058

Note:

1.when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;

■WCDMA Band V Body

Module A

Test Mode	Test Position Body	CH.	Fre. <MHz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling Factor	Power Drift(dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
WCDMA Band V	Back	4132	826.4	Fixed	0	20.35	21.0	1.03	N/A	N/A	N/A
	Back	4183	836.6	Fixed	0	20.31	21.0	1.03	0.00	0.738	0.763
	Back	4233	846.6	Fixed	0	20.26	21.0	1.04	N/A	N/A	N/A
	Front	4183	836.6	Fixed	0	20.31	21.0	1.03	0.11	0.266	0.275
	Edge_1	4183	836.6	Fixed	0	20.31	21.0	1.03	0.10	0.063	0.065
	Edge_2	4183	836.6	Fixed	0	20.31	21.0	1.03	0.11	0.596	0.616
	Edge_3	4183	836.6	Fixed	0	20.31	21.0	1.03	0.02	0.553	0.572
	Edge_4	4183	836.6	Fixed	0	20.31	21.0	1.03	0.14	0.063	0.065

Module B

Test Mode	Test Position Body	CH.	Fre. <MHz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling Factor	Power Drift(dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
WCDMA Band V	Back	4132	826.4	Fixed	0	20.56	21.0	1.02	N/A	N/A	N/A
	Back	4183	836.6	Fixed	0	20.53	21.0	1.02	-0.03	0.271	0.277
	Back	4233	846.6	Fixed	0	20.51	21.0	1.02	N/A	N/A	N/A
	Front	4183	836.6	Fixed	0	20.53	21.0	1.02	0.02	0.567	0.580
	Edge_1	4183	836.6	Fixed	0	20.53	21.0	1.02	-0.09	0.492	0.503
	Edge_2	4183	836.6	Fixed	0	20.53	21.0	1.02	-0.05	0.061	0.062
	Edge_3	4183	836.6	Fixed	0	20.53	21.0	1.02	-0.03	0.053	0.054
	Edge_4	4183	836.6	Fixed	0	20.53	21.0	1.02	0.19	0.473	0.484

Note:

1.when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;

10. Simultaneous Transmission Analysis

10.1. Simultaneous Transmission Scenario with Wi-Fi

Module A

Simult Tx	Configuration	WCDMA Band II SAR(W/kg)	Wi-Fi SAR(W/kg)	Σ SAR(W/kg)
Body	Back	0.764	0.396	1.160
	Front	0.146	0.396	0.542
	Edge_1	0.355	0.396	0.751
	Edge_2	0.645	0.396	1.041
	Edge_3	0.483	0.396	0.879
	Edge_4	0.299	0.396	0.695
Simult Tx	Configuration	WCDMA Band IV SAR(W/kg)	Wi-Fi SAR(W/kg)	Σ SAR(W/kg)
Body	Back	0.545	0.396	0.941
	Front	0.447	0.396	0.843
	Edge_1	0.023	0.396	0.419
	Edge_2	0.458	0.396	0.854
	Edge_3	0.308	0.396	0.704
	Edge_4	0.058	0.396	0.454
Simult Tx	Configuration	WCDMA Band V SAR(W/kg)	Wi-Fi SAR (W/kg)	Σ SAR(W/kg)
Body	Back	0.763	0.396	1.159
	Front	0.275	0.396	0.671
	Edge_1	0.065	0.396	0.461
	Edge_2	0.616	0.396	1.012
	Edge_3	0.572	0.396	0.968
	Edge_4	0.065	0.396	0.461

Module B

Simult Tx	Configuration	WCDMA Band II SAR(W/kg)	Wi-Fi SAR(W/kg)	Σ SAR(W/kg)
Body	Back	0.134	0.396	0.530
	Front	0.579	0.396	0.975
	Edge_1	0.391	0.396	0.787
	Edge_2	0.223	0.396	0.619
	Edge_3	0.099	0.396	0.495
	Edge_4	0.429	0.396	0.825
Simult Tx	Configuration	WCDMA Band V SAR(W/kg)	Wi-Fi SAR (W/kg)	Σ SAR(W/kg)
Body	Back	0.277	0.396	0.673
	Front	0.580	0.396	0.976
	Edge_1	0.503	0.396	0.899
	Edge_2	0.062	0.396	0.458
	Edge_3	0.054	0.396	0.450
	Edge_4	0.484	0.396	0.880

10.2. Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05r02.

11. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2003 is not required in SAR reports submitted for equipment approval.

--END--

APPENDIX A. SAR System Verification Data

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

Date/Time: 09/02/2015

System Check Body 850 MHz

DUT: Dipole 850 MHz Type: SID 850

Communication System CW; Communication System Band: D850 (850.0 MHz); Duty Cycle: 1:1;

Frequency: 835 MHz; Medium parameters used: $f = 850$ MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55.06$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C): 20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

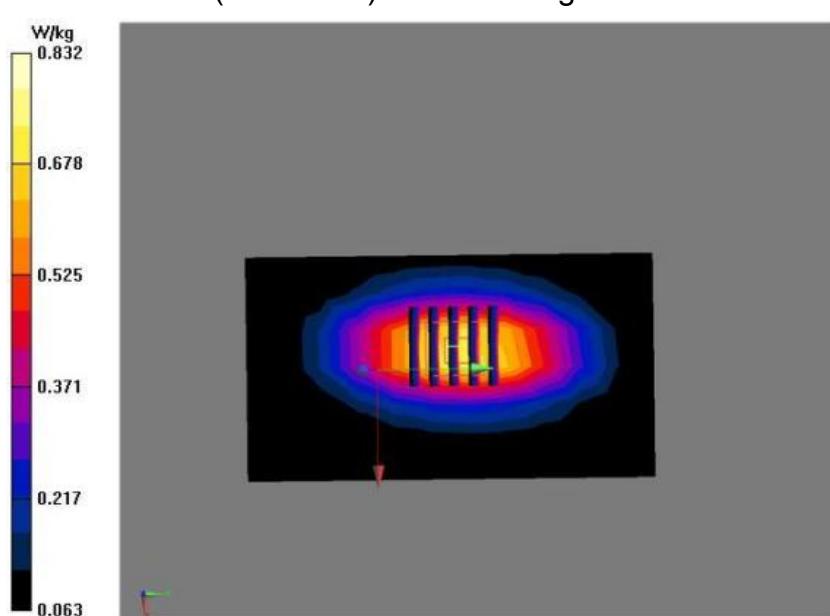
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/System Check 850MHz Body/Area Scan

(7x12x1): Measurement grid: $dx = 15$ mm, $dy = 15$ mm

Maximum value of SAR (measured) = 0.712 W/kg

Configuration/System Check 850MHz Body/(5x5x7)/Cube 0: Measurement


grid: $dx = 8$ mm, $dy = 8$ mm, $dz = 5$ mm

Reference Value = 26.500 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.975 W/kg

SAR(1 g) = 0.653 W/kg; SAR(10 g) = 0.421 W/kg

Maximum value of SAR (measured) = 0.832 W/kg

Date/Time: 10/02/2015

System Check Body 1750MHz

DUT: Dipole 1750 MHz; Type: SID 1750

Communication System: CW; Communication System Band: D1750 (1750.0 MHz); Duty Cycle:1:1;

Frequency: 1750 MHz; Medium parameters used: $f = 1750$ MHz; $\sigma=1.46$ mho/m; $\epsilon_r =54.11$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):, Liquid temperature (°C): 20.5

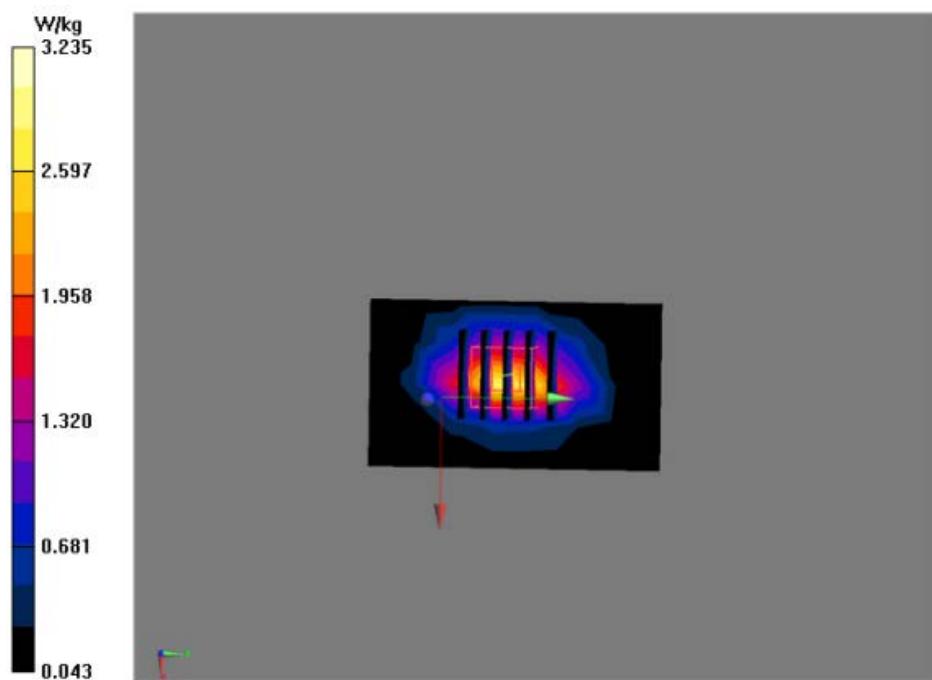
- Probe: EX3DV4 - SN3927; ConvF(8.45, 8.45, 8.45); Calibrated: 2014/5/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/System Check 1750MHz Body/Area Scan

(5x8x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 3.01 W/kg

Configuration/System Check 1750MHz Body/ (5x5x7)/Cube


0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 47.575 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 4.29 W/kg

SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.19 W/kg

Maximum value of SAR (measured) = 3.36 W/kg

Date/Time: 11/02/2015

System Check Body 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1;

Frequency: 1900 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.52$ mho/m; $\epsilon_r =52.46$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

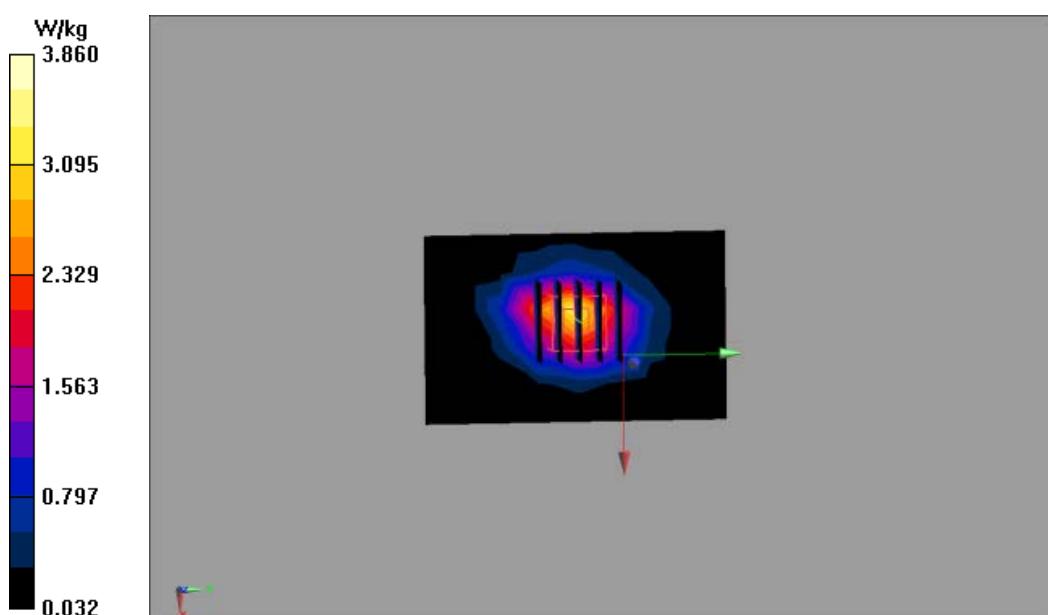
- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/System Check 1900MHz Body /Area Scan

(6x9x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 3.40 W/kg

Configuration/System Check 1900MHz Body /Zoom Scan (5x5x7)/Cube


0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 51.282 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 5.24 W/kg

SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.24 W/kg

Maximum value of SAR (measured) = 3.86 W/kg

Date/Time: 25/03/2015

System Check Body 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1;

Frequency: 1900 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.50$ mho/m; $\epsilon_r = 53.61$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD

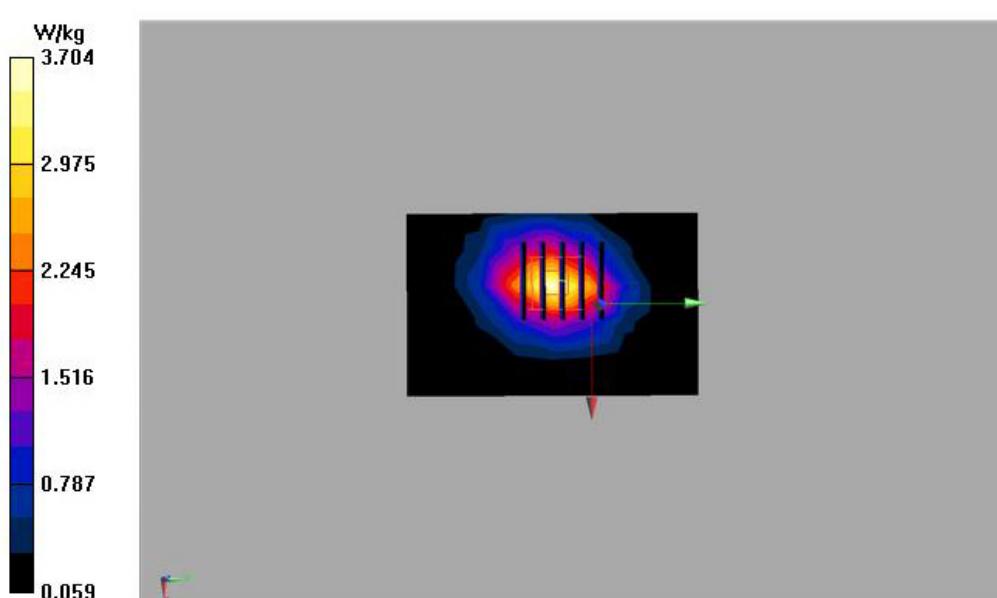
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/System Check 1900MHz Body /Area Scan

(6x9x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 3.73 W/kg

Configuration/System Check 1900MHz Body /Zoom Scan (5x5x7)/Cube


0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 45.715 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 4.86 W/kg

SAR(1 g) = 2.55 W/kg; SAR(10 g) = 1.32 W/kg

Maximum value of SAR (measured) = 3.70 W/kg

APPENDIX B. SAR measurement Data

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

Date: Feb. 11,2015

WCDMA Band II Mid -Body-Towards Grounds

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

$\rho = 1000 \text{ kg/m}^3$;

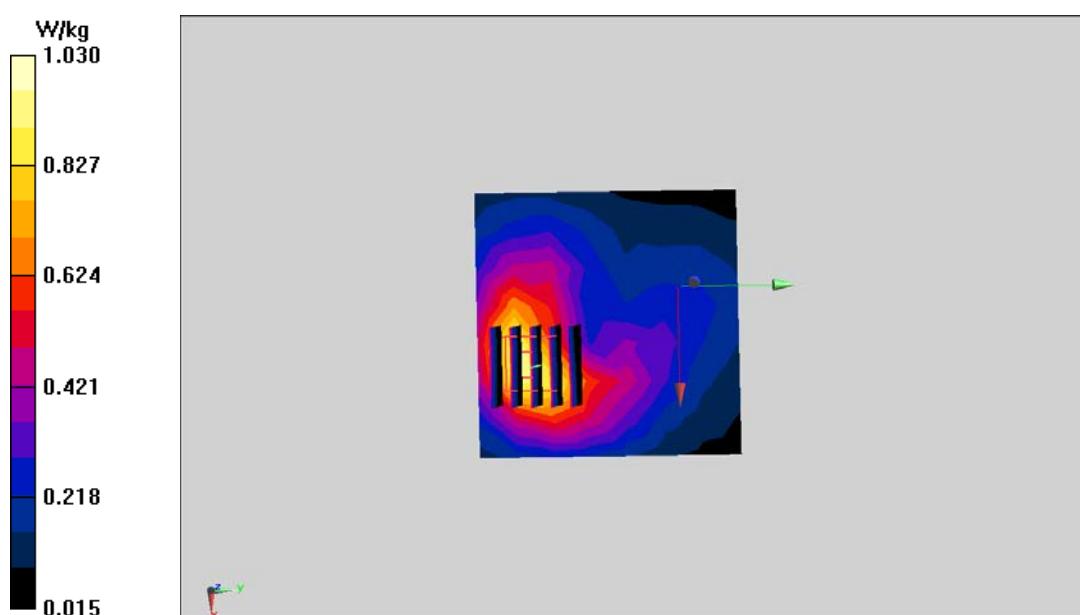
Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/BACK/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.946 W/kg


A/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 11.916 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.746 W/kg; SAR(10 g) = 0.420 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid-Body-Towards Phantom

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

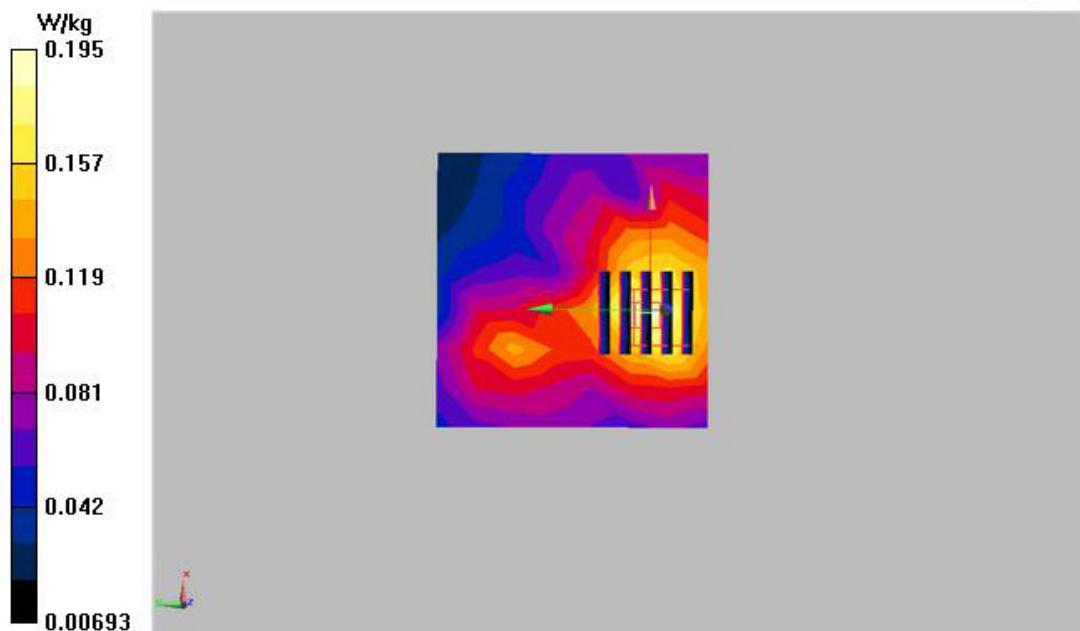
$\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/FRONT/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$
Maximum value of SAR (measured) = 0.193 W/kg


A/FRONT/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$,
 $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 7.012 V/m; Power Drift =-0.08 dB

Peak SAR (extrapolated) = 0.246 W/kg

SAR(1 g) = 0.147 W/kg; SAR(10 g) = 0.089 W/kg

Maximum value of SAR (measured) = 0.195 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid- Edge 1(Top)
DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

$\rho = 1000 \text{ kg/m}^3$;

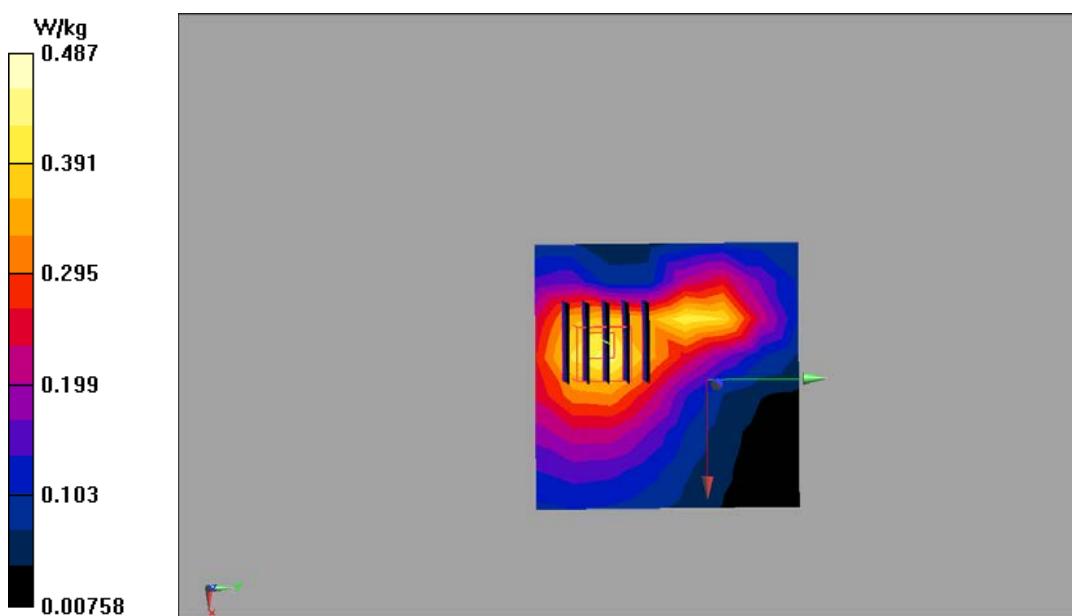
Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/Edge 1/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.443 W/kg


A/Edge 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 14.497 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.636 W/kg

SAR(1 g) = 0.347 W/kg; SAR(10 g) = 0.198 W/kg

Maximum value of SAR (measured) = 0.487 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid- Edge 2(Right)
DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

$\rho = 1000 \text{ kg/m}^3$;

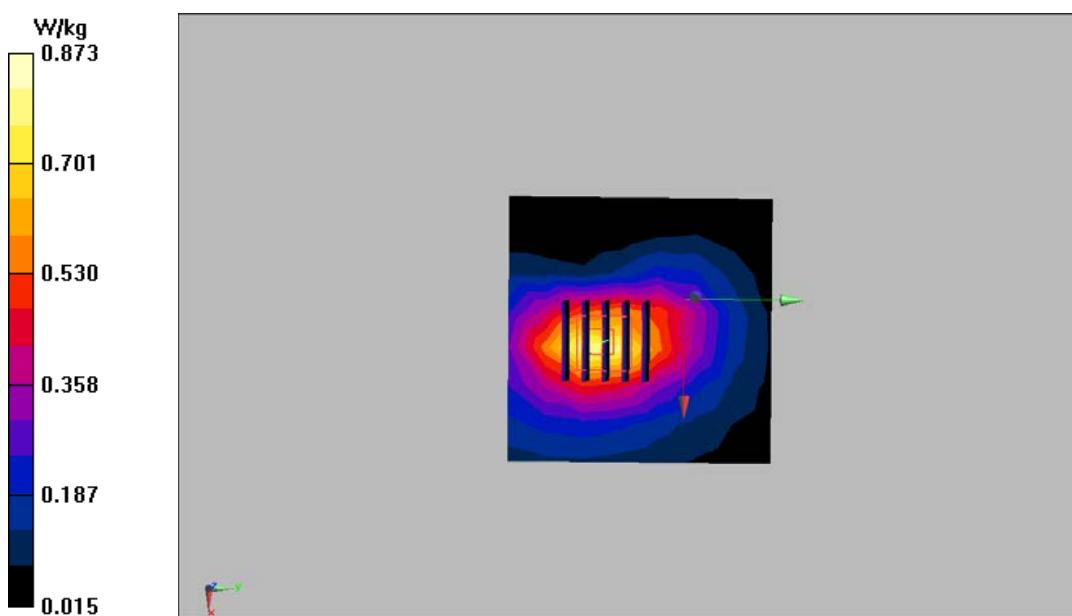
Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/Edge 2/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.820 W/kg


A/Edge 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 18.952 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.630 W/kg; SAR(10 g) = 0.354 W/kg

Maximum value of SAR (measured) = 0.873 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid- Edge 3(Bottom)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

$\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

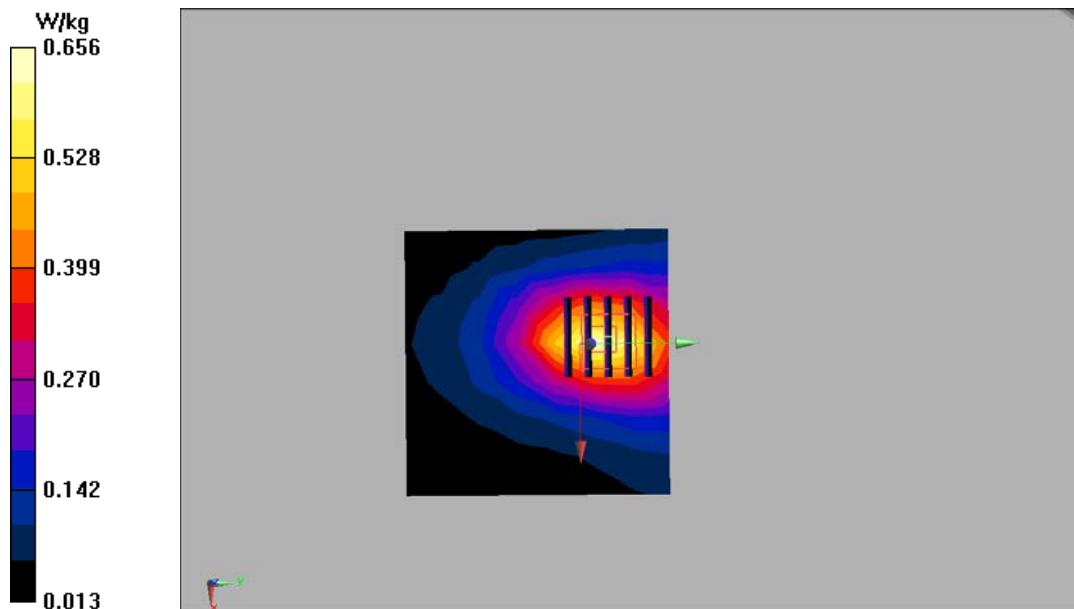
Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD

Measurement SW: DASY52, Version 52.8 (8);

A/Edge 3/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.647 W/kg


A/Edge 3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 15.525 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.828 W/kg

SAR(1 g) = 0.472 W/kg; SAR(10 g) = 0.268 W/kg

Maximum value of SAR (measured) = 0.656 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid- Edge 4(Left)
DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

$\rho = 1000 \text{ kg/m}^3$;

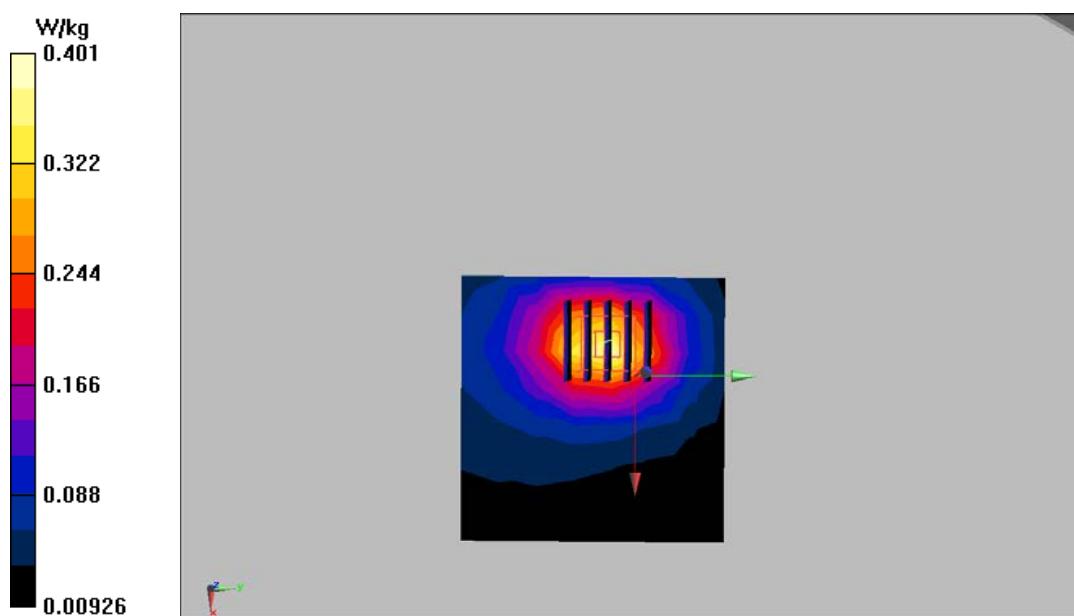
Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/Edge 4/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.386 W/kg


A/Edge 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 11.636 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.496 W/kg

SAR(1 g) = 0.292 W/kg; SAR(10 g) = 0.166 W/kg

Maximum value of SAR (measured) = 0.401 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid -Body-Towards Grounds

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

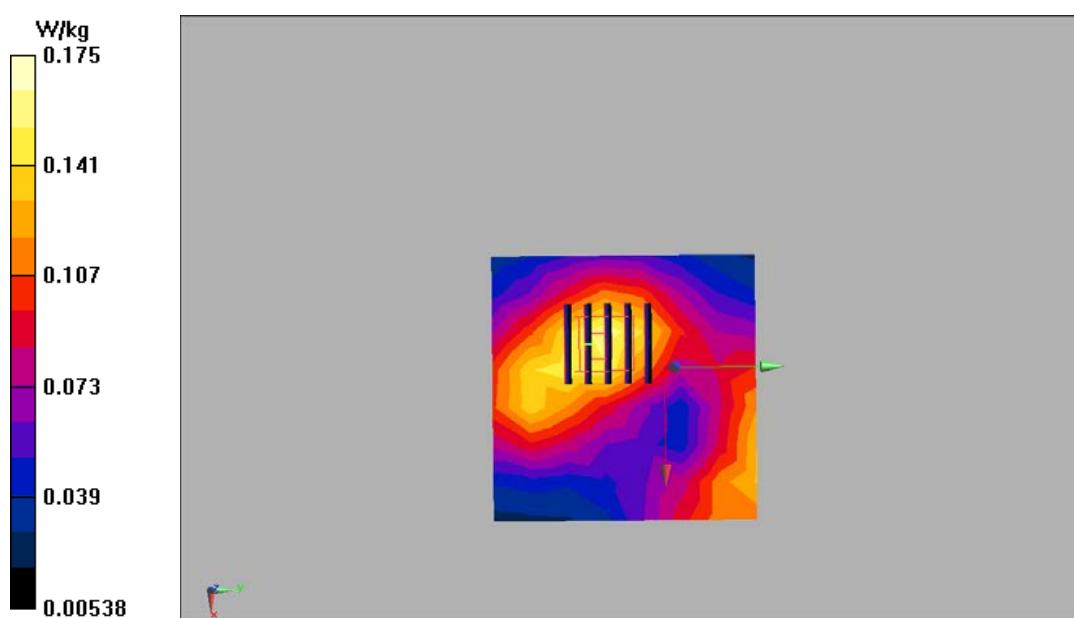
$\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/ BACK /Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$
Maximum value of SAR (measured) = 0.162 W/kg


B/ BACK /Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$,
 $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 10.023 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.224 W/kg

SAR(1 g) = 0.130 W/kg; SAR(10 g) = 0.078 W/kg

Maximum value of SAR (measured) = 0.175 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid-Body-Towards Phantom

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

$\rho = 1000 \text{ kg/m}^3$;

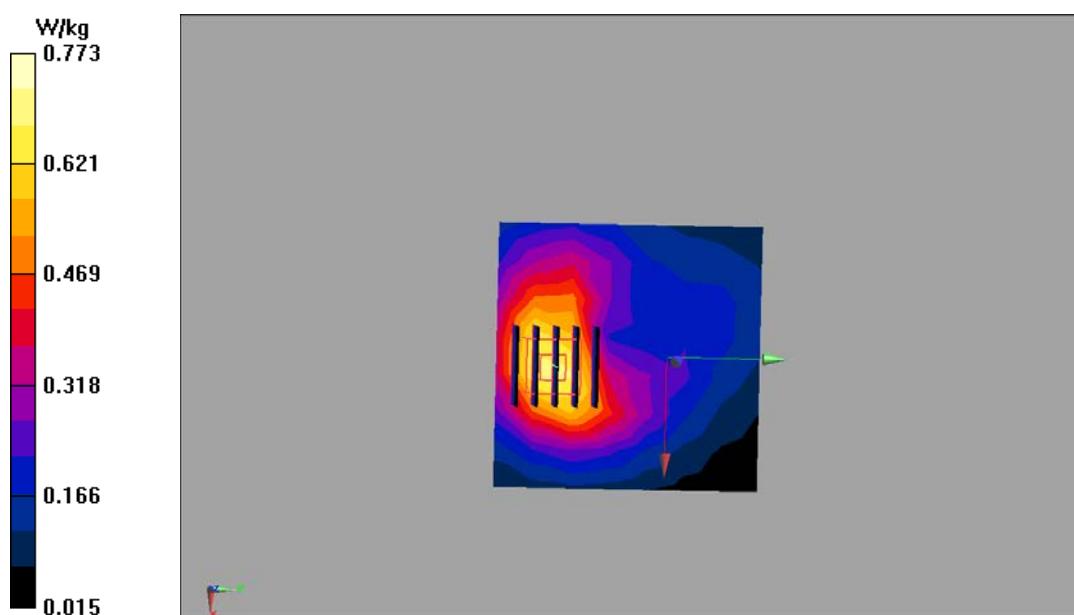
Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD

Measurement SW: DASY52, Version 52.8 (8);

B/ FRONT /Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$
Maximum value of SAR (measured) = 0.690 W/kg


B/ FRONT /Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$,
 $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 10.880 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.969 W/kg

SAR(1 g) = 0.563 W/kg; SAR(10 g) = 0.324 W/kg

Maximum value of SAR (measured) = 0.773 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid- Edge 1(Top)
DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

$\rho = 1000 \text{ kg/m}^3$;

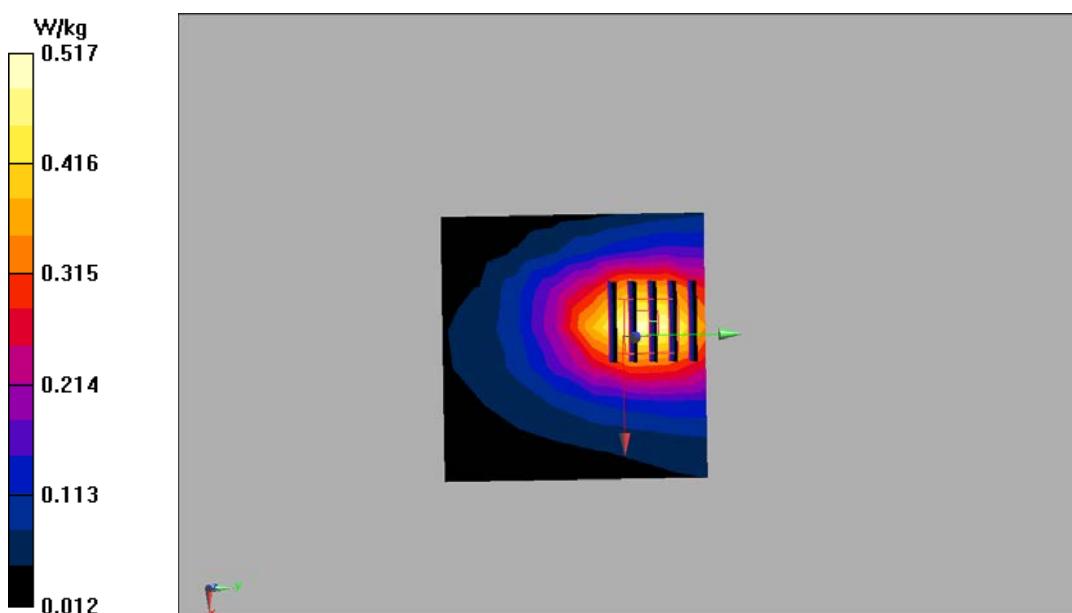
Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/Edge 1/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.510 W/kg


B/Edge 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 13.644 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.648 W/kg

SAR(1 g) = 0.380 W/kg; SAR(10 g) = 0.221 W/kg

Maximum value of SAR (measured) = 0.517 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid- Edge 2(Right)
DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

$\rho = 1000 \text{ kg/m}^3$;

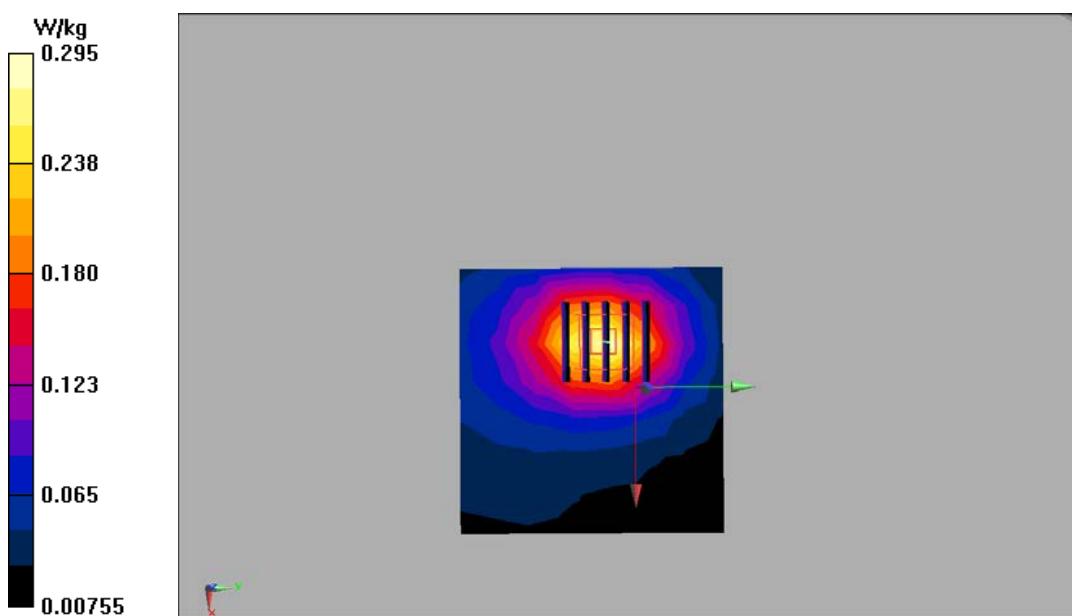
Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/Edge 2/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.291 W/kg


B/Edge 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 11.238 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.366 W/kg

SAR(1 g) = 0.217 W/kg; SAR(10 g) = 0.126 W/kg

Maximum value of SAR (measured) = 0.295 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid- Edge 3(Bottom)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

$\rho = 1000 \text{ kg/m}^3$;

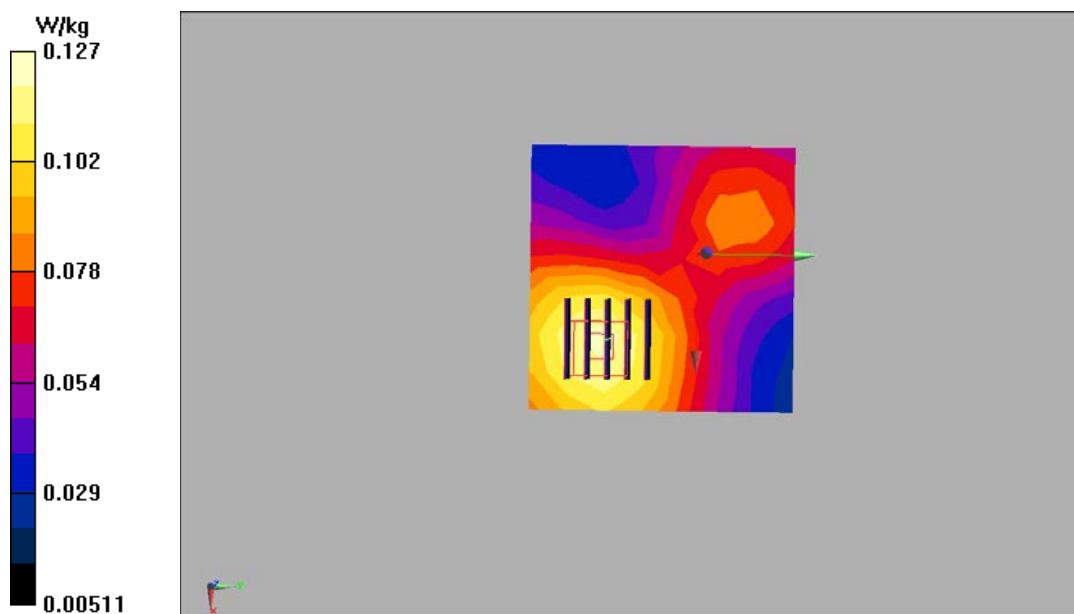
Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/Edge 3/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.124 W/kg


B/Edge 3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 6.712 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.155 W/kg

SAR(1 g) = 0.096 W/kg; SAR(10 g) = 0.060 W/kg

Maximum value of SAR (measured) = 0.127 W/kg

Date: Feb. 11,2015

WCDMA Band II Mid- Edge 4(Left)
DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1900 (0); Communication System Band: Band II
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1880 MHz; Medium parameters used: $f = 1900$ MHz; $\sigma=1.50$

mho/m ; $\epsilon_r = 53.14$;

$\rho = 1000 \text{ kg/m}^3$;

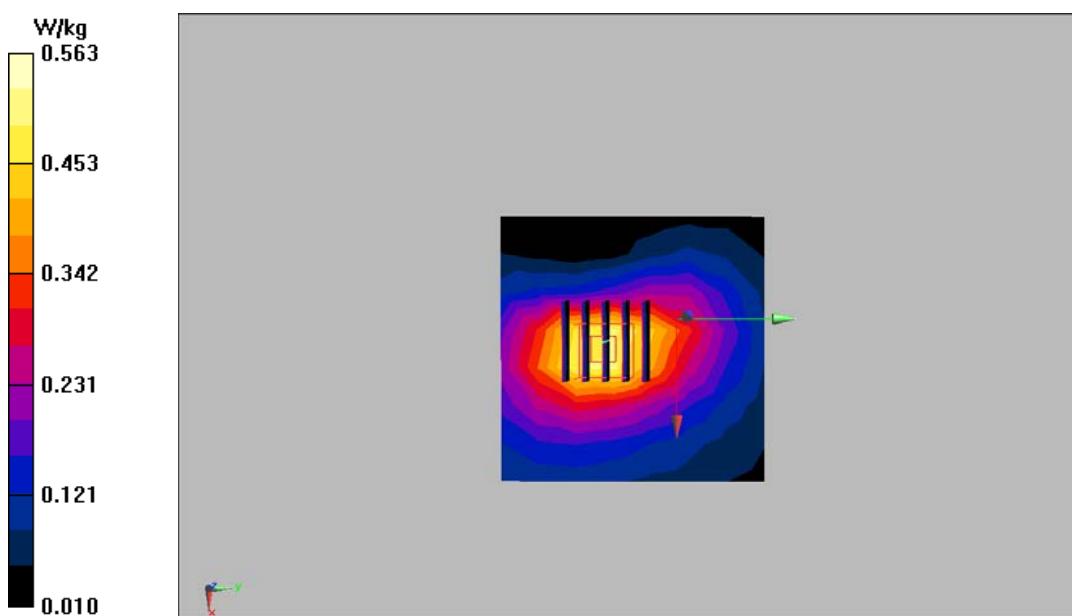
Phantom section: Flat Section

Ambient temperature (°C):20.6, Liquid temperature (°C): 20.4

- Probe: EX3DV4 - SN3927; ConvF(8.1, 8.1, 8.1); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/Edge 4/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.500 W/kg


B/Edge 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 18.073 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.715 W/kg

SAR(1 g) = 0.417 W/kg; SAR(10 g) = 0.241 W/kg

Maximum value of SAR (measured) = 0.563 W/kg

Date: Feb. 10,2015

WCDMA Band IV Mid -Body-Towards Grounds

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1700(0); Communication System Band: Band IV UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: $f = 1700\text{MHz}$; $\sigma=1.45\text{ mho/m}$; $\epsilon_r = 54.86$;

$\rho = 1000 \text{ kg/m}^3$;

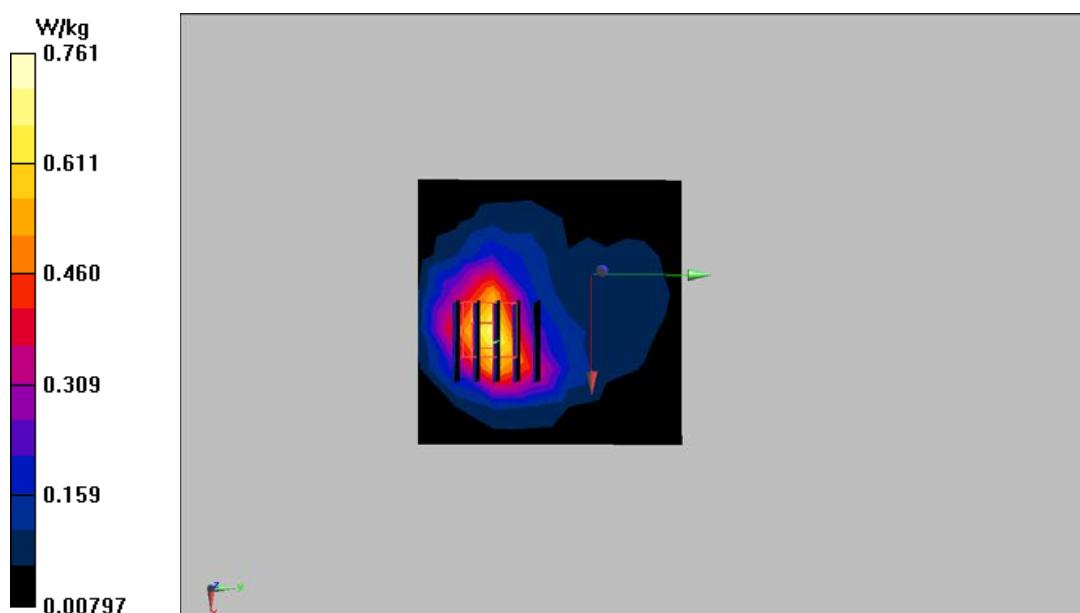
Phantom section: Flat Section

Ambient temperature ($^{\circ}\text{C}$):20.4, Liquid temperature ($^{\circ}\text{C}$): 20.5

- Probe: EX3DV4 - SN3927; ConvF(8.45, 8.45, 8.45); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/BACK/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.705 W/kg


A/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 9.138 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.530 W/kg; SAR(10 g) = 0.275 W/kg

Maximum value of SAR (measured) = 0.761 W/kg

Date: Feb. 10,2015

WCDMA Band IV Mid-Body-Towards Phantom

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1700(0); Communication System Band: Band IV
UTRA/FDD ;

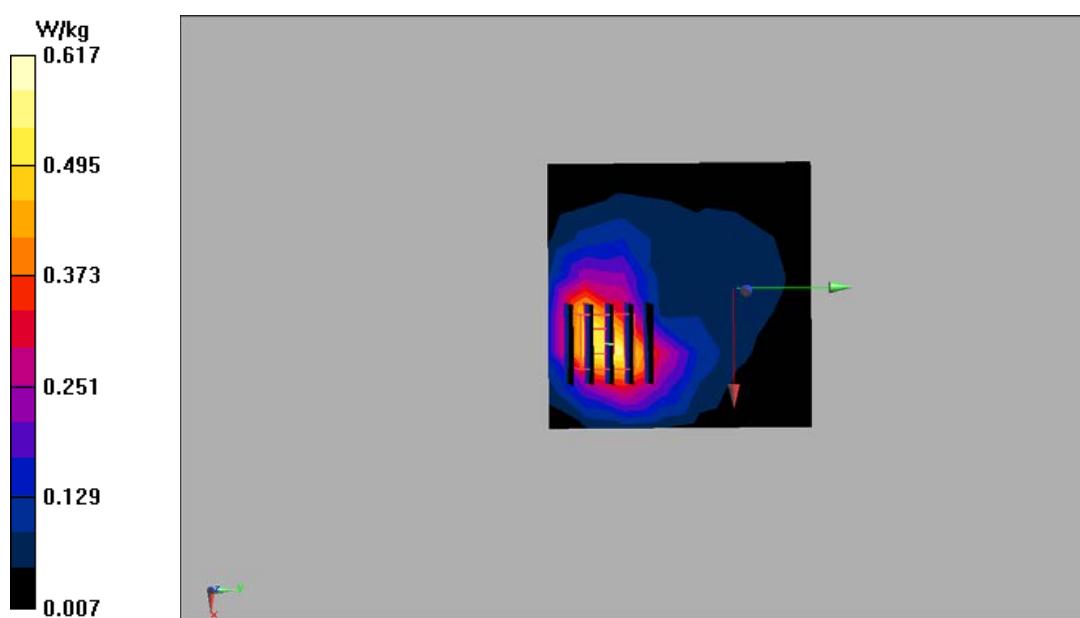
Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: $f = 1700\text{MHz}$; $\sigma=1.45$
 mho/m ; $\epsilon_r = 54.86$;
 $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}\text{C}$):20.4, Liquid temperature ($^{\circ}\text{C}$): 20.5

- Probe: EX3DV4 - SN3927; ConvF(8.45, 8.45, 8.45); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/FRONT/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$
Maximum value of SAR (measured) = 0.554 W/kg


A/FRONT/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$,
 $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 6.906 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.804 W/kg

SAR(1 g) = 0.434 W/kg; SAR(10 g) = 0.231 W/kg

Maximum value of SAR (measured) = 0.617 W/kg

Date: Feb. 10,2015

WCDMA Band IV Mid- Edge 1(Top)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1700(0); Communication System Band: Band IV UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: $f = 1700\text{MHz}$; $\sigma=1.45$ mho/m; $\epsilon_r = 54.86$;

$\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

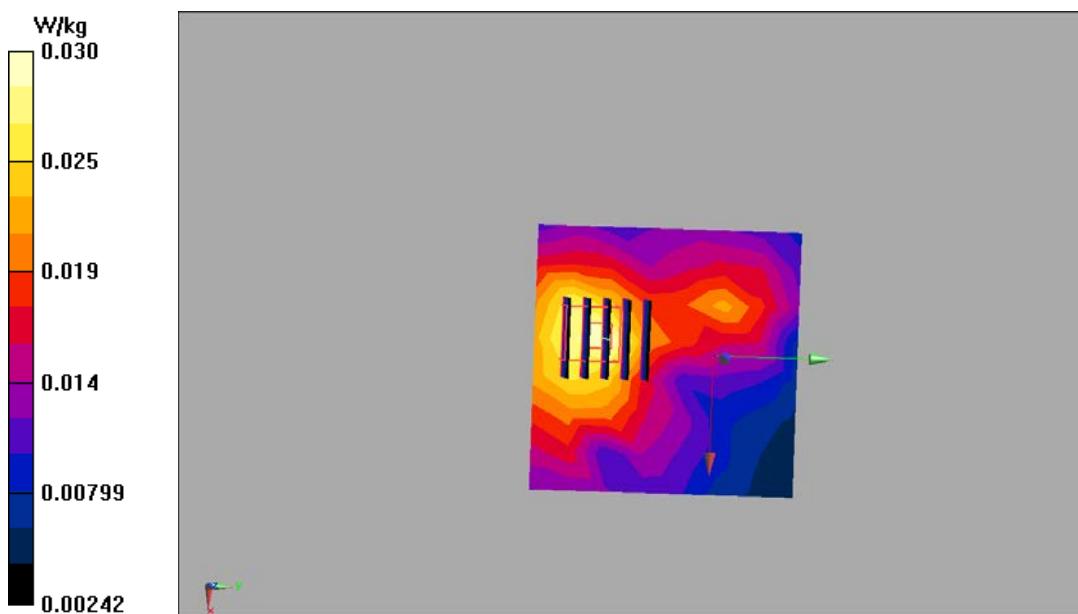
Ambient temperature ($^{\circ}\text{C}$):20.4, Liquid temperature ($^{\circ}\text{C}$): 20.5

- Probe: EX3DV4 - SN3927; ConvF(8.45, 8.45, 8.45); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD

Measurement SW: DASY52, Version 52.8 (8);

A/Edge 1/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.0301 W/kg


A/Edge 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 3.591 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.0380 W/kg

SAR(1 g) = 0.022 W/kg; SAR(10 g) = 0.014 W/kg

Maximum value of SAR (measured) = 0.0302 W/kg

Date: Feb. 10,2015

WCDMA Band IV Mid- Edge 2(Right)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1700(0); Communication System Band: Band IV
UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: $f = 1700\text{MHz}$; $\sigma=1.45$ mho/m; $\epsilon_r = 54.86$;

$\rho = 1000 \text{ kg/m}^3$;

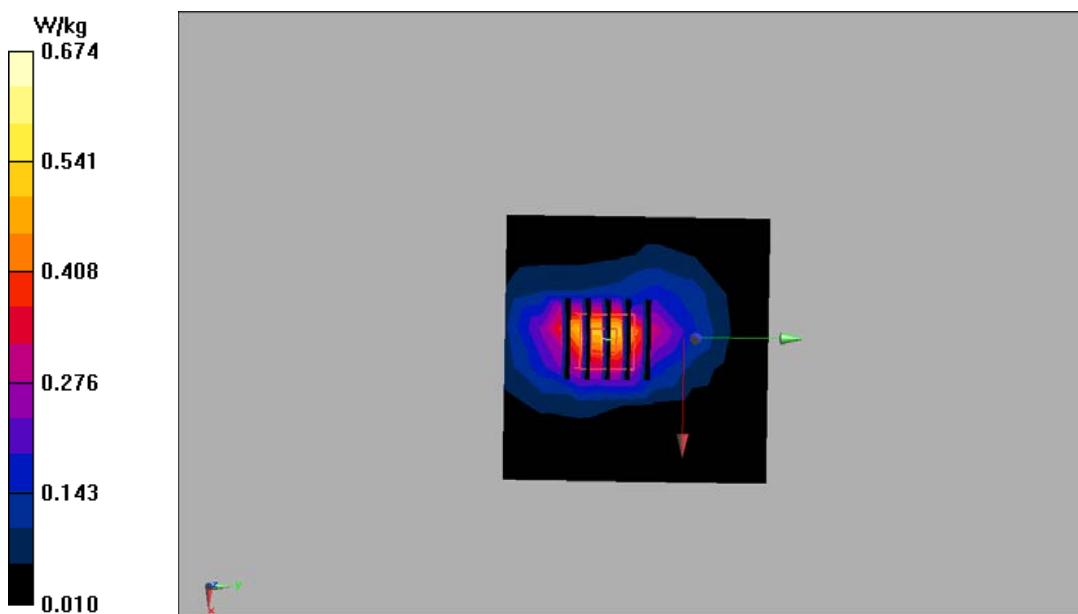
Phantom section: Flat Section

Ambient temperature ($^{\circ}\text{C}$):20.4, Liquid temperature ($^{\circ}\text{C}$): 20.5

- Probe: EX3DV4 - SN3927; ConvF(8.45, 8.45, 8.45); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/Edge 2/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.544 W/kg


A/Edge 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 18.324 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.895 W/kg

SAR(1 g) = 0.445 W/kg; SAR(10 g) = 0.221 W/kg

Maximum value of SAR (measured) = 0.674 W/kg

Date: Feb. 10,2015

WCDMA Band IV Mid- Edge 3(Bottom)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1700(0); Communication System Band: Band IV UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: $f = 1700\text{MHz}$; $\sigma=1.45$ mho/m; $\epsilon_r = 54.86$;

$\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

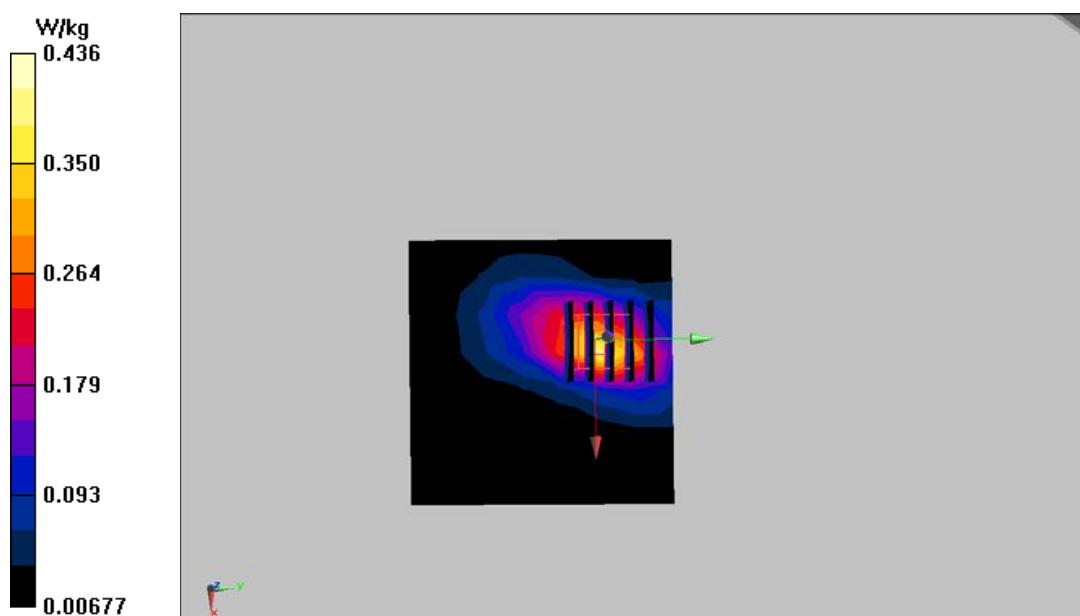
Ambient temperature ($^{\circ}\text{C}$):20.4, Liquid temperature ($^{\circ}\text{C}$): 20.5

- Probe: EX3DV4 - SN3927; ConvF(8.45, 8.45, 8.45); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD

Measurement SW: DASY52, Version 52.8 (8);

A/Edge 3/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.405 W/kg


A/Edge 3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 10.419 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.571 W/kg

SAR(1 g) = 0.299 W/kg; SAR(10 g) = 0.154 W/kg

Maximum value of SAR (measured) = 0.436 W/kg

Date: Feb. 10,2015

WCDMA Band IV Mid- Edge 4(Left)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 1700(0); Communication System Band: Band IV UTRA/FDD ;

Duty Cycle:1:1; Frequency: 1732.5 MHz; Medium parameters used: $f = 1700\text{MHz}$; $\sigma=1.45$ mho/m; $\epsilon_r = 54.86$;

$\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

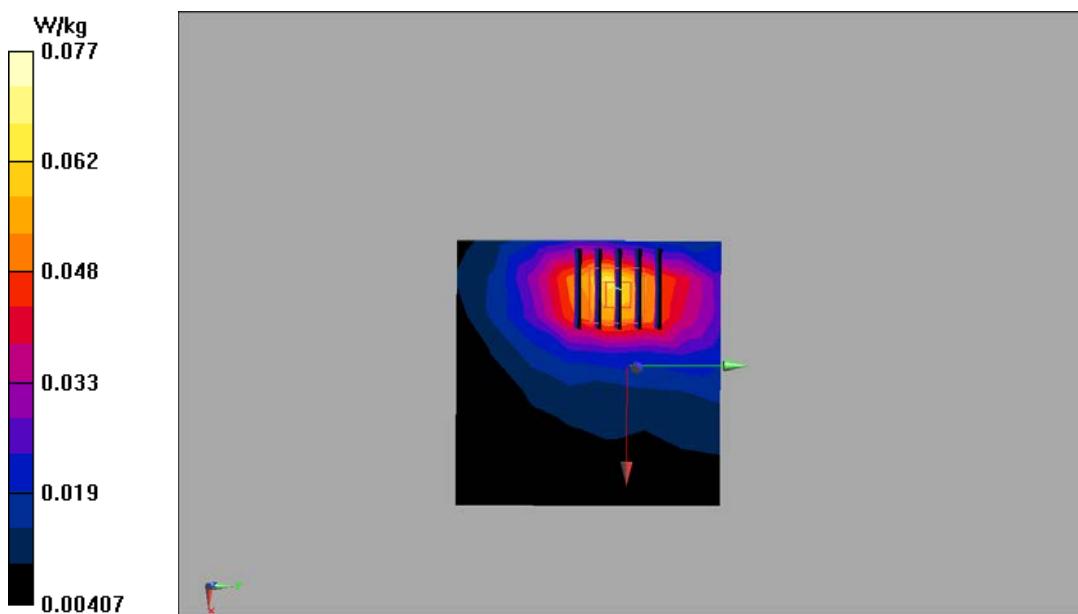
Ambient temperature ($^{\circ}\text{C}$):20.4, Liquid temperature ($^{\circ}\text{C}$): 20.5

- Probe: EX3DV4 - SN3927; ConvF(8.45, 8.45, 8.45); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD

Measurement SW: DASY52, Version 52.8 (8);

A/Edge 4/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.0649 W/kg


A/Edge 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 4.192 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.0960 W/kg

SAR(1 g) = 0.056 W/kg; SAR(10 g) = 0.032 W/kg

Maximum value of SAR (measured) = 0.0770 W/kg

Date: Feb. 09,2015

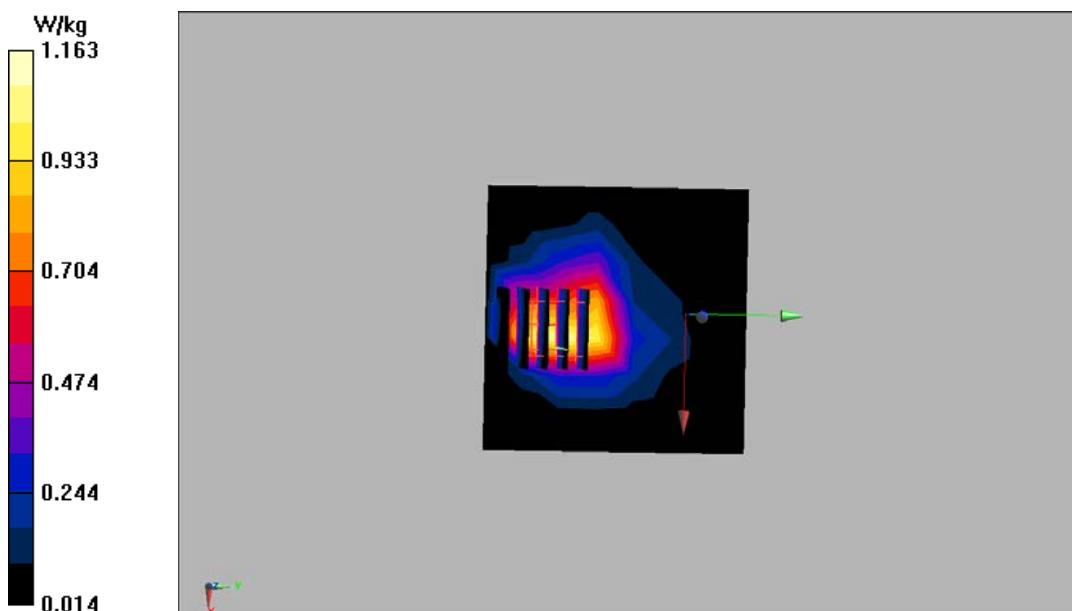
WCDMA Band V Mid-Body-Towards Grounds
DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V
UTRA/FDD;
Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma = 0.98$ mho/m;
 $\epsilon_r = 55.72$;
 $\rho = 1000$ kg/m³ ;
Phantom section: Flat Section
Ambient temperature (°C): 20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/BACK/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.10 W/kg


A/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.638 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 0.738 W/kg; SAR(10 g) = 0.401 W/kg

Maximum value of SAR (measured) = 1.16 W/kg

Date: Feb. 09, 2015

WCDMA Band V Mid- Body - Towards Phantom

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD;

Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma=0.98$

mho/m ; $\epsilon_r = 55.72$;

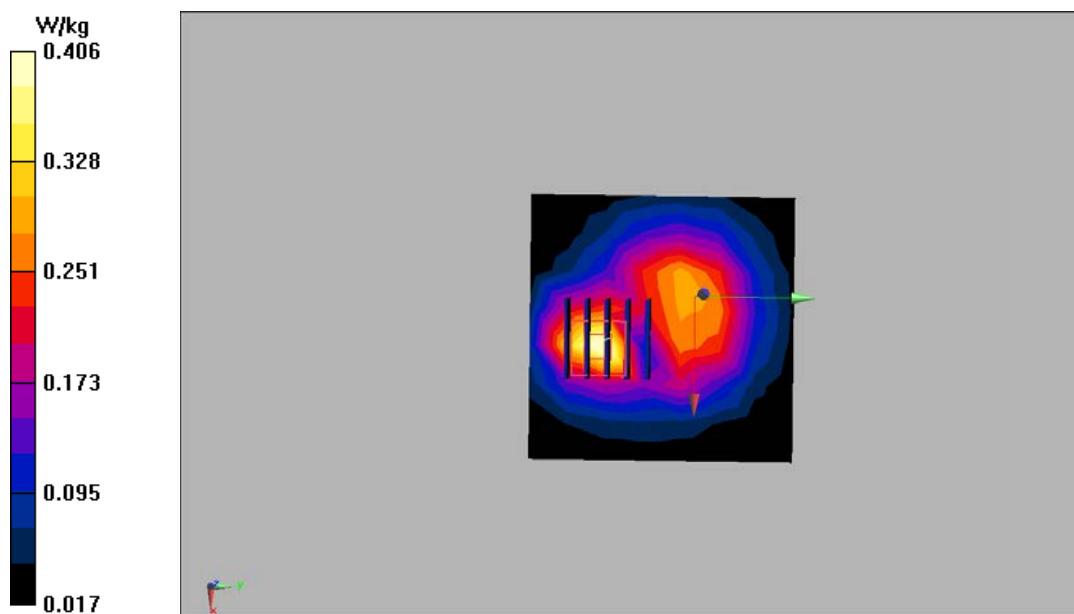
$\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/FRONT/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$
Maximum value of SAR (measured) = 0.442 W/kg


A/FRONT/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$,
 $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 15.409 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.569 W/kg

SAR(1 g) = 0.266 W/kg; SAR(10 g) = 0.149 W/kg

Maximum value of SAR (measured) = 0.406 W/kg

Date: Feb. 09, 2015

WCDMA Band V Mid- Edge 1(Top)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD;

Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma=0.98$ mho/m; $\epsilon_r =55.72$;

$\rho = 1000$ kg/m³ ;

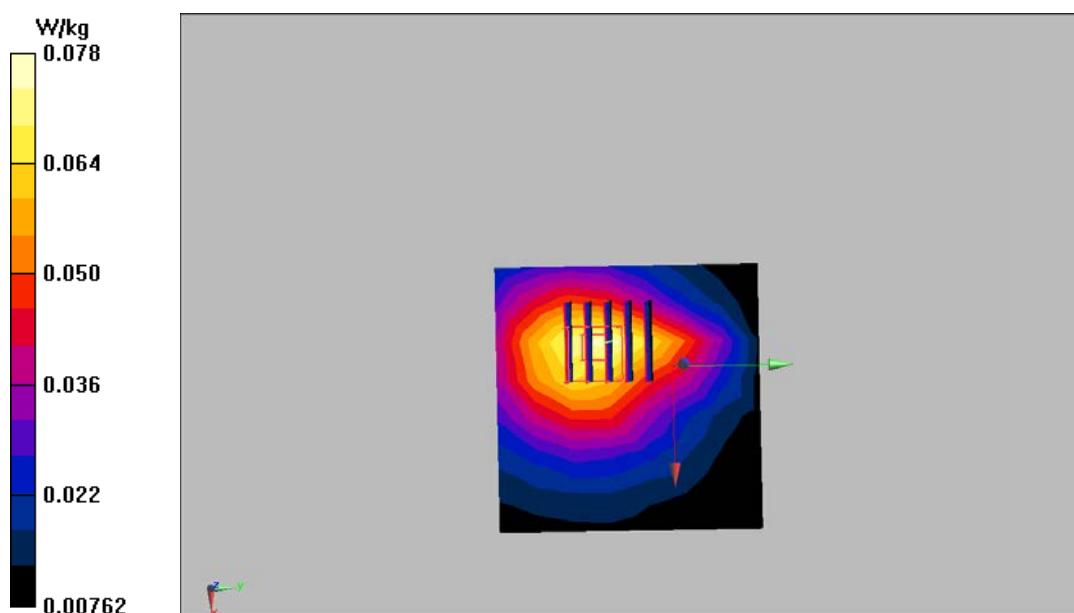
Phantom section: Flat Section

Ambient temperature (°C):20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/Edge 1/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0768 W/kg


A/Edge 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.034 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.0910 W/kg

SAR(1 g) = 0.063 W/kg; SAR(10 g) = 0.044 W/kg

Maximum value of SAR (measured) = 0.0781 W/kg

Date: Feb. 09,2015

WCDMA Band V Mid- Edge 2(Right)
DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V
UTRA/FDD;

Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma=0.98$

mho/m ; $\epsilon_r =55.72$;

$\rho= 1000 \text{ kg/m}^3$;

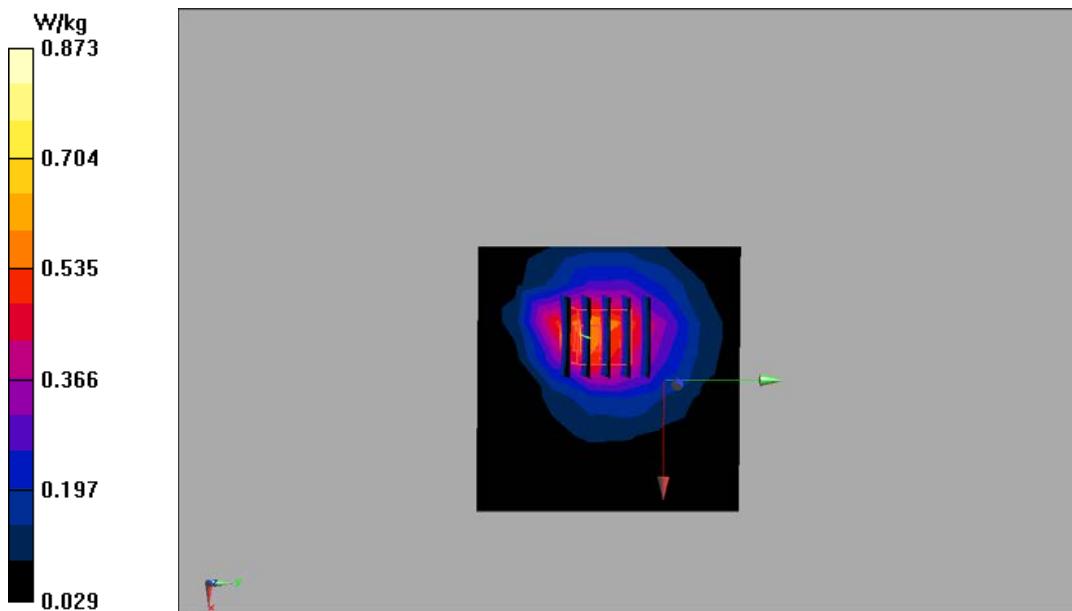
Phantom section: Flat Section

Ambient temperature (°C):20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/Edge 2/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.597 W/kg


A/Edge 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 23.689 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.596 W/kg; SAR(10 g) = 0.345 W/kg

Maximum value of SAR (measured) = 0.873 W/kg

Date: Feb. 09,2015

WCDMA Band V Mid- Edge 3(Bottom)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD;

Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma=0.98$ mho/m; $\epsilon_r =55.72$;

$\rho = 1000$ kg/m³ ;

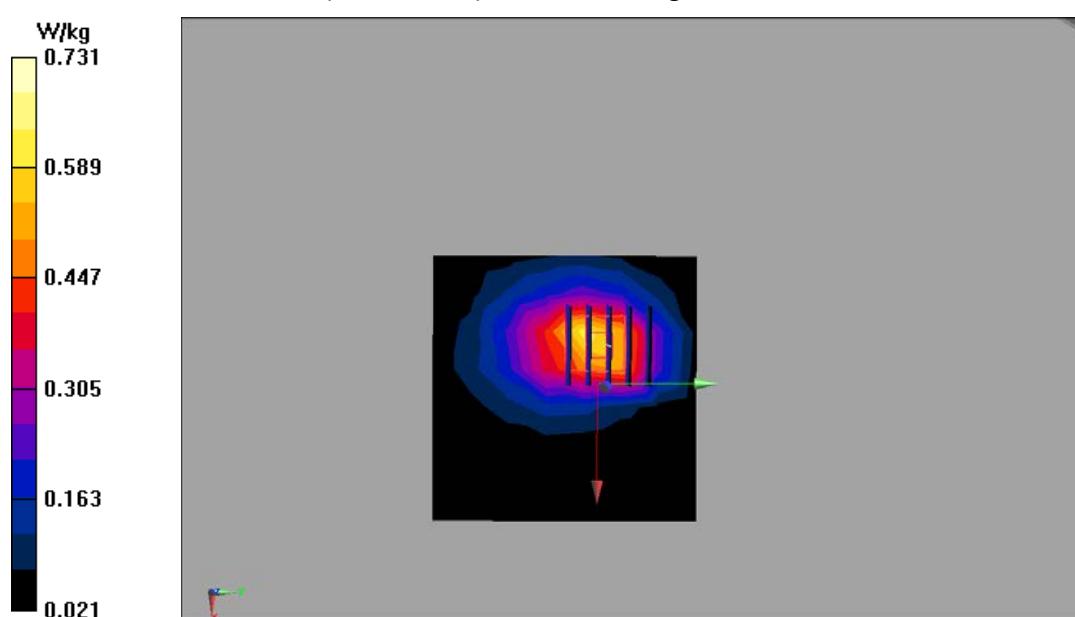
Phantom section: Flat Section

Ambient temperature (°C):20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/Edge 3/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.619 W/kg


A/Edge 3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.756 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.913 W/kg

SAR(1 g) = 0.553 W/kg; SAR(10 g) = 0.338 W/kg

Maximum value of SAR (measured) = 0.731 W/kg

Date: Feb. 09,2015

WCDMA Band V Mid- Edge 4(Left)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V
UTRA/FDD;

Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma=0.98$

mho/m ; $\epsilon_r =55.72$;

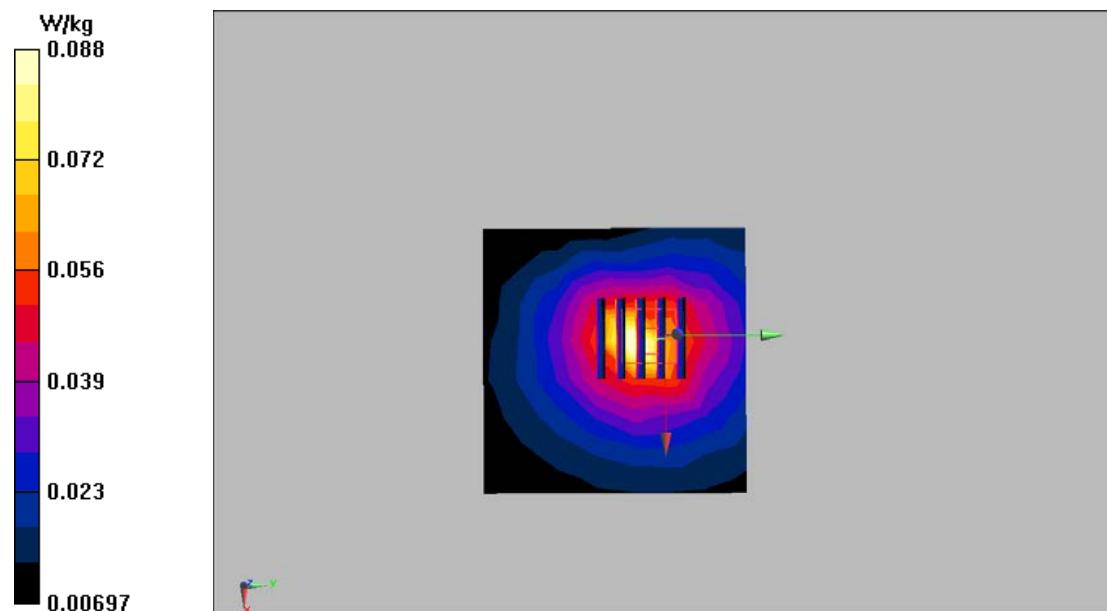
$\rho= 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

A/Edge 4/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$
Maximum value of SAR (measured) = 0.0980 W/kg


A/Edge 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 7.693 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.114 W/kg

SAR(1 g) = 0.063 W/kg; SAR(10 g) = 0.042 W/kg

Maximum value of SAR (measured) = 0.0883 W/kg

Date: Feb. 09,2015

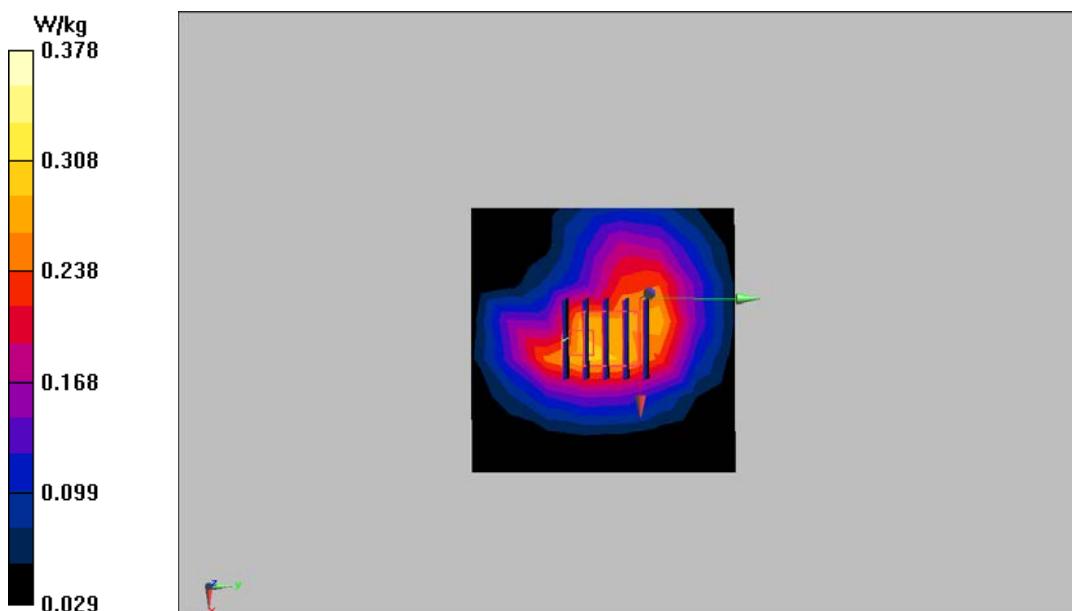
WCDMA Band V Mid-Body-Towards Grounds
DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V
UTRA/FDD;
Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma = 0.98$ mho/m;
 $\epsilon_r = 55.72$;
 $\rho = 1000$ kg/m³ ;
Phantom section: Flat Section
Ambient temperature (°C): 20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/BACK/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.291 W/kg


B/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.964 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.501 W/kg

SAR(1 g) = 0.271 W/kg; SAR(10 g) = 0.176 W/kg

Maximum value of SAR (measured) = 0.378 W/kg

Date: Feb. 09, 2015

WCDMA Band V Mid- Body - Towards Phantom

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD;

Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma=0.98$

mho/m ; $\epsilon_r = 55.72$;

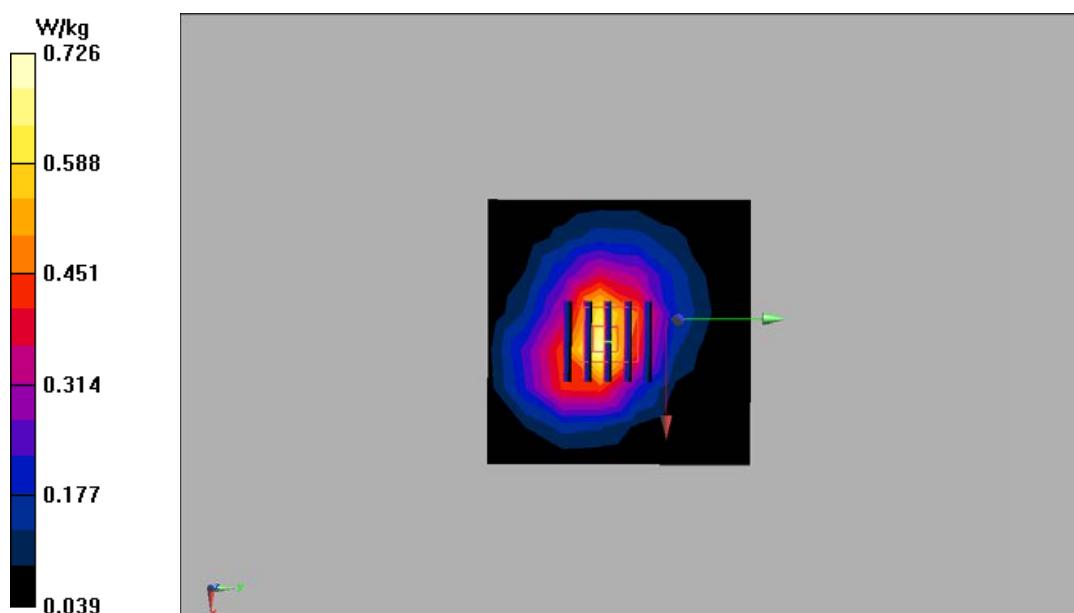
$\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/FRONT//Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$
Maximum value of SAR (measured) = 0.704 W/kg


B/FRONT//Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$,
 $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 26.202 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.860 W/kg

SAR(1 g) = 0.567 W/kg; SAR(10 g) = 0.361 W/kg

Maximum value of SAR (measured) = 0.726 W/kg

Date: Feb. 09,2015

WCDMA Band V Mid- Edge 1(Top)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD;

Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma=0.98$

mho/m ; $\epsilon_r =55.72$;

$\rho= 1000 \text{ kg/m}^3$;

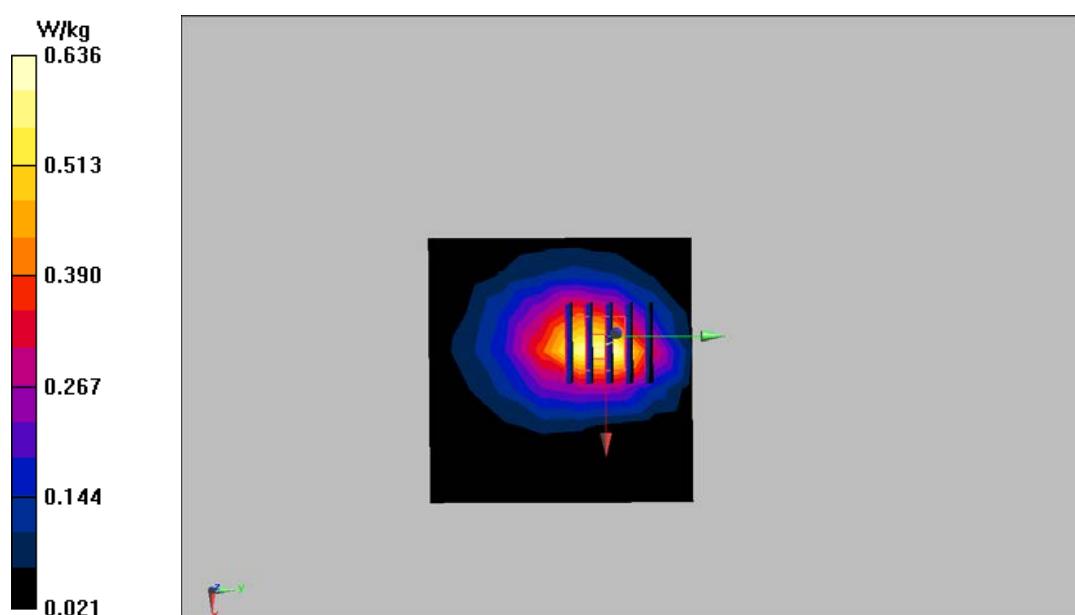
Phantom section: Flat Section

Ambient temperature (°C):20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/Edge 1/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.610 W/kg


B/Edge 1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 22.495 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.804 W/kg

SAR(1 g) = 0.492 W/kg; SAR(10 g) = 0.303 W/kg

Maximum value of SAR (measured) = 0.636 W/kg

Date: Feb. 09, 2015

WCDMA Band V Mid- Edge 2(Right)
DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V
UTRA/FDD;

Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma=0.98$

mho/m ; $\epsilon_r = 55.72$;

$\rho = 1000 \text{ kg/m}^3$;

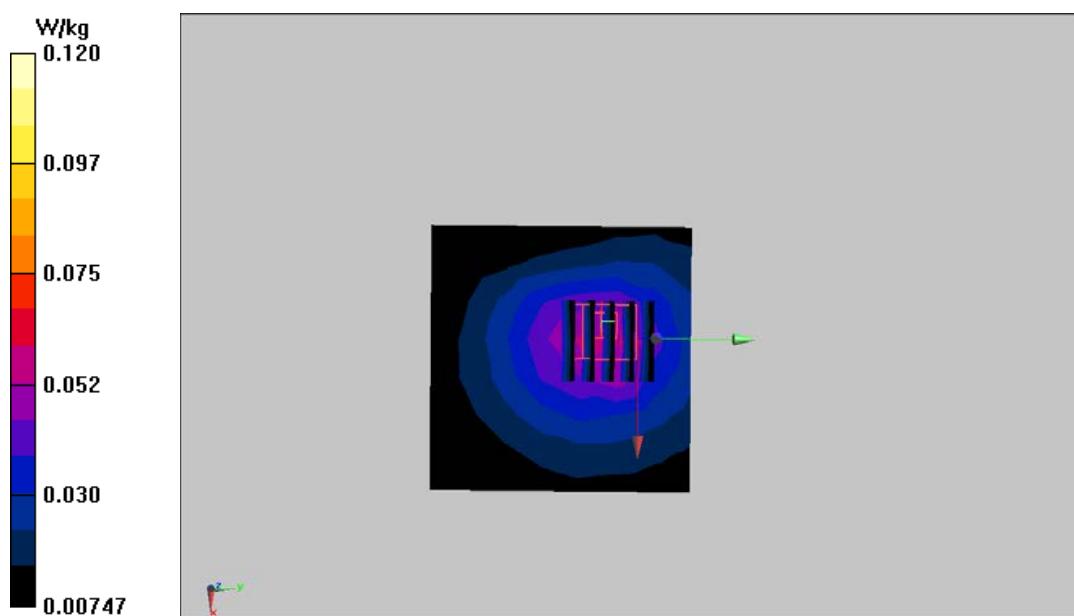
Phantom section: Flat Section

Ambient temperature (°C):20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/Edge 2/Area Scan (8x8x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.0541 W/kg


B/Edge 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 7.540 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.169 W/kg

SAR(1 g) = 0.061 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.120 W/kg

Date: Feb. 09, 2015

WCDMA Band V Mid- Edge 3(Bottom)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD;

Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma=0.98$ mho/m; $\epsilon_r =55.72$;

$\rho = 1000$ kg/m³ ;

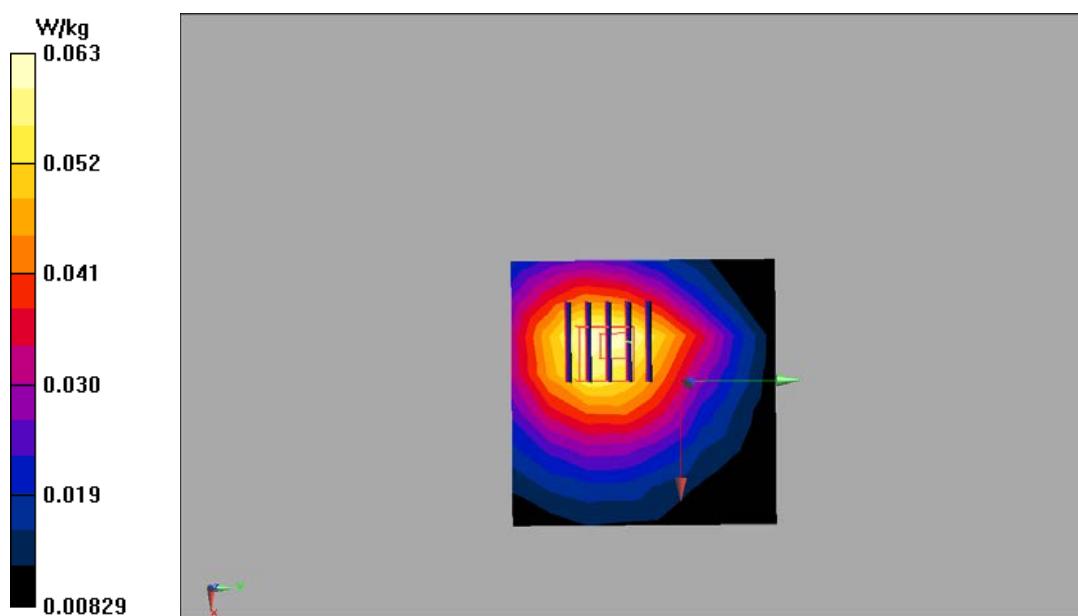
Phantom section: Flat Section

Ambient temperature (°C):20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/Edge 3/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0628 W/kg


B/Edge 3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.615 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.0730 W/kg

SAR(1 g) = 0.053 W/kg; SAR(10 g) = 0.038 W/kg

Maximum value of SAR (measured) = 0.0633 W/kg

Date: Feb. 09,2015

WCDMA Band V Mid- Edge 4(Left)

DUT: 3G Wireless Router; Type: RW-801

Communication System: UID 0, WCDMA 850 (0); Communication System Band: BAND V UTRA/FDD;

Duty Cycle:1:1; Frequency: 836.6 MHz; Medium parameters used: $f = 835$ MHz; $\sigma=0.98$ mho/m; $\epsilon_r =55.72$;

$\rho = 1000$ kg/m³ ;

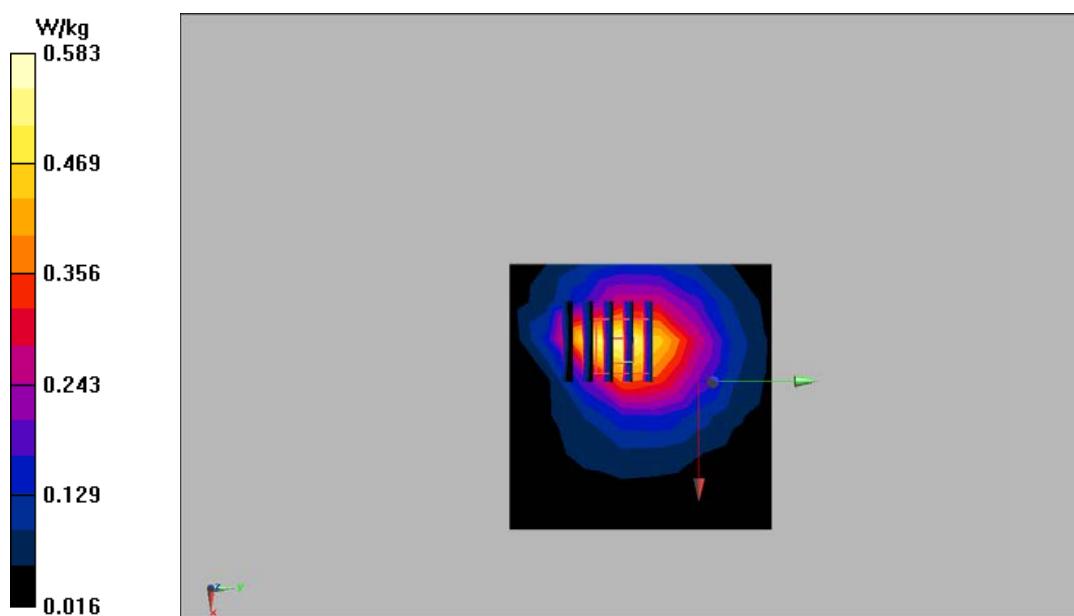
Phantom section: Flat Section

Ambient temperature (°C):20.1, Liquid temperature (°C): 19.8

- Probe: EX3DV4 - SN3927; ConvF(9.91, 9.91, 9.91); Calibrated: 2014/5/23;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2014/5/19
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

B/Edge 4/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.557 W/kg


B/Edge 4/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.622 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.816 W/kg

SAR(1 g) = 0.473 W/kg; SAR(10 g) = 0.285 W/kg

Maximum value of SAR (measured) = 0.583 W/kg

APPENDIX C. Calibration Data for Probe, Dipole and DAE

Please refer to attached files.

APPENDIX D. Photographs of EUT and Setup

Please refer to attached files.