

TEST REPORT

Part 15 Subpart E 15.407 & RSS-247 (Issue 2)

Equipment under test THINKWARE DASH CAM

Model name U3000

FCC ID 2ADTG-U3000

IC Number 12594A-U3000

Applicant THINKWARE CORPORATION

Manufacturer THINKWARE CORPORATION

Date of test(s) 2022.08.30 ~ 2022.09.02

Date of issue 2022.10.20

Issued to THINKWARE CORPORATION

A, 9FL., Samwhan Hipex, 240, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea Tel: +82-2-589-9418 / Fax: +82-2-589-9600

> Issued by KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,

Gyeonggi-do, 14057, Korea

473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
AL	lel
Do-won, Ahn	Young-Jin, Lee
Test engineer	Technical manager

This test report is not related to KS Q ISO/IEC 17025 and KOLAS

Report No.: KES-RF1-22T0146 Page (2) of (37)

Revision history

Revision	Date of issue	Test report No.	Description
-	2022.10.20	KES-RF1-22T0146	Initial

Report No.: KES-RF1-22T0146 Page (3) of (37)

TABLE OF CONTENTS

1.	General in	nformation	4
	1.1.	EUT description	4
	1.2.	Test configuration	6
	1.3.	Derivative Model Information	
	1.4.	Accessory information	6
	1.5.	Sample calculation	6
	1.6.	Measurement Uncertainty	
	1.7.	Frequency/channel operations	
2.		of tests	
3.	Test resul	ts	
	3.1.	Maximum conducted output power	9
	3.2.	Radiated restricted band and emissions	12
App	endix A.	Measurement equipment	37
App	endix B.	Test setup photos	38

1. General information

Applicant:	THINKWARE CORPORATION		
Applicant address:	A, 9FL., Samwhan Hipex, 240, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea		
Test site:	KES Co., Ltd.		
Test site address:	🔲 3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si,		
	Gyeonggi-do, 14057, Korea		
	🔀 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea		
Test Facility	FCC Accreditation Designation No.: KR0100, Registration No.: 444148		
	ISED Registration No.: 4769B		
FCC rule part(s):	15.407		
IC rule part(s):	RSS-247		
FCC ID:	2ADTG-U3000		
IC Number	12594A-U3000		
Test device serial No.:	➢ Production □ Pre-production □ Engineering		

1.1. EUT description

Equipment under test	THINKWARE DASH CAM
Frequency range	2 402 Młz ~ 2 480 Młz (BLE 1 Mbps)
	2412 MHz ~ 2462 MHz (802.11b/g/n_HT20)
	2 422 MHz ~ 2 452 MHz (802.11n_HT40)
	5 180 MHz ~ 5 240 MHz (802.11a/n_HT20)
	5 190 MHz ~ 5 230 MHz (802.11n_HT40)
	24.05 GHz \sim 24.25 GHz (CW)
Model	U3000
Modulation technique	GFSK, CCK, OFDM,
	QPSK, BPSK 16QAM, 64QAM
	CW
Antenna specification	(BLE & WLAN) Chip Antenna // 2.4 GHz Peak gain: 2.24 dBi
	// 5 GHz Peak gain: 3.20 dBi
	(24 GHz Rader) PCB Array Antenna // Peak gain: 2.0 dBi
Power source	DC 12 V, 24 V
Number of channels	2 402 Młz ~ 2 480 Młz (BLE 1 Mbps) : 40 ch
	$2\ 412\ \text{Mz}\ \sim 2\ 462\ \text{Mz}\ (802.11b/g/n_HT20):11\ ch$
	2 422 MHz ~ 2 452 MHz (802.11n_HT40) : 7 ch
	5 180 MHz ~ 5 240 MHz (802.11a/n_HT20) : 4 ch
	5 190 MHz ~ 5 230 MHz (802.11n_HT40) : 2 ch

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact shchoi@kes.co.kr

Report No.: KES-RF1-22T0146 Page (5) of (37)

$24.05 \ \text{GHz} \ \sim 24.25 \ \text{GHz} \ (CW):1\text{ch}$

H/W Version	V3.0
S/W Version	V3.0

1.2. Test configuration The <u>THINKWARE CORPORATION // THINKWARE DASH CAM // U3000</u>

FCC ID: 2ADTG-U3000 // IC: 12594A-U3000 was tested according to the specification of EUT, the EUT must comply with following standards and KDB documents

FCC Part 15.407 ISED RSS-247 Issue 2 and RSS-Gen Issue 5 KDB 789033 D02 v02r01 ANSI C63.10-2013

1.3. Derivative Model Information

N/A

1.4. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
Rear view	THINKWARE			V-IN port of
Camera	CORPORATION	-	-	U3000
Hardwiring	THINKWARE			
cable	CORPORATION	-	-	-

1.5. Sample calculation

Where relevant, the following sample calculation is provided

For all conducted test items :

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).= 1.95 + 10 = 11.95 (dB)

For Radiation test :

Field strength level $(dB\mu / m) =$ Measured level $(dB\mu / m) +$ Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB)

1.6. Measurement Uncertainty

Test Item		Uncertainty
Uncertainty for Conduction emission test		2.46 dB
Uncertainty for Radiation emission test	Below 1GHz	4.40 dB
(include Fundamental emission)	Above 10Hz	5.94 dB
Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.		

1.7. Frequency/channel operations

Ch.	Frequency (Mbz)	Mode
00	2 402	BLE 1 Mbps
19	2 440	BLE 1 Mbps
· .		
39	2 480	BLE 1 Mbps

Ch.	Frequency (Mb)	Mode
1	2 412	802.11b/g/n_HT20
·		
6	2 437	802.11b/g/n_HT20
11	2 462	802.11b/g/n_HT20

Ch.	Frequency (MLz)	Mode
3	2 422	802.11n_HT40
7	2 437	802.11n_HT40
·	-	-
9	2 452	802.11n_HT40

Ch.	Frequency (Mbz)	Mode
36	5 180	802.11a/n_HT20
· .		
44	5 220	802.11a/n_HT20
· .		
48	5 240	802.11a/n_HT20

Ch.	Frequency (MLz)	Mode
38	5 190	802.11n_HT40
46	5 230	802.11n_HT40

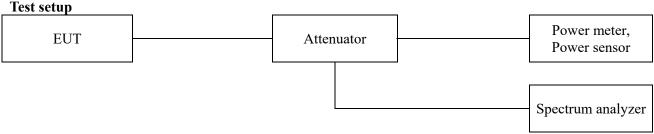
Ch.	Frequency (Hz)	Mode
-	24.15	CW

2. Summary of tests

Section in FCC Part 15	Section in RSS-247 & Gen	Parameter	Test results
15.407(a)	RSS-247 6.2	$26 \mathrm{dB} $ bandwidth & $99 $ % bandwidth	N/A ¹⁾
15.407(a)	-	6 dB bandwidth (UNII-3)	N/A ¹⁾
15.407(a)	RSS-247 6.2	Maximum conducted output power	Pass
15.407(a)	RSS-247 6.2	Power spectral density	N/A ¹⁾
15.407(g)	RSS-Gen 6.11	Frequency stability	N/A ¹⁾
15.205 15.209 15.407(b)	RSS-247 6.2 RSS-Gen 8.9, 8.10	Radiated restricted band and emission	Pass
15.207	RSS-Gen 8.8	AC power line conducted emissions	N/A ¹⁾

Note :

- This product is equipped with an approved module, please refer to module Report FCC Report No.: TCT171018E032 IC Report No : EC1905007RI04 for details.
- 2. This product is powered by DC 12 V, 24 V.
- 3. This report contains only the worst case results at the request of the applicant with condition below: Worst case: 802.11 a (6 Mbps)



3. Test results

3.1. Maximum conducted output power

Test procedure

KDB 789033 D02 v02r01– Section E.3.a) or b) Used test method is Section E.3.b)

Section E.3.a)

Method PM (Measurement using an RF average power meter):

- i. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
- The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
- At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
- The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- ii. If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.
- iii. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- iv. Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25 %).

Section E.3.b)

Method PM-G (Measurement using a gated RF average power meter):

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Limit FCC

Band		EUT Category Limit			
		Outdoor access point			
UNII-1	\checkmark	Indoor access point	1 W (30 dBm)		
UNII-1		Fixed point-to-point access point			
	Mobile and portable client device		250 mW(24 dBm)		
UNII-2A			250 mW or 11 dBm + $10\log B^*$		
UNII-2C			250 mW or 11 dBm + $10\log B^*$		
UNII-3			1 W (30 dBm)		

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact shchoi@kes.co.kr

Report No.: KES-RF1-22T0146 Page (10) of (37)

IC	
Band	Limit
5150~5250 MHz	EIRP shall not exceed 200 mW or 10+10logB*, dBm
5250~5350 MHz	Conducted output power shall not exceed 250 mW or 11 dBm + 10logB* EIRP shall not exceed 1.0 W or 17+10logB*, dBm
5470~5600 MHz and 5650~5725 MHz	Conducted output power shall not exceed 250 mW or 11 dBm + 10logB* EIRP shall not exceed 1.0 W or 17+10logB*, dBm
5725~5850 MHz	Conducted output power shall not exceed 1 W

Note.

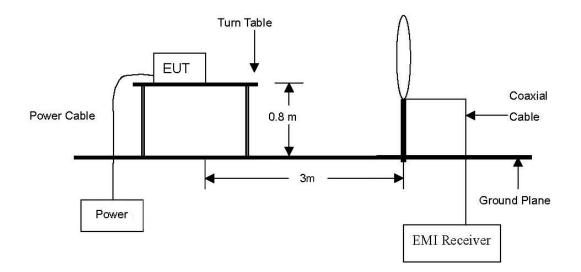
- 1. FCC Limit B is the 26 dB emission bandwidth.
- 2. IC Limit B is the 99% emission bandwidth in megahertz.

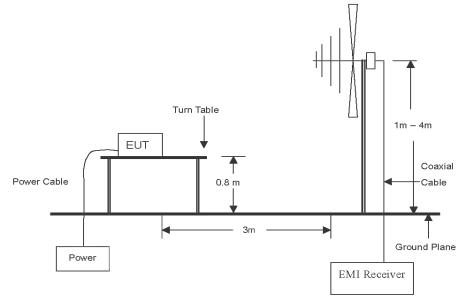
Test results

<u>Mode : 12 V</u>

Mada	Energine and Alle	Detector	Output power	Limit (dBm)		
Mode	Frequency (Mz)	mode	(dBm)	FCC	IC	
	5 180	AV	9.75		23.01	
802.11 a	5 220	AV	11.05	30.00	23.01	
u	5 240	AV	10.70		23.01	
	5 180	AV	8.67		23.01	
802.11 n_HT20	5 220	AV	8.55	30.00	23.01	
	5 240	AV	8.80		23.01	
802.11	5 190	AV	9.05	30.00	23.01	
n_HT40	5 230	AV	9.09	30.00	23.01	

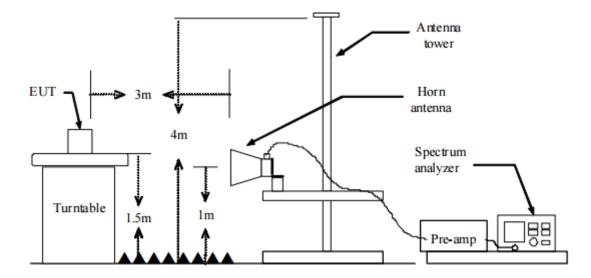
<u>Mode : 24 V</u>


Mada	Engage on Alla	Detector	Detector Output power		(dBm)
Mode	Frequency (Mz)	mode (dBm)		FCC	IC
	5 180	AV	9.77		23.01
802.11 a	5 220	AV	11.08	30.00	23.01
u	5 240	AV	10.73		23.01
	5 180	AV	8.73		23.01
802.11 n_HT20	5 220	AV	8.58	30.00	23.01
	5 240	AV	8.86		23.01
802.11	5 190	AV	9.10	30.00	23.01
n_HT40	5 230	AV	9.14	50.00	23.01


3.2. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}\mathbb{H}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}\mathbb{H}$ emissions, whichever is lower.

Test procedure

Radiated emissions from the EUT were measured according to the dictates in section 11.11 & 11.12 of ANSI C63.10-2013.

Test procedure below 30 MHz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel, ground parallel and perpendicular of the antenna are set to make the measurement. It was determined that **parallel** was worst-case orientation; therefore, all final radiated testing was performed with the EUT in **parallel**.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 Mz

- 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The antenna is a bi-log antenna, a horn antenna ,and its height are varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

- 5. Spectrum analyzer settings for f < 1 GHz:
 - ① Span = wide enough to fully capture the emission being measured
 - \bigcirc **RBW** = 100 kHz
 - ③ VBW \ge RBW
 - ④ Detector = quasi peak
 - (5) Sweep time = auto
 - \bigcirc Trace = max hold
- 6. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 Mz
 - ③ VBW \ge 3 ML
 - (4) Detector = peak
 - (5) Sweep time = auto
 - 6 Trace = max hold
 - \bigcirc Trace was allowed to stabilize
- 7. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 MHz
 - (3) $VBW \ge 3 \times RBW$
 - (4) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

- 1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/Ds)$ $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20\log(D_m/Ds)$ Where:
 - F_d = Distance factor in dB
 - D_m = Measurement distance in meters
 - D_s = Specification distance in meters
- 2. Field strength($dB\mu N/m$) = Level($dB\mu N$) + CF (dB) + or DCF(dB)
- 3. Margin(dB) = Limit(dB μ /m) Field strength(dB μ /m)
- 4. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>X orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>X orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µN/m)
$0.009 \sim 0.490$	300	2400/F(klz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30.0	30	30
30~88	3	100**
88~216	3	150**
216~960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mb, $76 \sim 88$ Mb, $174 \sim 216$ Mb or $470 \sim 806$ Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to 15.407(b), (b) Undesirable emission limits: Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.

(5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 Mtz.

A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 Mz.

(6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §

15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.

(7) The provisions of §15.205 apply to intentional radiators operating under this section.

(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

According to RSS-247 6.2 The equipment output power and e.i.r.p. shall be measured in terms of average value. If the transmission is in bursts, the provisions of RSS-Gen for pulsed operation shall apply.

(1) For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

(2) For transmitters operating in the band 5250-5350 MHz Devices shall comply with the following:

a) All emissions outside the band 5250-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p.; or

b) All emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device, except devices installed in vehicles, shall be labelled or include in the user manual the following text "for indoor use only."

(3) For transmitters operating in the band 5470-5600 MHz and 5650-5725 MHz, Emissions outside the band 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, devices with bandwidth overlapping the band edge of 5725 MHz can meet the emission limit of -27 dBm/MHz e.i.r.p. at 5850 MHz instead of 5725 MHz.

(4) For the band 5725-5850 MHz, Devices operating in the band 5725-5850 MHz with antenna gain greater than 10 dBi can have unwanted emissions that comply with either the limits in this section or in section 5.5 until six (6) months after the publication date of this standard for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2018.

Devices operating in the band 5725-5850 MHz with antenna gain of 10 dBi or less can have unwanted emissions that comply with either the limits in this section or in section 5.5 until April 1, 2018 for certification. Certified devices that do not comply with emission limits in this section shall not be manufactured, imported, distributed, leased, offered for sale or sold after April 1, 2020.

Devices operating in the band 5725-5850 MHz shall have e.i.r.p. of unwanted emissions comply with the following:

a) 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edges;

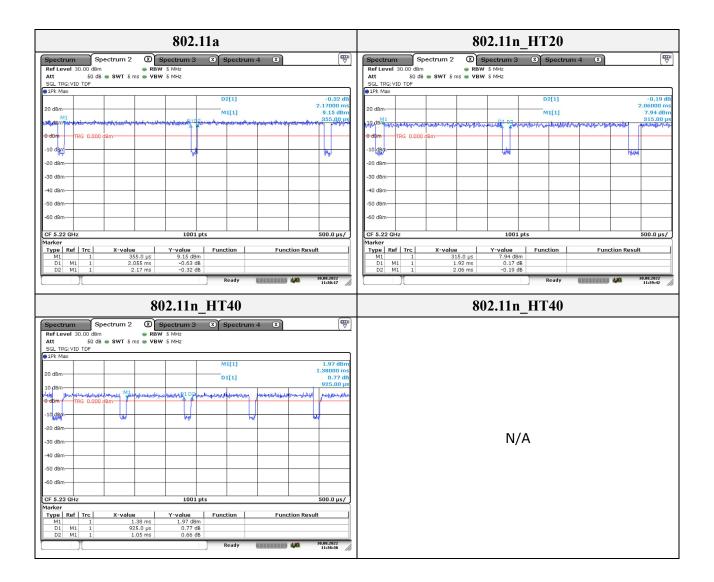
b) 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;

c) 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and

d) -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

Duty cycle

Regarding to KDB 789033 D02 v02r01, B)2)b), the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

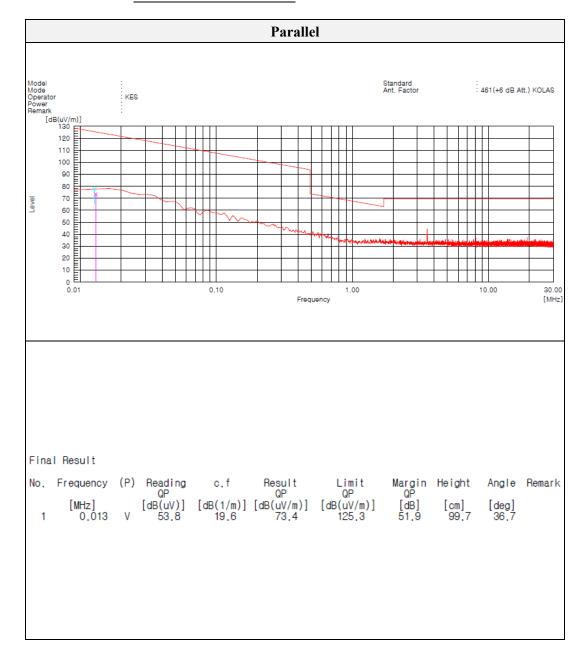

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in II.B.1.a), and the number of sweep points across duration T exceeds 100.

Test mode	T _{on} time (ms)	Period (ms)	Duty cycle (Linear)	Duty cycle (%)	Duty cycle correction factor (dB)
802.11a	2.055	2.17	0.947	94.70	0.24
802.11n_HT20	1.920	2.06	0.932	93.20	0.31
802.11n_HT40	0.925	1.05	0.881	88.10	0.55

Duty cycle (Linear) = T_{on} time/Period

DCF(Duty cycle correction factor (dB)) = 10log(1/duty cycle)

Test results (Below 30 Mz)


Mode:

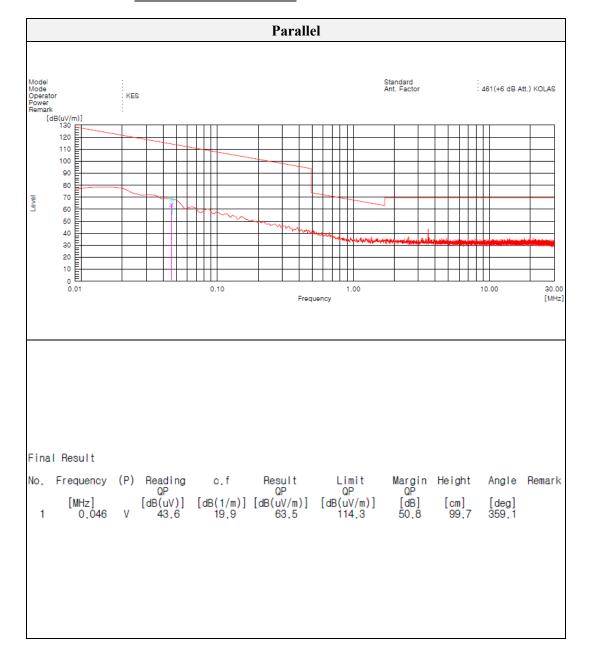
Channel

12 V_802.11a 44 (Worst Case)

44 (Wolst C

Distance of measurement: 3 meter

Test results (Below 30 Mz)


Mode:

Channel

24 V_802.11a 44 (Worst Case)

44 (Wolst C

Distance of measurement: 3 meter

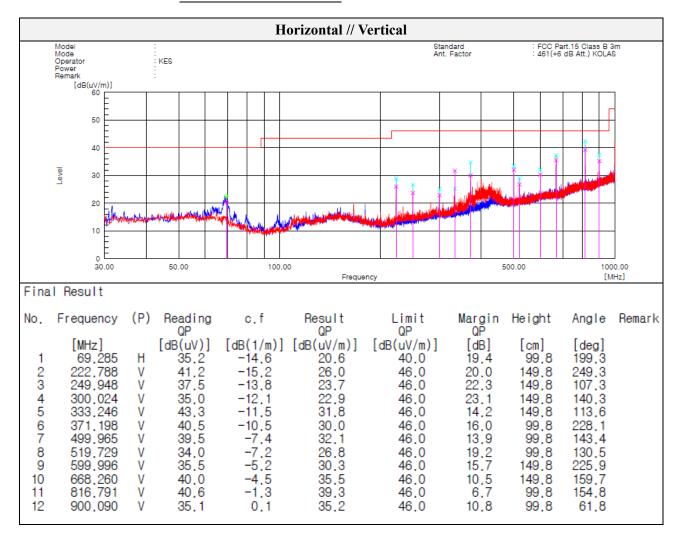


Test results (Below 1 000 Mz) – Worst case

Mode: <u>12 V_802.11a</u>

Channel 44 (Worst Case)

Distance of measurement: 3 meter



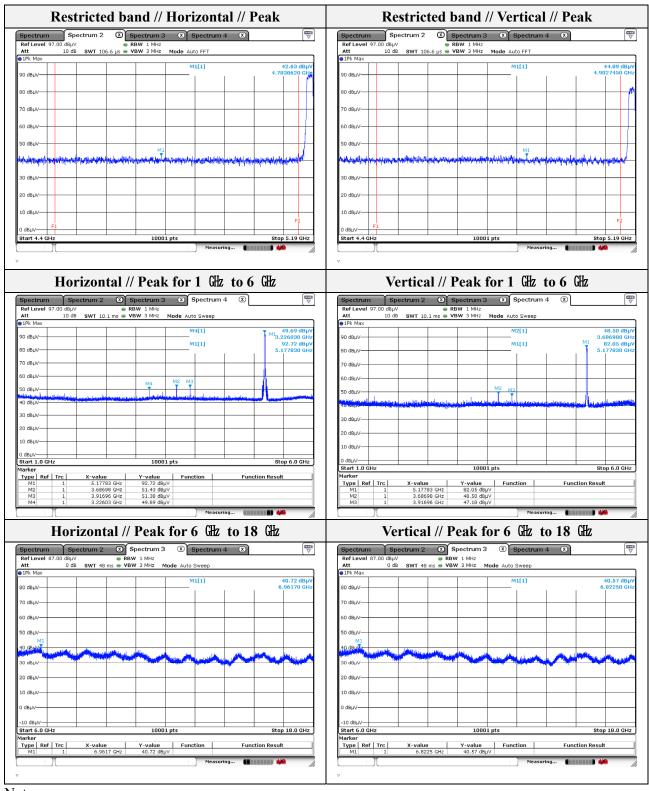
Test results (Below 1 000 Mz) – Worst case

Mode: 24 V_802.11a

Channel 44 (Worst Case)

Distance of measurement: 3 meter

Test results (Above 1 000 Mz)

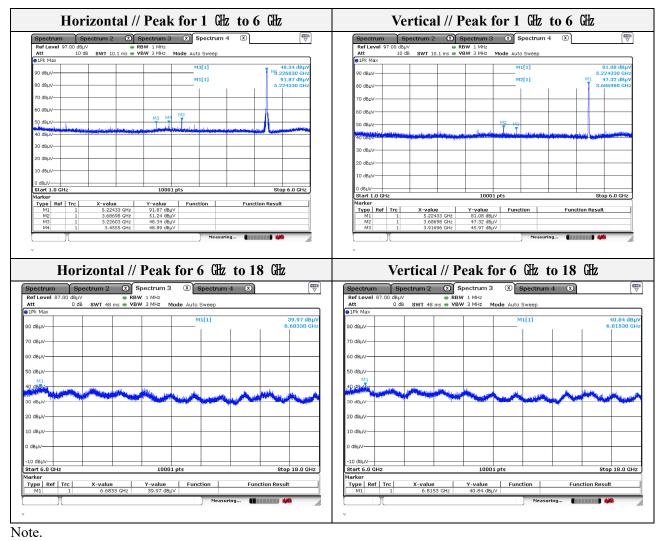

Mode:	12 V_802.11a
Distance of measurement:	3 meter
Channel:	36

- Spurio	us							
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
3226.03	49.69	Peak	Н	0.03	-	49.72	74.00	24.28
3686.98	51.43	Peak	Н	0.80	-	52.23	74.00	21.77
3686.98	48.50	Peak	V	0.80	-	49.30	74.00	24.70
3916.96	51.38	Peak	Н	1.85	-	53.23	74.00	20.77
3916.96	47.18	Peak	V	1.85		49.03	74.00	24.97
6822.50	40.57	Peak	V	8.65		49.22	74.00	24.78
6961.70	40.72	Peak	Н	9.11		49.83	74.00	24.17

Band edge

Danu C	- Dand tuge							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
4783.62	42.63	Peak	Н	4.56	-	47.19	74.00	26.81
4902.75	44.98	Peak	V	5.46	-	50.44	74.00	23.56

Note.


1. Average test would be performed if the peak result were greater than the average limit.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

Mode:	12 V_802.11a
Distance of measurement:	3 meter
Channel:	44

– Spurio	us							
Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
3226.03	48.34	Peak	Н	0.03	-	48.37	74.00	25.63
3455.50	48.89	Peak	Н	-0.17	-	48.72	74.00	25.28
3686.98	51.24	Peak	Н	0.80	-	52.04	74.00	21.96
3686.98	47.32	Peak	V	0.80		48.12	74.00	25.88
3916.96	45.97	Peak	V	1.85	-	47.82	74.00	26.18

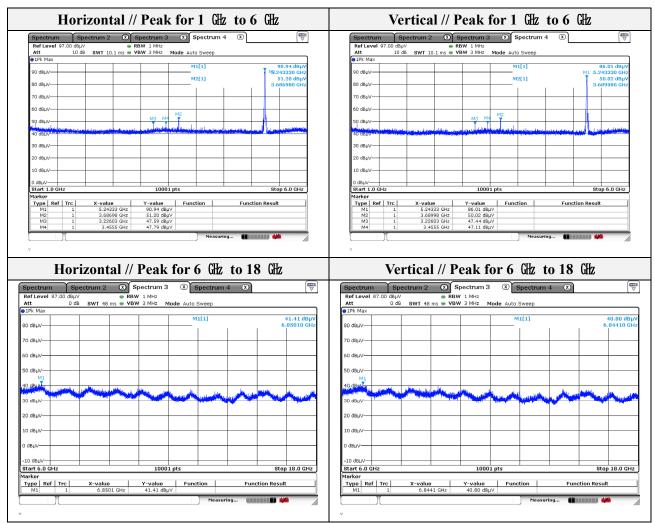
^{1.} Average test would be performed if the peak result were greater than the average limit.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

Report No.: KES-RF1-22T0146 Page (27) of (37)

Mode:	12 V_802.11a
Distance of measurement:	3 meter
Channel:	48

- Spurious

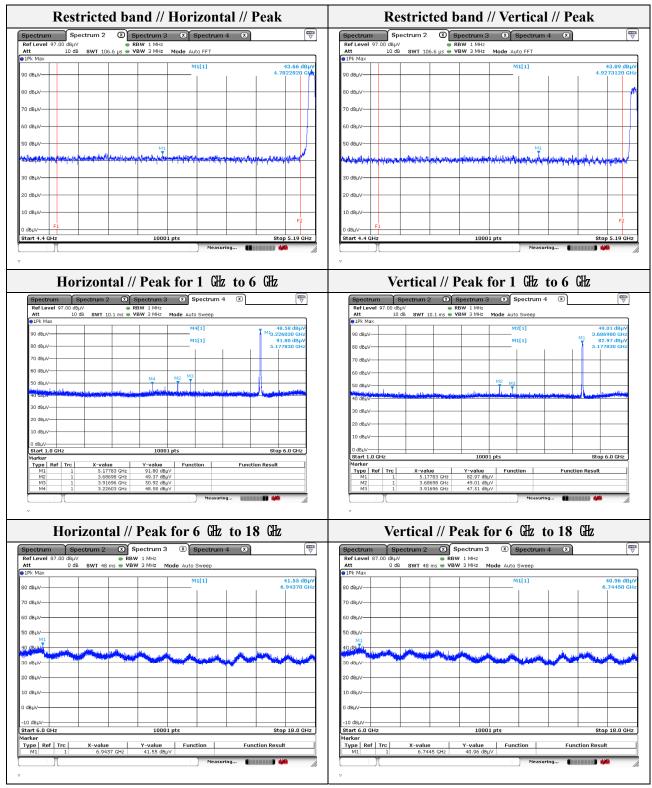

Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµV/m)	Margin (dB)
3226.03	47.59	Peak	Н	0.03	-	47.62	74.00	26.38
47.49	74.00	26.51	V	0.03	-	47.47	74.00	26.53
47.62	74.00	26.38	Н	-0.17	-	47.62	74.00	26.38
47.94	74.00	26.06	V	-0.17		46.94	74.00	27.06
52.00	74.00	22.00	Н	0.80	-	52.00	74.00	22.00
52.52	74.00	21.48	V	0.82		50.84	74.00	23.16

Band edge

Frequency (Mb)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
5380.91	42.53	Peak	V	6.65	-	49.18	74.00	24.82
5389.50	42.57	Peak	Н	6.69	-	49.26	74.00	24.74

Note.

1. Average test would be performed if the peak result were greater than the average limit.


Mode:	24 V_802.11a
Distance of measurement:	3 meter
Channel:	36

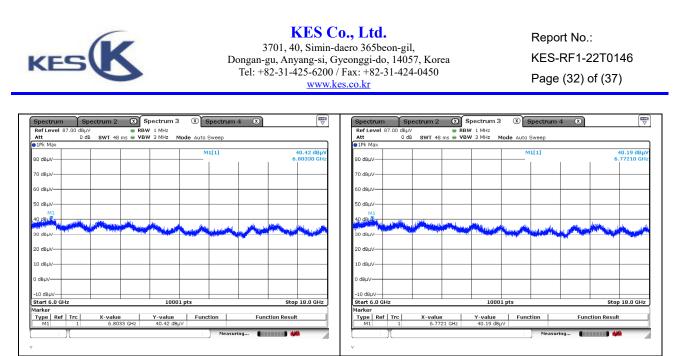
- Spurio	us							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
3226.03	48.58	Peak	Н	0.03		48.61	74.00	25.39
3686.98	49.37	Peak	Н	0.80		50.17	74.00	23.83
3686.98	49.01	Peak	V	0.80		49.81	74.00	24.19
3916.96	50.92	Peak	Н	1.85		52.77	74.00	21.23
3916.96	47.51	Peak	V	1.85		49.36	74.00	24.64
6744.50	40.96	Peak	V	8.46		49.42	74.00	24.58
6943.70	41.55	Peak	Н	9.05		50.60	74.00	23.40

- Band edge

Duna								
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
4782.28	43.66	Peak	Н	4.55		48.21	74.00	25.79
4927.31	43.89	Peak	V	5.65		49.54	74.00	24.46

Note.

1. Average test would be performed if the peak result were greater than the average limit.


This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. The authenticity of the test report, contact shchoi@kes.co.kr

Mode:	24 V_802.11a
Distance of measurement:	3 meter
Channel:	44

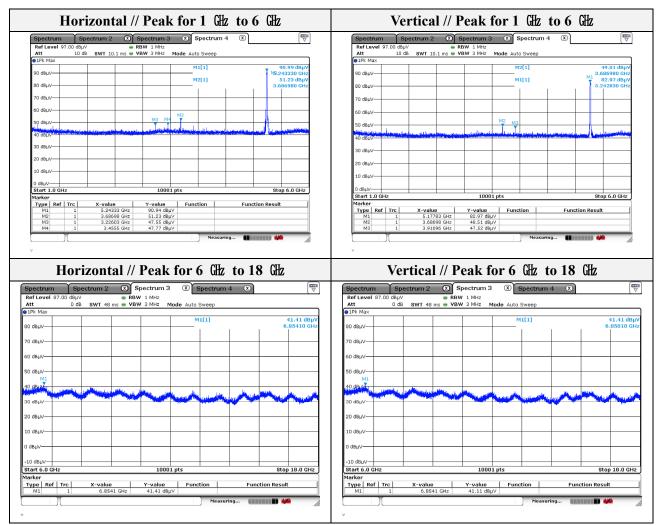
- Spurio	us							
Frequency (Mb)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
3226.03	46.98	Peak	Н	0.03		47.01	74.00	26.99
3455.50	48.10	Peak	Н	-0.17		47.93	74.00	26.07
3686.98	50.94	Peak	Н	0.80		51.74	74.00	22.26
3686.98	46.67	Peak	V	0.80		47.47	74.00	26.53
3916.96	47.20	Peak	V	1.85		49.05	74.00	24.95
6772.10	40.19	Peak	V	8.52		48.71	74.00	25.29
6803.30	40.42	Peak	Н	8.59		49.01	74.00	24.99

Spectrum	Spectrum 2	Spectrum 3 🛛 🗴 Spectr	rum 4 ⑧ [٩	Spectr	um Spe	ectrum 2 🛛 🔊 Spe	ctrum 3 🛛 🗙 Sp	ectrum 4 🗵	("
Ref Level 97.		RBW 1 MHz			el 97.00 dBµV	RBW			
Att	10 dB SWT 10.1 ms 👄 '	VBW 3 MHz Mode Auto Swee	ep	Att		SWT 10.1 ms 🖷 VBW	3 MHz Mode Auto 9	Sweep	
⊖1Pk Max		M3[1]	🚽 46.98 dBi	• 1Pk Ma	×			0	80.67 dBu
90 dBuV		M3[1]	46.98 dB M3.226030 G	HZ 90 dBuV			M1[1]	5.224330 GH
		M1[1]	91.91 dB				M2[1] M	1 46.67 dBµV
80 dBµV			5.224330 G	Hz 80 dBµV					3.686980 GH
70 dBµV				70 dBμV					
60 dBµV				60 dBuV					
		M3 M4 T		60 ubµv					
50 dBµV				50 dBuV			M2 M3		
March Hillelow March Law	With many second states and states designed	وروابيني وأحجفها وفقط فاقتقا ليرويني والرزي	and the second sec	and a second second second	ا ا		and I. I.	1	
40 dBpv				140°060v		the state of the s	Children of the second second second		La guilte and
30 dBuV									
00 app1				30 dBµV	-				
20 dBµV				-					
				20 dBµV					
10 dBµV				10 dBuV					
0 dBuV				10 0000					
Start 1.0 GHz		10001 pts	Stop 6.0 GH	0 dBuV-					
Marker		10001 p(5		Start 1.	0 GHz		10001 pts	I	Stop 6.0 GHz
Type Ref '	Trc X-value	Y-value Eunction	Eunction Result	Marker			<i>,</i>		
M1 M1	1 5.22433 GHz	91.91 dBµV		Type	Ref Trc	X-value Y	-value Functio	n Function	Result
M2	1 3.68698 GHz	50.94 dBµ∨		M1	1		80.67 dBµV		
M3	1 3.22603 GHz	46.98 dBµV		M2	1		46.67 dBµV		
M4	1 3.4555 GHz	48.10 dBµ∨		M3	1	3.91696 GHz	47.20 dBµV		
		M	easuring 📲 👘 👘					Measuring	
		,							
v				v					

Note.

1. Average test would be performed if the peak result were greater than the average limit.

Mode:	24 V_802.11a
Distance of measurement:	3 meter
Channel:	48


- Spurio	us							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
3226.03	47.55	Peak	Н	0.03		47.58	74.00	26.42
3455.50	47.77	Peak	Н	-0.17		47.60	74.00	26.40
3686.98	51.23	Peak	Н	0.80		52.03	74.00	21.97
3686.98	48.51	Peak	V	0.80		49.31	74.00	24.69
3916.96	47.52	Peak	V	1.85		49.37	74.00	24.63

Band edge

Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
5418.23	42.20	Peak	Н	6.68	-	49.55	74.00	24.45
5409.97	42.83	Peak	V	6.70	-	49.53	74.00	24.47

Restricted band // Horizontal // Peak							Restricted band // Vertical // Peak												
Spectrum Ref Level 97.0 Att	Spectrum 2 00 dBµV Offset 40 dB SWT	-40.00 dB 🥃	ectrum 3 RBW 1 MH	12	ectrum 4	8			Spectrun Ref Leve	n Sp 1 97.00 dBµ 40 d		-40.00 dB	pectrum 3 RBW 1 M VBW 3 M	Hz	Spectrum 4				
1Pk Max									1Pk Max										
90 dBµV				M1[1]	1		42.20 dBµV 182280 GHz	90 dBµV					N	11[1]			42.83 (5.4099730	
80 dBµV									80 dBµV—										
70 dBµV									70 dBµV										
60 dBµV							-		60 dBµV										
50 dBµV					M1				50 dBµV						M1			n ki dan centrakah	
n dB-Wn			All and a set of the s		and the product of the second	and the second s		and a second	ARICENT			Need alority of	and Without Include	Allow a librarily a				-	
30 dBµV									30 dBµV										
20 dBµV									20 dBµV—										
10 dBµV							F2		10 dBµV								F2		
0 dBµV		F1							0 dBµV			F1					LĨ.		
Start 5.26 GHz	I		10001	pts			Ste	pp 5.5 GHz	Start 5.26	GHz	1		1000	1 pts		L		Stop 5.5	GH
Ĩ					Measuring			0		Y					Measur	ing 🚛		1,00	_

Note.

1. Average test would be performed if the peak result were greater than the average limit.

Test results (18 GHz to 40 GHz)

Mode:	12 V_802.11a
Channel:	44 (Worst Case)
Distance of an example of the	2

Distance of measurement: 3 meter

Horizontal // 18 GHz ~ 40 GHz	Vertical // 18 GHz ~ 40 GHz							
Spectrum Spectrum 3 Spectrum 4 (E) [E] [E]	Ref Level 91.00 dBµV ● RBW 1 MHz Att 0 dB SWT 88 ms ● VBW 3 MHz Mode Auto Sweep							
k Max	IPk Max							
μεμν	80 dBµv-							
JBµV	70 dBµV							
dεμν	60 dBuv-							
18μ/	50 dBµV							
18μν	20 dBµv							
18µV	10 dBuV							
3uv	0 d8µv							
rt 18.0 GHz 10001 pts Stop 40.0 GH	Start 18.0 GHz 10001 pts Stop 40.0 GHz							
Measuring 🚺 🚧	Measuring							
	v							

Note.

1. No spurious emission were detected above 18 GHz.

Test results (18 GHz to 40 GHz) Mode: 24 V_802.11a Channel: 44 (Worst Case)

Distance of measurement: 3 meter

Horizontal // 18 GHz ~ 40 GHz	Vertical // 18 GHz ~ 40 GHz Spectrum 3 © Spectrum 4 © Ref Level 31.00 dBuy may 1.00 c							
Spectrum Spectrum 3 Spectrum 4 (₩) Ref Level 91.00 dbµ/ ● RBW 1 MHz (₩)								
Att 0 dB SWT 98 ms VBW 3 MHz Mode Auto Sweep	Ref Level 91.00 dBµV ● RBW 1 MHz Att 0 dB SWT 88 ms ● VBW 3 MHz Mode Auto Sweep ● IPK Max ■ ■ ■ Mode Auto Sweep							
80 dBµv	80 d8µv							
70 dBµV	70 d8µV							
60 dBµV	60 dBµv-							
50 d8µV	50 dBuV							
20 dBµV	20 dbµv-							
10 dBµV	10 dBµV							
ивµ/	0 dbµv							
Start 18.0 GHz 10001 pts Stop 40.0 GHz	Start 18.0 GHz 10001 pts Stop 40.0 GHz							
Measuring 🚺 🚧	Measuring 🚺							
	v							

Note.

1. No spurious emission were detected above 18 GHz.

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV40	101002	1 year	2023.06.17
SIGNAL GENERATOR	KEYSIGHT	N5182B	MY59100115	1 year	2023.04.27
SIGNAL GENERATOR	Anritsu	68369B	002118	1 year	2023.05.13
BAND REJECT FILTER	MICRO-TRONICS	BRM50716	G199	1 year	2023.01.14
Attenuator	HUBER+SUHNER	6806.17.A	-	1 year	2022.11.19
Attenuator	KEYSIGHT	8493C	82506	1 year	2023.01.14
Power Meter	Anritsu	ML2495A	1438001	1 year	2023.01.13
Pulse Power Sensor	Anritsu	MA2411B	1339205	1 year	2023.01.13
Loop Antenna	Schwarzbeck	FMZB1513	225	2 years	2023.03.18
TRILOG- BROADBAND ANTENNA	VULB9163	Schwarzbeck	714	2 years	2024.04.19
Horn Antenna	A.H	SAS-571	414	1 year	2023.01.18
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA 9170550	1 year	2023.01.20
Amplifier	SONOMA INSTRUMENT	310N	401123	1 year	2023.06.02
PREAMPLIFIER	HP	8449B	3008A00538	1 year	2023.06.02
BROADBAND AMPLIFIER	SCHWARZBECK	BBV9721	PS9721-003	1 year	2023.01.17
DC POWER SUPPLY	SORENSEN	DCS40-75E	1408A02745	1 year	2023.01.14
EMI Test Receiver	R&S	ESU26	100552	1 year	2023.03.31

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Notebook computer	LG Electronics Inc.,	LG15N54	504NZJV027828
Jig board	-	-	-

Appendix B. Test setup photos

The end of test report.