

Page 1 of 63

TEST REPORT

Product Name	:	WIFI/BT module
Brand Mark	:	Fn-link
Model No.	:	H158A-SM
FCC ID	:	2AATL-H158ASM
Report Number	:	BLA-EMC-202203-A9201
Date of Sample Receipt	:	2022/3/23
Date of Test	:	2022/4/1 to 2022/5/9
Date of Issue	:	2022/5/9
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

FN-LINK TECHNOLOGY LIMITED

No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan,CHINA

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Approved by:

Jozu Blue Thong

Review by: Date:

weels

BlueAsia of Technical Services(Shenzhen) Co., Ltd. Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No.	Date	Description		
00 2022/5/9		Original		

TABLE OF CONTENTS

1	ΤE	ST SUMMARY	. 5
2	GE	NERAL INFORMATION	. 6
3	GE	NERAL DESCRIPTION OF E.U.T.	6
4	BL	OCK DIAGRAM OF EUT CONNECTION	6
5	ΤЕ	ST ENVIRONMENT	7
6	ΤЕ	ST MODE	7
7	MF		7
8		SCRIPTION OF SUPPORT UNIT	
-		BORATORY LOCATION	
9		ST INSTRUMENTS LIST	
10			
11	CC	ONDUCTED BAND EDGES MEASUREMENT	
11	1.1	LIMITS	.12
11	1.2	BLOCK DIAGRAM OF TEST SETUP	
11	1.3	TEST DATA	13
12	СС	ONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	
12	2.1	LIMITS	.14
12	2.2	BLOCK DIAGRAM OF TEST SETUP	
12	2.3	PROCEDURE	.14
12	2.4	TEST DATA	16
13	RA	DIATED SPURIOUS EMISSIONS	18
13	3.1	LIMITS	.18
13	3.2	BLOCK DIAGRAM OF TEST SETUP	.19
13	3.3	PROCEDURE	.19
13	3.4	TEST DATA	21
14	СС	ONDUCTED PEAK OUTPUT POWER	29
14	4.1	LIMITS	.29
14	4.2	BLOCK DIAGRAM OF TEST SETUP	.29
14	4.3	ТЕЅТ DATA	30
15	RA	DIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	31

1	5.1	LIMITS
1	5.2	BLOCK DIAGRAM OF TEST SETUP
1	5.3	PROCEDURE
1	5.4	TEST DATA
16	CON	DUCTED SPURIOUS EMISSIONS
1	6.1	LIMITS
1	6.2	BLOCK DIAGRAM OF TEST SETUP
1	6.3	TEST DATA
17	POW	VER SPECTRUM DENSITY
1	7.1	LIMITS
	7.2	BLOCK DIAGRAM OF TEST SETUP
1	7.3	TEST DATA
18	MINI	MUM 6DB BANDWIDTH
1	8.1	LIMITS
1	8.2	BLOCK DIAGRAM OF TEST SETUP
1	8.3	TEST DATA
19	ANT	ENNA REQUIREMENT
1	9.1	CONCLUSION
20	APP	ENDIX
APF	PENDI	X A: PHOTOGRAPHS OF TEST SETUP58
APF	END	X B: PHOTOGRAPHS OF EUT60

1 TEST SUMMARY

Test item Test Requirement		Test Method	Class/Severity	Result		
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 47 CFR Part 15, Subpart C 7.8.8 & Section 15.247(d) 11.13.3.2		Pass		
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass		
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass		
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass		
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass		
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass		
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass		
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass		
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass		

GENERAL INFORMATION 2

Applicant	FN-LINK TECHNOLOGY LIMITED			
Address	No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan, CHINA			
Manufacturer	FN-LINK TECHNOLOGY LIMITED			
Address No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan, CHINA				
Factory	FN-LINK TECHNOLOGY LIMITED			
Address	No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan, CHINA			
Product Name	WIFI/BT module			
Test Model No.	H158A-SM			
3 GENERAL DESCRIPTION OF E.U.T.				

3 **GENERAL DESCRIPTION OF E.U.T.**

Hardware Version	V1.0
Software Version	V1.0
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	External Antenna
Antenna Gain:	2dBi (Provided by the customer)

BLOCK DIAGRAM OF EUT CONNECTION 4

Debugging board

5 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25	DC3.3V	

6 TEST MODE

TEST MODE	TEST MODE DESCRIPTION			
тх	Keep the EUT in transmitting mode with modulation			
Remark:Only th	e data of the worst mode would be recorded in this report.			

7 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Radiated Emission(9kHz-30MHz)	±4.34dB		
Radiated Emission(30Mz-1000MHz)	±4.24dB		
Radiated Emission(1GHz-18GHz)	±4.68dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

0

8 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A

9 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

10 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Band Edges Measurement						
Equipment	Manufacturer	S/N	Cal.Date	Cal.Due		
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022	
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022	
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022	

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Shield room	SKET	833	N/A	25/11/2020	24/11/2023
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022
LISN	AT	AT166-2	AKK1806000003	26/9/2021	25/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A

Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022

Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of	Test Equipment Of Radiated Emissions which fall in the restricted bands				
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

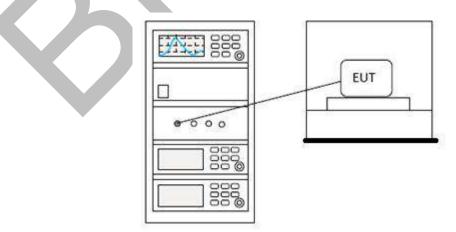
Report No.: BLA-EMC-202203-A9201 Page 11 of 63

Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022
	·		·		

Test Equipment Of Power Spectrum Density					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022
				•	

Test Equipment Of Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Antenna Requirement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due


11 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2			
Test Mode (Pre-Scan)	ТХ			
Test Mode (Final Test)	ТХ			
Tester	Jozu			
Temperature	25°C			
Humidity	60%			

11.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

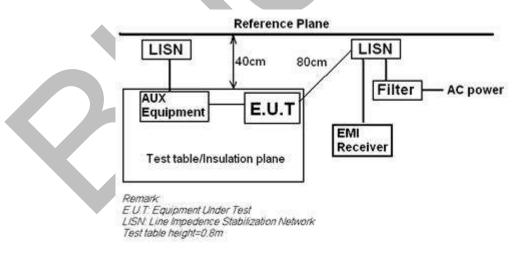
11.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202203-A9201 Page 13 of 63

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

12 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 6.2			
Test Mode (Pre-Scan)	ТХ			
Test Mode (Final Test)	ТХ			
Tester	Jozu			
Temperature	25°C			
Humidity	60%			

12.1 LIMITS

Frequency of	Conducted limit(dBµV)						
emission(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
·		•					

*Decreases with the logarithm of the frequency.

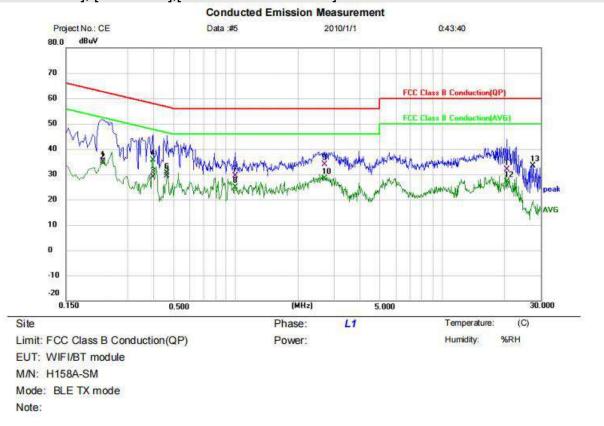
12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

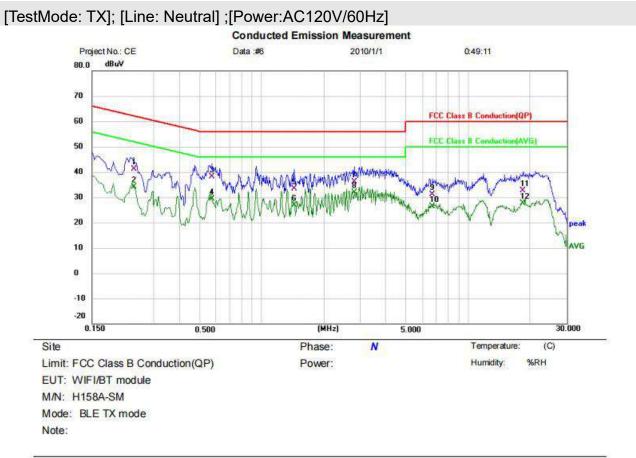
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

12.4 TEST DATA


[TestMode: TX]; [Line: Line]; [Power: AC120V/60Hz]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2260	24.86	10.30	35.16	62.60	-27.44	QP	
2		0.2260	24.19	10.30	34.49	52.60	-18.11	AVG	
3		0.3940	18.99	9.85	28.84	57.98	-29.14	QP	
4		0.3940	25.66	9.85	35.51	47.98	-12.47	AVG	
5		0.4620	19.52	9.87	29.39	56.66	-27.27	QP	
6		0.4620	20.46	9.87	30.33	46.66	-16.33	AVG	
7		0.9900	19.48	9.92	29.40	56.00	-26.60	QP	
8		0.9900	14.91	9.92	24.83	46.00	-21.17	AVG	
9		2.6980	23.89	9.96	33.85	56.00	-22.15	QP	
10		2.6980	18.31	9.96	28.27	46.00	-17.73	AVG	
11		20.6460	21.58	10.42	32.00	60.00	-28.00	QP	
12		20.6460	16.70	10.42	27.12	50.00	-22.88	AVG	
13	-	27.5500	23.02	10.46	33.48	60.00	-26.52	peak	

*:Maximum data x:Over limit !:over margin

(Reference Only

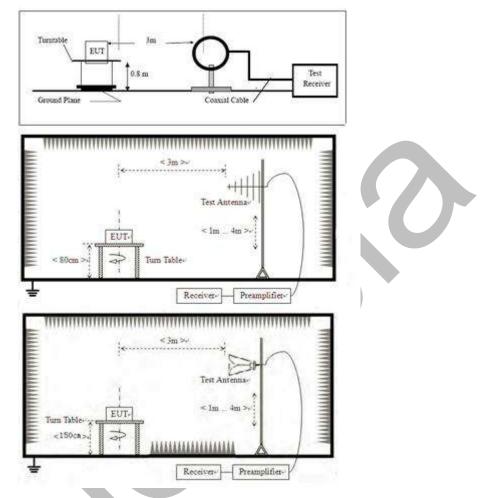
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2380	30.82	10.24	41.06	62.17	-21.11	QP	
2		0.2380	23.97	10.24	34.21	52.17	-17.96	AVG	
3		0.5740	28.24	9.80	38.04	56.00	-17.96	QP	
4		0.5740	19.49	9.80	29.29	46.00	-16.71	AVG	
5		1.4340	23.47	9.85	33.32	56.00	-22.68	QP	
6		1.4340	16.94	9.85	26.79	46.00	-19.21	AVG	
7		2.8060	26.23	9.89	36.12	56.00	-19.88	QP	
8	*	2.8060	22.10	9.89	31.99	46.00	-14.01	AVG	
9		6.6980	21.01	10.01	31.02	60.00	-28.98	QP	
10		6.6980	16.27	10.01	26.28	50.00	-23.72	AVG	
11		18.4140	22.36	10.39	32.75	60.00	-27.25	QP	
12		18.4140	17.34	10.39	27.73	50.00	-22.27	AVG	

*:Maximum data x:Over limit I:over margin

(Reference Only

13 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX mode (SE) below 1G;TX mode (SE) Above 1G
Test Mode (Final Test)	TX mode (SE) below 1G;TX mode (SE) Above 1G
Tester	Jozu
Temperature	25°C
Humidity	60%


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

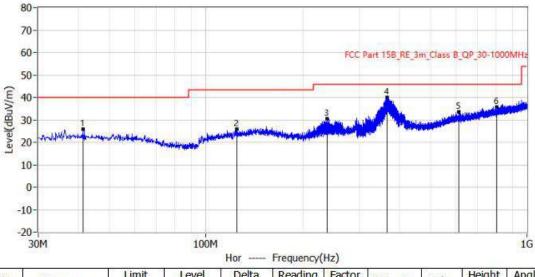
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

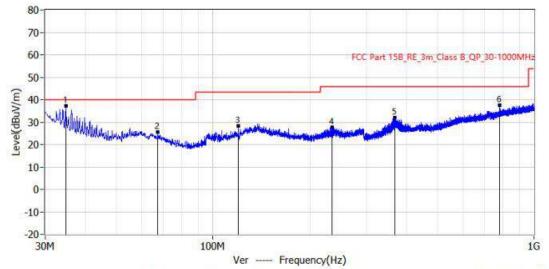
3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.


4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

13.4 TEST DATA

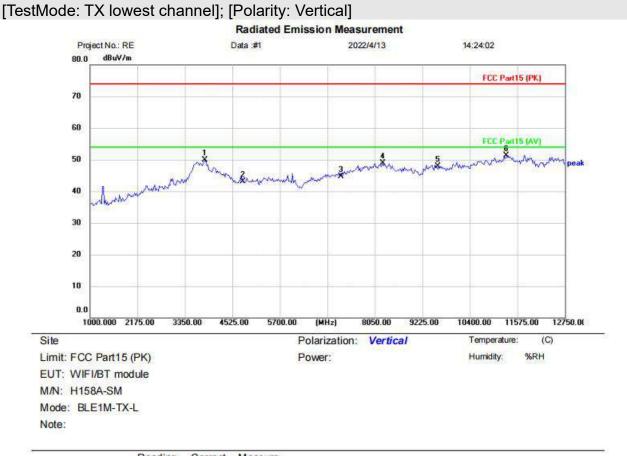
[TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab(RE #1)	Project: BLA-EMC-202203-A92	
EUT: WIFI/BT module	Test Engineer: York	
M/N: H158A-SM	Temperature:	
S/N:	Humidity:	
Test Mode: TX mode	Test Voltage:	
Note:	Test Data: 2022-04-25 16:48:03	



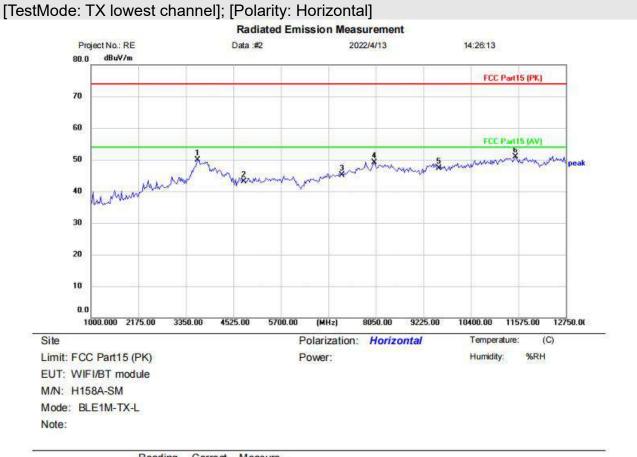
No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height	Angle deg
1*	41.276MHz	40.0	25.8	-14.2	1.7	24.1	QP	Hor	100.0	110.0
2*	124.939MHz	43.5	26.0	-17.5	3.0	23.0	QP	Hor	100.0	197.0
3*	238.429MHz	46.0	30.4	-15.6	7.7	22.7	QP	Hor	100.0	87.0
4*	366.833MHz	46.0	40.1	-5.9	13.9	26.2	QP	Hor	100.0	144.0
5*	614.183MHz	46.0	33.5	-12.5	2.1	31.4	QP	Hor	100.0	156.0
6*	805.151MHz	46.0	35.7	-10.3	1.5	34.2	QP	Hor	100.0	187.0

[TestMode: TX mode (SE) below 1G]; [Polarity: Vertical]


Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202203-A92	
EUT: WIFI/BT module	Test Engineer: York	
M/N: H158A-SM	Temperature:	
S/N:	Humidity:	
Test Mode: TX mode	Test Voltage:	
Note:	Test Data: 2022-04-25 16:51:22	

No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	34.729MHz	40.0	37.2	-2.8	13.7	23.5	QP	Ver	100.0	0.0
2*	67.345MHz	40.0	25.5	-14.5	3.5	22.0	QP	Ver	100.0	0.0
3*	119.968MHz	43.5	28.4	-15.1	5.7	22.7	QP	Ver	100.0	0.0
4*	234.913MHz	46.0	27.8	-18.2	5.3	22.5	QP	Ver	100.0	0.0
5*	368.288MHz	46.0	32.1	-13.9	5.8	26.3	QP	Ver	100.0	0.0
6*	781.508MHz	46.0	37.6	-8.4	3.8	33.8	QP	Ver	100.0	0.0

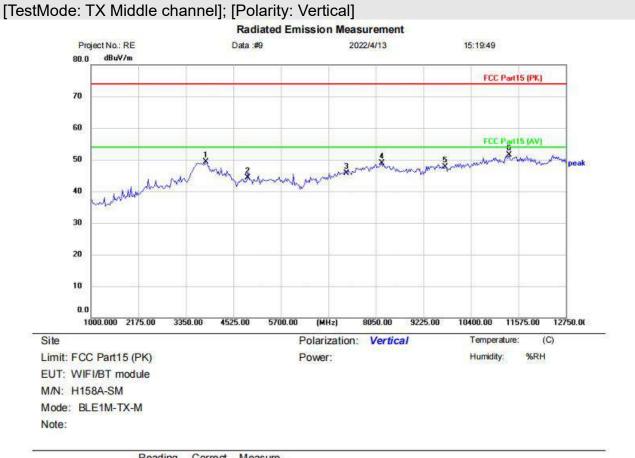
Above 1GHz:



No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		3843.500	42.77	7.12	49.89	74.00	-24.11	peak	
2		4804.000	39.35	3.71	43.06	74.00	-30.94	peak	
3		7206.000	38.71	5.96	44.67	74.00	-29.33	peak	
4		8238.000	40.70	8.22	48.92	74.00	-25.08	peak	
5		9608.000	38.71	9.29	48.00	74.00	-26.00	peak	
6	* 1	1293.000	39.36	11.91	51.27	74.00	-22.73	peak	

*:Maximum data x:Over limit 1:over margin

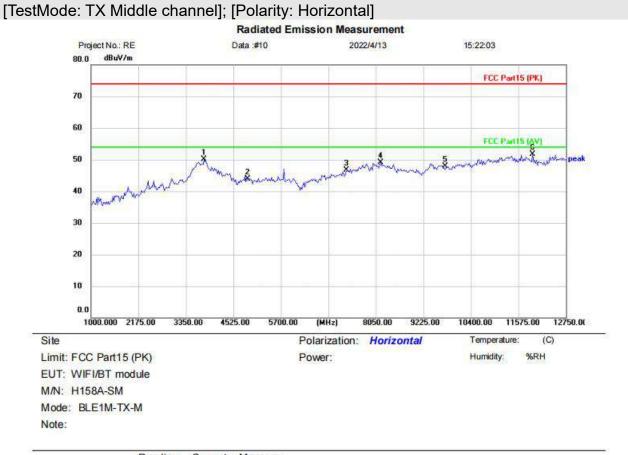
(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3632.000	42.11	7.77	49.88	74.00	-24.12	peak		
2		4804.000	39.44	3.71	43.15	74.00	-30.85	peak		
3		7206.000	39.18	5.96	45.14	74.00	-28.86	peak		
4		8003.000	41.17	7.94	49.11	74.00	-24.89	peak		
5		9608.000	37.94	9.29	47.23	74.00	-26.77	peak		
6		11504.500	38.89	11.92	50.81	74.00	-23.19	peak		

*:Maximum data x:Over limit 1:over margin

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3843.500	42.19	7.12	49.31	74.00	-24.69	peak		
2		4884.000	41.00	3.34	44.34	74.00	-29.66	peak		
3		7326.000	39.17	6.44	45.61	74.00	-28.39	peak		
4		8191.000	40.78	8.20	48.98	74.00	-25.02	peak		
5		9768.000	38.07	9.63	47.70	74.00	-26.30	peak		
6		11340.000	39.56	11.85	51.41	74.00	-22.59	peak		

*:Maximum data x:Over limit !:over margin

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3796.500	42.38	7.65	50.03	74.00	-23.97	peak		
2		4884.000	40.60	3.34	43.94	74.00	-30.06	peak		
3		7326.000	40.24	6.44	46.68	74.00	-27.32	peak		
4		8167.500	40.84	8.17	49.01	74.00	-24.99	peak		
5		9768.000	38.18	9.63	47.81	74.00	-26.19	peak		
6		11927.500	40.24	11.39	51.63	74.00	-22.37	peak		

*:Maximum data x:Over limit !:over margin

(Reference Only

[TestMode: TX highest channel]; [Polarity: Vertical]

*:Maximum data x:Over limit !:over margin

(Reference Only

Test Result: Pass

2

3

4

5

6 *

4960.000

7440.000

8167.500

9920.000

11387.000

41.02

40.35

40.34

37.54

39.63

3.75

6.86

8.17

10.16

11.78

44.77

47.21

48.51

47.70

51.41

74.00

74.00

74.00

74.00

74.00

-29.23

-26.79

-25.49

-26.30

-22.59

peak

peak

peak

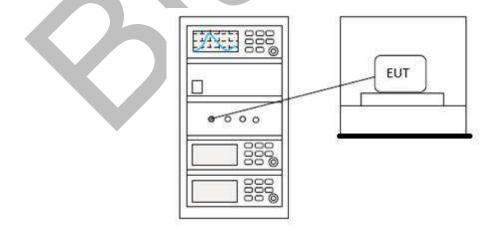
peak

peak

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		3867.000	43.13	6.82	49.95	74.00	-24.05	peak	
2		4960.000	40.01	3.75	43.76	74.00	-30.24	peak	
3		7440.000	39.52	6.86	46.38	74.00	-27.62	peak	
4		8214.500	40.30	8.21	48.51	74.00	-25.49	peak	
5		9920.000	36.93	10.16	47.09	74.00	-26.91	peak	
6		11457.500	39.54	11.84	51.38	74.00	-22.62	peak	

*:Maximum data x:Over limit !:over margin

(Reference Only


14 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%
14.1 LIMITS	

14.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for \geq 50 hopping channels
902-928	0.25 for $25 \le$ hopping channels $<$ 50
	1 for digital modulation
	1 for \geq 75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5705 5050	1 for frequency hopping systems and digital
5725-5850	modulation

14.2 BLOCK DIAGRAM OF TEST SETUP

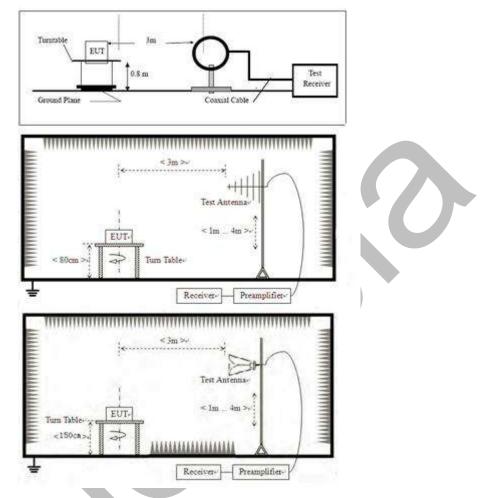
Report No.: BLA-EMC-202203-A9201 Page 30 of 63

14.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

15 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.10.5					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25°C					
Humidity	60%					


15.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

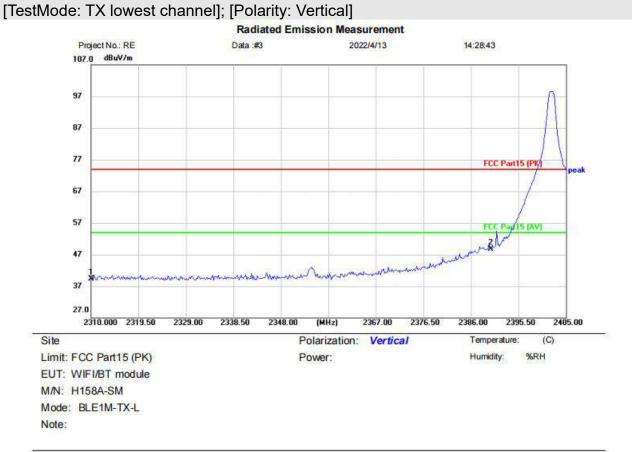
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

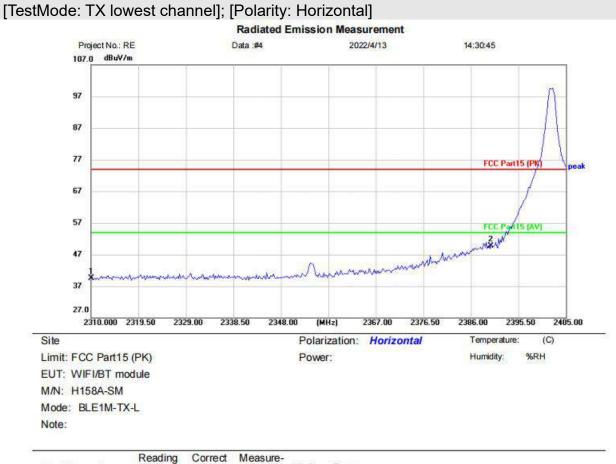
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

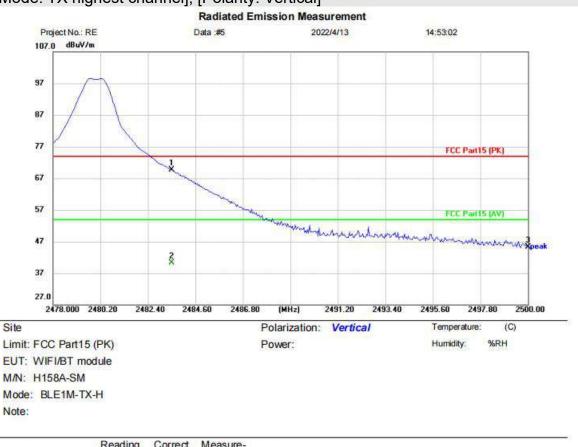
15.4 TEST DATA



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	43.32	-3.93	39. <mark>3</mark> 9	74.00	-34.61	peak		
2	*	2390.000	52.36	-3.58	48.78	74.00	-25.22	peak		

*:Maximum data x:Over limit !:over margin

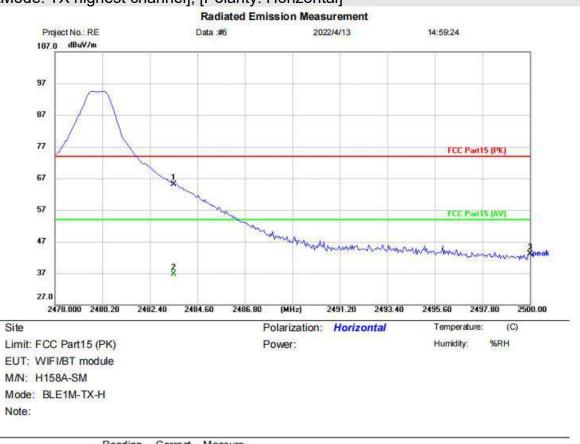
(Reference Only



No. N	٨k.	Freq.	Reading Level	Correct Factor	Measure- ment		Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	43.49	-3.93	39.56	74.00	-34.44	peak		
2 *	¥.	2390.000	53.30	-3.58	49.72	74.00	-24.28	peak		

*:Maximum data x:Over limit 1:over margin

(Reference Only


[TestMode: TX highest channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	8	2483.500	72.79	-3.14	69.65	74.00	-4.35	peak		
2		2483.500	43.42	-3.14	40.28	54.00	-13.72	AVG		
3		2500.000	48.42	-3.08	45.34	74.00	-28.66	peak		

*:Maximum data x:Over limit 1:over margin

(Reference Only

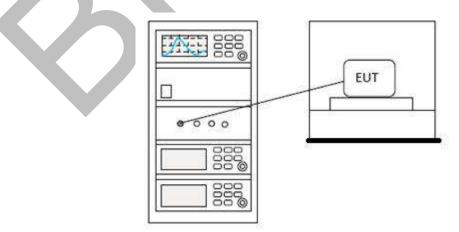
[TestMode: TX highest channel]; [Polarity: Horizontal]
--

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
_		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2483.500	68.18	-3.14	65.04	74.00	-8.96	peak		
2		2483.500	39.79	-3.14	36.65	54.00	-17.35	AVG		
3		2500.000	46.15	-3.08	43.07	74.00	-30.93	peak		

*:Maximum data x:Over limit I:over margin

(Reference Only

Test Result: Pass


16 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

16.1 LIMITS

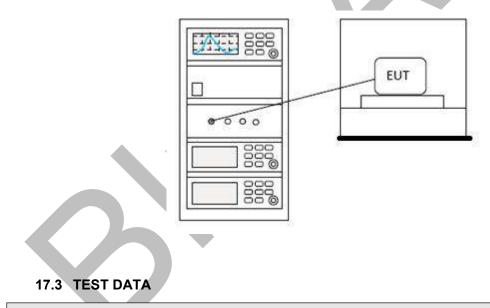
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

16.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202203-A9201 Page 39 of 63

16.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


17 POWER SPECTRUM DENSITY

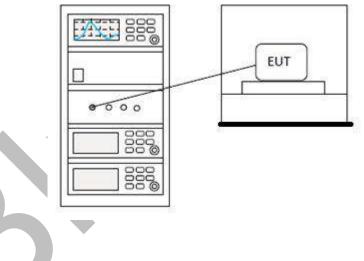
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

17.1 LIMITS

Limit: ≤ 8 dBm in any 3 kHz band during any time interval of continuous transmission

17.2 BLOCK DIAGRAM OF TEST SETUP

Pass: Please Refer To Appendix: Appendix1 For Details


18 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

18.1 LIMITS

Limit: $\geq 500 \text{ kHz}$

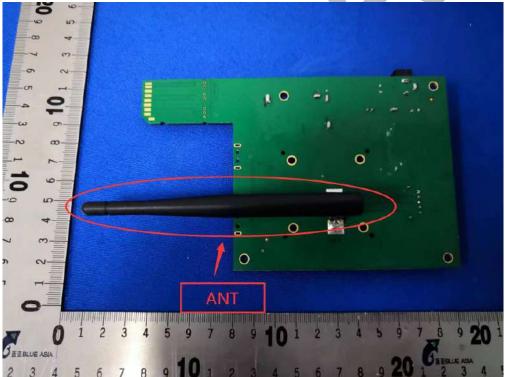
18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

19 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	N/A			

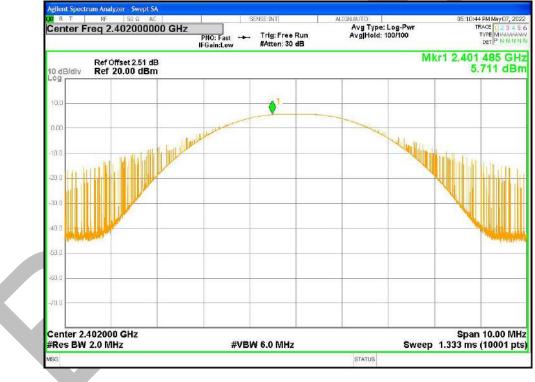

19.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

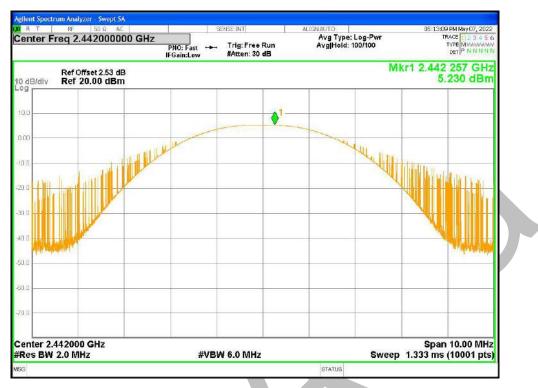
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

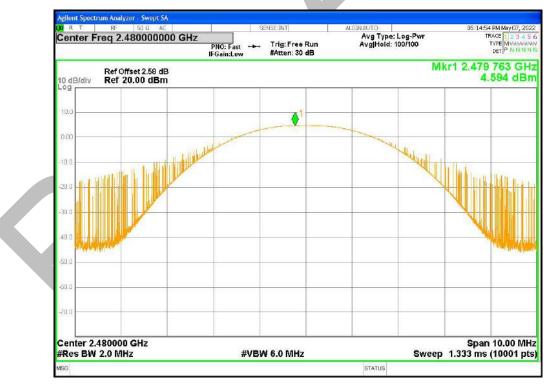

20 APPENDIX

Appendix1

Maximum Conducted Output Power


Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)		
NVNT	BLE	2402	Ant1	5.711	0	5.711	30	Pass
	1M							
NVNT	BLE	2442	Ant1	5.23	0	5.23	30	Pass
	1M							
NVNT	BLE	2480	Ant1	4.594	0	4.594	30	Pass
	1M							

Power NVNT BLE 1M 2402MHz Ant1



Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.695	0.5	Pass
	1M					
NVNT	BLE	2442	Ant1	0.704	0.5	Pass
	1M					
NVNT	BLE	2480	Ant1	0.699	0.5	Pass
	1M					

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

gilent Spectrum Analyzer Occupied BW			ALIGNAUTO	05:13:22 PM May 07, 2022
enter Freq 2.442000000	GHz #IFGain:Low	Center Freq: 2,4420000 Trig: Free Run #Atten: 30 dB	000 GHz Avg Hold: 100/100	Ra dio Std: None Ra dio Device: BTS
Ref Offset 2.53 dB 0 dB/div Ref 22.53 dBm				Mkr3 2.442356 GHz -2.3817 dBm
2.5		A11		
53	O^2		3	
47	warman and a second		and the second second	
7.5				THE ADAD AND A DAY AND A D
A POWARAWA				math wat and the
7.5				
15				
7.5				
enter 2.442 GHz				Span 2 MHz
Res BW 100 kHz		#VBW 300 k	Hz	Sweep 1.333 ms
Occupied Bandwidth	1	Total Power	10.9 dBm	
1.0	0893 MHz			
Transmit Freq Error	3.505 kHz	OBW Power	99.00 %	
x dB Bandwidth	704.3 kHz	x dB	-6.00 dB	
			Tassa	
6G			STATUS	

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.065120063
NVNT	BLE 1M	2442	Ant1	1.062569411
NVNT	BLE 1M	2480	Ant1	1.064437422

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

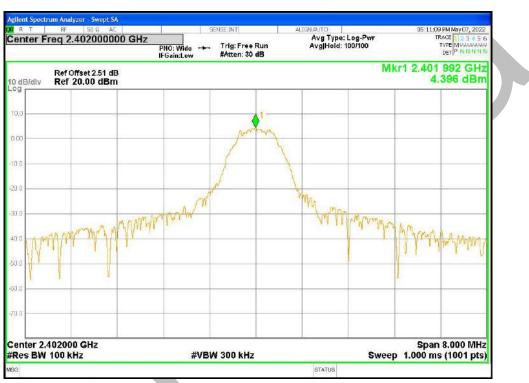
OBW NVNT BLE 1M 2480MHz Ant1

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-3.915	8	Pass
NVNT	BLE 1M	2442	Ant1	-3.639	8	Pass
NVNT	BLE 1M	2480	Ant1	-4.203	8	Pass

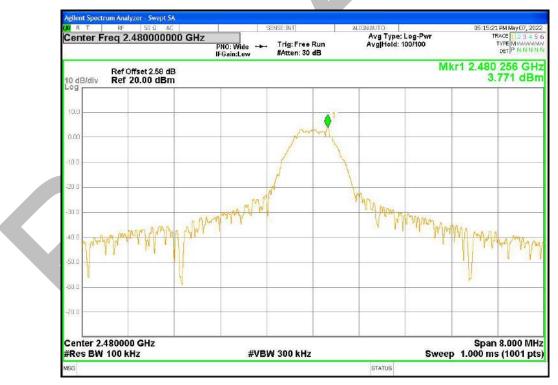
PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1


PSD NVNT BLE 1M 2480MHz Ant1

Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-55.82	-30	Pass
NVNT	BLE 1M	2480	Ant1	-45	-30	Pass


Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

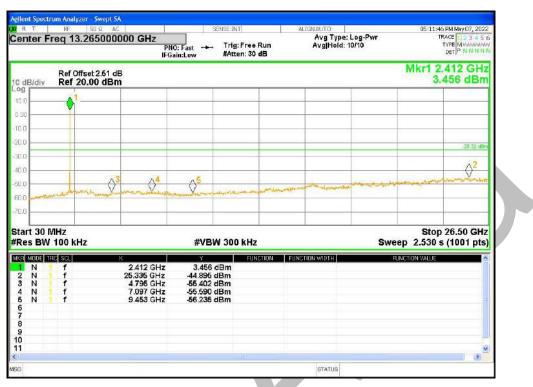
Center Freq 2.356000000 GHz PRO: Fast Trig: Free Run Matter: 30 dB Avg Type: Log-Por AvgHold: 100/100 Trice I 2 3 a S Type: Log-Por AvgHold: 100/100 Ref Offset 2.61 dB 0 dB/div Mkr1 2.402 3 GHz 4.968 dBm 4.968 dBm 0 dB/div Ref 20.00 dBm 4.968 dBm 0 dD Image: State 2.30600 GHz State 2.30600 GHz 200 Image: State 2.30600 GHz #VBW 300 kHz Stop 2.40600 GHz 210 Image: State 2.30600 GHz 3.166 dBm 51.427 dBm 210 Image: State 2.3653 T GHz 51.427 dBm FUNCTION MADIE 211 Image: State 2.3653 T GHz 51.427 dBm Image: State 2.3653 T GHz 51.427 dBm	gilent Spectru	ım Analyzer - Swe	pt SA		. Wi	85			
Ref 20.00 dBm 4.968 dBm 00 dB/div Ref 20.00 dBm Ref 20.00 dBm 00 dB/div Ref 20.00 dBm Stop 2.40600 GHz Res BW 100 kHz #VBW 300 kHz Stop 2.40600 GHz 1 N f 2.402 3 GHz 4.968 dBm 2 N f 2.402 3 GHz 4.968 dBm 3 N f 2.300 GHz 53.816 dBm 3 N f 2.353 7 GHz 51.427 dBm 0 d Start 2.353 7 GHz 51.427 dBm 10 d Start 2.353 7 GHz 51.427 dBm	enter Fr	req 2.35600	FIN): Fast 🛶 Trig:	Free Run	ALIGNAUTO Avg Type: L Avg Hold: 10	og-Pwr 0/100	TRACE TYPE	123456
100 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
100 200 300 400 500 500 500 500 500 500 5									
200 300 400 600 600 600 600 600 600 6	0.00								-A
Stop <th< td=""><td>10.0</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>0</td><td></td></th<>	10.0		-					0	
Start 2.30600 GHz Stop 2.40600 GHz Res BW 100 kHz #VBW 300 kHz Stop 2.40600 GHz N f 2.402 3 GHz 4.968 dBm N f 2.400 0 GHz 53.616 dBm 3 N f 2.390 0 GHz 53.616 dBm 3 N f 2.390 0 GHz 53.616 dBm 3 N f 2.390 0 GHz 51.427 dBm 6 7 51.427 dBm 51.427 dBm	20.0		-					1-	/Sal FB refer
Start 2.30600 GHz Stop 2.40600 GHz Start 2.30600 GHz #VBW 300 kHz Stop 2.40600 GHz Start 2.30600 GHz #VBW 300 kHz Stop 2.40600 GHz Start 2.30600 GHz #VBW 300 kHz Stop 2.40600 GHz Start 2.30600 GHz #VBW 300 kHz Stop 2.40600 GHz Start 2.30600 GHz #VBW 300 kHz Stop 2.40600 GHz Start 2.3060 FHz 51.158 dBm Function with Function water 1 N f 2.300 GHz -31.158 dBm 3 N f 2.300 GHz -31.168 dBm 6 - - - - - 9 -	30.0								91
Start 2.30600 GHz Stop 2.40600 GHz Res BW 100 kHz #VBW 300 kHz Stop 2.40600 GHz N f 2.402 3 GHz 4.968 dBm 2 N f 2.400 0 GHz 31.158 dBm 3 N f 2.399 0 GHz 53.616 dBm 4 N f 2.353 7 GHz 51.427 dBm 6 7 51 51.427 dBm 8 9 9 10 11	40.0				11.4			2 1	
Start 2.30600 GHz Stop 2.40600 GHz KRS BW 100 kHz #VBW 300 kHz Stop 2.40600 GHz Start 2.30600 GHz #VBW 300 kHz Sweep 9.600 ms (1001 pts Start 3.0600 GHz #VBW 300 kHz Sweep 9.600 ms (1001 pts Start 3.0600 GHz #VBW 300 kHz FUNCTION WIDTH Start 3.0600 GHz \$3.0600 GHz \$3.0600 GHz Start 3.0600 GHz \$3.0600 GHz \$3.0600 GHz Start 3.0600 GHz \$3.060 GHz \$3.060 GHz Start 3.0600 GHz \$3.060 GHz \$3.060 GHz Start 4.968 dBm \$3.01 f \$2.3900 GHz Start 4.00 GHz \$3.158 dBm \$3.01 f Start 5.361 GBm \$5.427 dBm 6 \$1.427 dBm 7 \$1.427 dBm 9 \$1.427 dBm	60.0				Q.			and Same	
Start 2.30600 GHz Stop 2.40600 GHz Res BW 100 kHz #VBW 300 kHz Stop 2.40600 GHz 10 N 1 f 2.402 3 GHz 4.968 dBm 2 N 1 f 2.400 0 GHz -31,158 dBm 3 N f 2.390 0 GHz -55161 dBm 6 - - 7 - - 9 - -	60.0	trades and plane rights	and the man whether	wale the encoded	and managements Au	er war the stand the second	al businesses	-1	• •
KRS NODE FUNCTION FUNC	70.0								
KRS NODE FUNCTION FUNC	start 2 30	600 GHz						Stop 2 40	500 GHZ
1 N f 2.402 3 GHz 4.968 dBm 2 N f 2.400 0 GHz -31.156 dBm 3 N f 2.300 0 GHz -31.156 dBm 4 N f 2.363 7 GHz -53.615 dBm 6 6 7 6 7 9 10 10 10 10				#VBW 300	kHz		Sweep		
2 N 1 f 2.400 0 GHz 31.158 dBm 3 N f 2.390 0 GHz 53.616 dBm 6					EUNCTION	FUNCTION MIDTH	11	INCTION VALUE	-
4 N f 2.3537 GHz -51.427 dBm 6 7 8 9 10									
	3 N	f	2.390 0 GHz	-53.615 dBm					
	4 N 1	T	2.353 / GHZ	-51.427 dBm					=
	6								
	8								
	9								
STATUS	sg					STATUS			

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

T RF 50 Ω	AC	SENSE (IN	F I	ALIGNAUTO		05:15:23	9 PM May 07, 2022
ter Freq 2.52600	PNC		Free Run en: 30 dB	Avg Type: Avg Hold: 1		T	TYPE NUMBER P NUMBER
Ref Offset 2.5 3/div Ref 20.00 d					1		80 0 GHz 386 dBm
1							
1							-26.23 dBm
1 10							
1 Nin	٨3						
Mar Mark	montaniplana	Warway anenny les y	+ par pertoned	han a hand a land	an film of the section of the sectio	Jun Inder Jayon	april and a should
		Contra					
t 2.47600 GHz s BW 100 kHz		#VBW 300					57600 GHz (1001 pts)
		1000 V.					s (1001 pts)
N F N F N F N F N F	8 2.480 0 GHz 2.483 5 GHz 2.500 0 GHz 2.483 5 GHz	3.386 dBm -41.234 dBm -55.230 dBm -41.234 dBm	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	
	24033 012	41.294 UDIII					
							~
							>

S


Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-49.57	-30	Pass
NVNT	BLE 1M	2442	Ant1	-49.12	-30	Pass
NVNT	BLE 1M	2480	Ant1	-48.68	-30	Pass

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref



Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission

gitent Spect	rum Analyzei	Swept SA			SENSE ONT		ALIGNAUTO		25:14:0	4 PM May 07, 2022
enter F	RF Freq 13.2	2650000		PNO: Fast 🔸 FGain:Low	-			: Log-Pwr 10/10	т	RACE 1 2 3 4 5 6 TYPE MWAAAAAA DET P NNNN
0 dB/div		et 2.53 dE .00 dBm								.439 GHz 126 dBm
og 10 0	<mark>1</mark>							_		
. 00	_		-		-			-		
00						_		-		
0.0					-	-				-25.54 dBm
0.0						-				
10.0	-					-				\Diamond^2
0.0	nelim	A A A A A A A A A A A A A A A A A A A	mil	\Diamond^5	Manual	Supering land	working the West Contraction	La management	and a stand and	WANTE CONTRACTOR
CO warde	a	diposes a		and the second s						
0.0			ñ							
tart 30 I Res BW	MHz 100 kHz			#VI	3W 300 ki	Hz		Sw	Stop eep 2.530 s	26.50 GHz s (1001 pts)
KR MODE T		,		Y		UNCTION	FUNCTION WIDTH		FUNCTION VALUE	-
1 N 2 N 3 N 4 N 5 N	f f f		2.439 GHz 25.124 GHz 4.900 GHz 7.230 GHz	-44.97 -55.79 -55.05	6 dBm 5 dBm					
4 N 5 N 6 7 8 9	1 f		9.686 GHz	2 -55 .91	ldBm					
9										
1										×
36							STATUS			

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

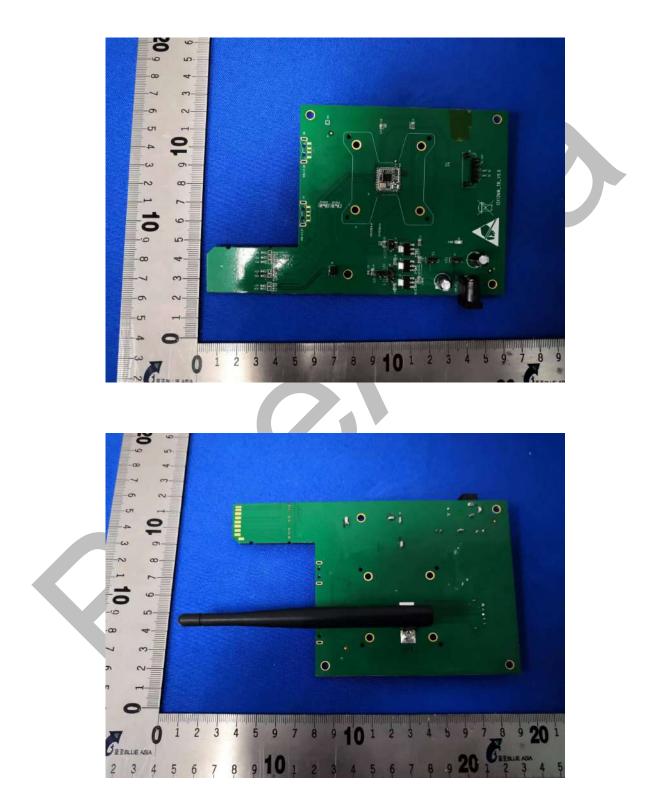
Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

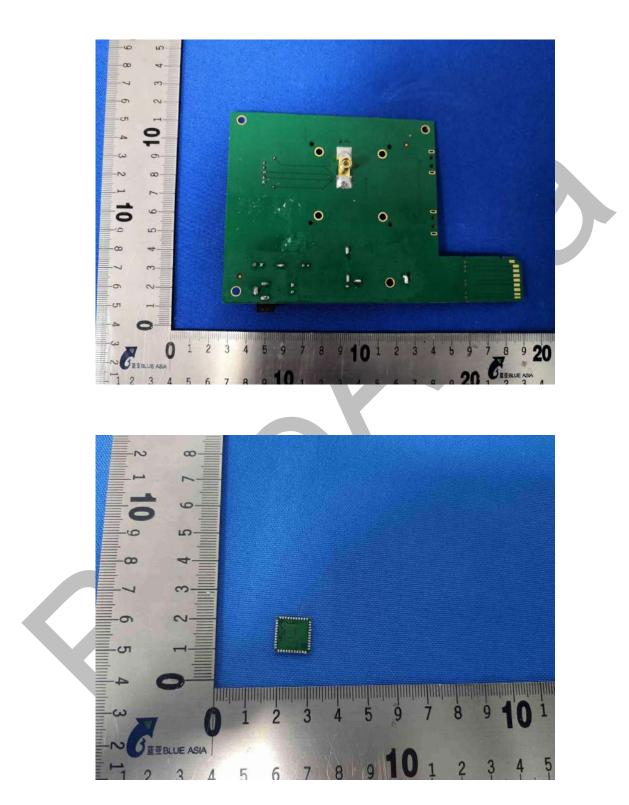
RT	RF 50	24 R.C	SENSEONT		ALIGNAUTO		05:15:58 PM	lay 07, 2022
enter F	req 13.26			Free Run n: 30 dB	Avg Type: Avg Hold: 1		TYPE	123456 MV P NNNN
0 dB/div	Ref Offset Ref 20.0						Mkr1 2.49 3.02	2 GHz 0 dBm
10	1							_
00								
0.0								
0.0				-			1	-26.53 (Đm
0.0							1947	-26.53 (totm
0.0							2	
0.0		$\sqrt{3}$	25 Julian	-	and the second second	manne	- serverer	and the second
0.0	weither	meetingenthem	an Midan server	and series and a series of the	- and the second and the second second			
'G.0								
tart 30 f Res BW	VIHZ 100 kHz		#VBW 300	kHz		Swee	Stop 26 p 2.530 s (1	
KR MODE T		× 2.492 GHz	3.020 dBm	FUNCTION	FUNCTION MIDTH	EUM	CTION VALUE	-
1 N 2 N 3 N 4 N 5 N	f f f	2.492 GHz 23.827 GHz 4.795 GHz 7.415 GHz 9.930 GHz	-45.216 dBm -55.149 dBm -55.703 dBm -56.156 dBm					
4 N 5 N 6 7 8 9		3.500 GHZ	-00.100 uBm					
9 10								
1								
1								

2

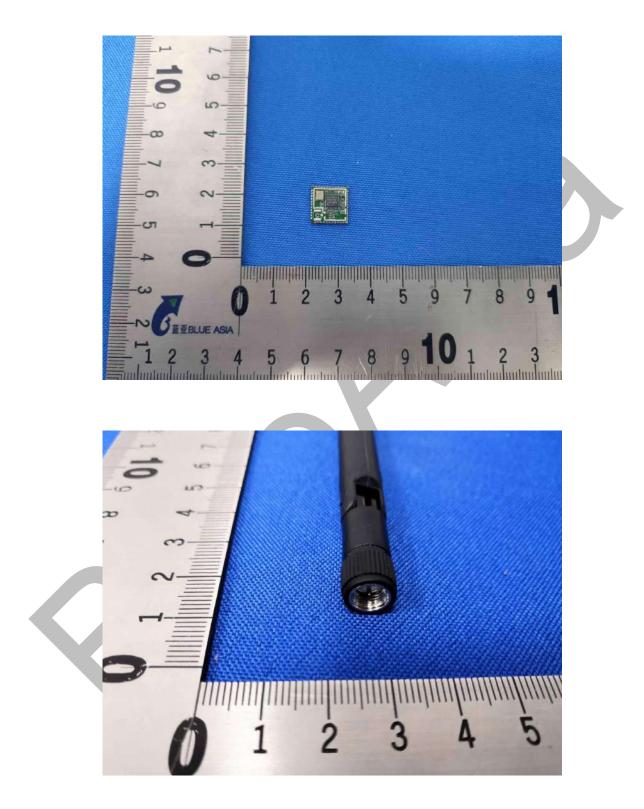
Report No.: BLA-EMC-202203-A9201 Page 58 of 63

APPENDIX A: PHOTOGRAPHS OF TEST SETUP





Report No.: BLA-EMC-202203-A9201 Page 60 of 63


APPENDIX B: PHOTOGRAPHS OF EUT

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.