TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042

	Tel : 031-321-2664, Fax : 031-321-1664			
1. Report No : DRTFCC2201-0022				
2. Customer				
Name (FCC) : THINKWARE CORPOR	RATION / Name (IC) : THINKWARE CORPORATION			
South Korea	lipex,240, Pangyoyeok-ro, Bundang Seongnam-si, Gyeonggi-do			
Address (IC) : A, 9FL, Samwhan Hipe Seongnam Korea (Re	ex, 240, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do epublic Of)			
3. Use of Report : FCC & IC Certifica	ition			
4. Product Name / Model Name : Car FCC ID : 2ADTG-ACE3PROF IC : 12594A-ACE3PROF	r Dash Cam Front Camera / Advanced Car Eye 3.0 PRO			
5. FCC Regulation(s): Part 15.247 IC Standard(s): RSS-247 Issue 2, I Test Method used: KDB558074 D0				
6. Date of Test : 2021.12.07 ~ 2022.0	01.10			
7. Location of Test : 🛛 Permanent T	Testing Lab On Site Testing			
8. Testing Environment : See append	led test report.			
9. Test Result : Refer to the attached	test result.			
The results shown in this test report refer This test report is not related to KOLAS a	r only to the sample(s) tested unless otherwise stated.			
Affirmation Tested by	Reviewed by			
Name : ChangWon Lee	(Signatore) Name : JaeJin Lee (Signature)			
	2022.01.21.			
DT&C Co., Ltd.				

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2201-0022	Jan, 21. 2022	Initial issue	ChangWon Lee	JaeJin Lee

Table of Contents

1. General Information	. 4
1.1. Description of EUT	
1.2. Declaration by the applicant / manufacturer	4
1.3. Testing Laboratory	5
1.4. Testing Environment	
1.5. Measurement Uncertainty	5
1.6. Test Equipment List	6
2. Test Methodology	. 8
2.1. EUT Configuration	
2.2. EUT Exercise	
2.3. General Test Procedures	
2.4. Instrument Calibration	
2.5. Description of Test Modes	
3. Antenna Requirements	
4. Summary of Test Result	
-	
5. Test Result	
5.1. Maximum Peak Output Power	
5.1.1. Test Setup	
5.1.2. Test Procedures	
5.1.3. Test Results	
5.2. 6 dB Bandwidth	
5.2.1. Test Setup	
5.2.2. Test Procedures	
5.2.3. Test Results	
5.3. Power Spectral Density	
5.3.1. Test Setup	
5.3.2. Test Procedures	
5.3.3. Test Results	
5.4. Unwanted Emissions (Conducted)	
5.4.1. Test Setup	
5.4.2. Test Procedures	
5.4.3. Test Results	
5.5. Unwanted Emissions (Radiated)	
5.5.1. Test Setup 5.5.2. Test Procedures	
5.5.3. Test Results	
5.6. AC Power-Line Conducted Emissions	
5.6.1. Test Setup	
5.6.2. Test Procedures	
5.6.3. Test Results	
5.0.3. Test Results	
5.7.1. Test Setup	
5.7.2. Test Procedures	
5.7.3. Test Results	
	70

1. General Information

1.1. Description of EUT

Equipment Class	Digital Transmission System (DTS)	
Product Name	Car Dash Cam Front Camera	
Model Name	Advanced Car Eye 3.0 PRO	
Add Model Name	-	
Firmware Version Identification Number	Rev 0.1	
EUT Serial Number	No Specified	
Power Supply	DC 12 V	
Modulation Technique	• 802.11b: CCK, DSSS • 802.11g/n: OFDM	
Antenna Specification	Antenna Type: Chip Antenna Gain: 0.21 dBi (PK)	

Mode	Tx. frequency(MHz)	Max. conducted power(dBm)	Antenna Gain(dBi)	Max. e.i.r.p (dBm)
802.11b	2 412 ~ 2 462	15.32	0.21	15.53
802.11g	2 412 ~ 2 462	18.65	0.21	18.86
802.11n (HT20)	2 412 ~ 2 462	18.55	0.21	18.76
	802.11b 802.11g	Mode frequency(MHz) 802.11b 2 412 ~ 2 462 802.11g 2 412 ~ 2 462	Mode Ix. frequency(MHz) conducted power(dBm) 802.11b 2 412 ~ 2 462 15.32 802.11g 2 412 ~ 2 462 18.65	Mode I.x. frequency(MHz) conducted power(dBm) Antenna Gain(dBi) 802.11b 2 412 ~ 2 462 15.32 0.21 802.11g 2 412 ~ 2 462 18.65 0.21

Note: e.i.r.p = $P_{cond} + G_{EUT}$

 P_{cond} = measured power at feedpoint of the EUT antenna, in dBm (Peak Conducted Output Power) G_{EUT} = gain of the EUT radiating element (antenna), in dBi

1.2. Declaration by the applicant / manufacturer

N/A

1.3. Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of Part 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No. : KR0034

- ISED#: 5740A

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.4. Testing Environment

Ambient Condition	
 Temperature 	+20 °C ~ +23 °C
 Relative Humidity 	+36 % ~ +39 %

1.5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Antenna-port conducted emission	1.0 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz ~ 18 GHz)	5.0 dB (The confidence level is about 95 %, k = 2)
Radiated emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, $k = 2$)

1.6. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N	
Spectrum Analyzer	Agilent Technologies	N9020A	21/06/24	22/06/24	US47360812	
		NOODA	20/12/16	21/12/16	MV(40044700	
Spectrum Analyzer	Agilent Technologies	N9020A	21/12/16	22/12/16	MY48011700	
Spectrum Analyzer	Agilent Technologies	N9020A	21/06/24	22/06/24	MY50200867	
Multimator	FLUKE	17B+	20/12/16	21/12/16	2620070414/6	
Multimeter	FLUKE	1/D+	21/12/16	22/12/16	36390701WS	
Signal Constator	Rohde Schwarz	SMBV100A	20/12/16	21/12/16	255571	
Signal Generator	Ronue Schwarz	SIVIDV TOUA	21/12/16	22/12/16	200071	
Signal Generator	ANRITSU	MG3695C	20/12/16	21/12/16	173501	
Signal Generator	ANKIISU	MG2095C	21/12/16	22/12/16	173501	
Thermohygrometer	XIAOMI	MHO-C201	20/12/16	21/12/16	00089675	
mermonygrometer		MINO-0201	21/12/16	22/12/16	00089075	
Thermohygrometer	BODYCOM	BJ5478	20/12/16	21/12/16	120612-2	
mermonygrometer	BODICOW	55470	21/12/16	22/12/16	120012-2	
DC Power Supply	SM techno	SDP30-5D	21/06/24	22/06/24	305DMG305	
DC Power Supply	SM techno	SDP30-5D	21/06/24	22/06/24	305DNF079	
DC Power Supply	Agilent Technologies	66332A	21/06/24	22/06/24	MY43000211	
Loop Antenna	ETS-Lindgren	6502	21/01/28	23/01/28	00226186	
Hybrid Antenna	Schwarzbeck	VULB9163	21/06/24	22/06/24	9163-572	
Horn Antenna	ETS-Lindgren	3117	21/06/24	22/06/24	00143278	
Horn Antenna	A.H.Systems Inc.	SAS-574	21/06/24	22/06/24	155	
PreAmplifier	tsj	MLA-0118-B01-40	20/12/16	21/12/16	1852267	
Педпріпег			21/12/16	22/12/16		
PreAmplifier	H.P	8447D	20/12/16	21/12/16	2944A07774	
Педпріпег	11.1	01770	21/12/16	22/12/16		
PreAmplifier	tsj	MLA-1840-J02-45	21/06/24	22/06/24	16966-10728	
High Pass Filter	Wainwright Instruments	WHKX10-2838- 3300-18000-60SS	21/06/24	22/06/24	1	
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	21/06/24	22/06/24	3	
Attenuator	Hefei Shunze	SS5T2.92-10-40	21/06/24	22/06/24	16012202	
Attenuator	SRTechnology	F01-B0606-01	21/06/24	22/06/24	13092403	
Attenuator	Aeroflex/Weinschel	56-3	21/06/24	22/06/24	Y2370	
Attenuator	SMAJK	SMAJK-2-3	21/06/24	22/06/24	2	
Power Meter Wide Bandwidth Sensor	Anritsu	ML2495A MA2490A	21/06/24	22/06/24	1306007 1249001	
Cabla	lunkaaha		21/01/08	22/01/08	0.04	
Cable	Junkosha	MWX241	22/01/04	23/01/04	G-04	
Cabla	lunkonho		21/01/08	22/01/08	C 07	
Cable	Junkosha	MWX241	22/01/04	23/01/04	G-07	
Cabla	DT&C	Cable	21/01/08	22/01/08	G-13	
Cable		Cable	22/01/04	23/01/04	9-13	
Cabla	DT&C	Cabla	21/01/08	22/01/08	C 14	
Cable		Cable	22/01/04	23/01/04	— G-14	
Cabla			21/01/08	22/01/08	C 15	
Cable	HUBER+SUHNER	SUCOFLEX 104	22/01/04	23/01/04	G-15	

Report No.: DRTFCC2201-0022

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Cable	DT&C	Cable	21/01/08	22/01/08	M-01
Cable	DIAC	Cable	22/01/04	23/01/04	IVI-0 I
Cabla	DTOC	Cabla	21/01/08	22/01/08	M 02
Cable	DT&C	Cable	22/01/04	23/01/04	M-02
Cabla	DT&C	Cabla	21/01/08	22/01/08	M-03
Cable	DT&C	Cable	22/01/04	23/01/04	
Cabla	DT&C		21/01/08	22/01/08	M 07
Cable	DT&C	Cable	22/01/04	23/01/04	M-07
Cabla	DT&C	Cabla	21/01/08	22/01/08	M 00
Cable	DIAC	Cable	22/01/04	23/01/04	M-09
Cabla	DT&C	Cabla	21/01/08	22/01/08	DEC 44
Cable	DT&C	Cable	22/01/04	23/01/04	RFC-44
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0177

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB558074 D01v05r02 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB558074 D01v05r02. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v05r02.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v05r02. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on section 12.1 of the KDB558074 D01v05r02.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

2.4. Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.5. Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting.

Transmitting Configuration of EUT

Mode	Data rate
802.11b	1 Mbps ~ 11 Mbps
802.11g	6 Mbps ~ 54 Mbps
802.11n(HT20)	MCS 0 ~ MCS 7

EUT Operation test setup

- Test Software: Tera-Term
- Power setting: Default

Test Mode

Test mode	Worst case data rate	Tested Frequency (MHz)		
TM 1	802.11b 1 Mbps	2 412	2 437	2 462
TM 2	802.11g 6 Mbps	2 412	2 437	2 462
TM 3	802.11n(HT20) MCS 0	2 412	2 437	2 462

Note1: The worst case data rate was determined according to the power measurements.

Note2: The power measurement results for all modes and data rate were reported.

3. Antenna Requirements

According to Part 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna is permanently attached on the device. Therefore this E.U.T complies with the requirement of Part 15.203

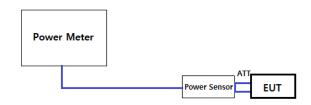
4. Summary of Test Result

FCC part section(s)	RSS section(s)	Test Description	Limit	Test Condition	Status Note 1
15.247(a)	RSS-247[5.2]	6 dB Bandwidth	> 500 kHz		С
15.247(b)	RSS-247[5.4]	Maximum Peak Output Power	< 1 Watt (conducted), FCC & IC < 4 Watt (e.i.r.p), IC		с
15.247(d)	RSS-247[5.5]	Unwanted Emissions(Conducted)	20 dBc in any 100 kHz BW	Conducted	с
15.247(e)	RSS-247[5.2]	Power Spectral Density < 8 dBm / 3 kHz			С
-	RSS-Gen[6.7]	Occupied Bandwidth (99 %)	NA		С
15.247(d) 15.205 15.209	RSS-247[5.5] RSS-Gen[8.9] RSS-Gen[8.10]	Unwanted Emissions(Radiated)	Part 15.209 limits (Refer to section 5.5)	Radiated	С
15.207	RSS-Gen[8.8]	AC Power-Line Conducted Emissions	Part 15.207 limits (Refer to section 5.6)	AC Line Conducted	NA Note 3
15.203	-	Antenna Requirements	Part 15.203 (Refer to section 3)	-	с

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: This test item was performed in three orthogonal EUT positions and the worst case data was reported.

Note 3: This device is installed in a car. Therefore the power source is a battery of car.


5. Test Result

- 5.1. Maximum Peak Output Power
- Test Requirements and limit, Part 15.247(b) & RSS-247 [5.4]

The maximum permissible conducted output power is 1 Watt.

The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e) of RSS-247.

5.1.1. Test Setup

5.1.2. Test Procedures

- KDB558074 D01v05r02 Section 8.3.1.3
- ANSI C63.10-2013 Section 11.9.1.3

RBW ≥ DTSPKPM1 Peak-reading power meter method

The maximum conducted output powers were measured using a broadband peak RF power meter which has greater video bandwidth than DUT's DTS bandwidth and utilize a fast-responding diode detector.

- KDB558074 D01v05r02 Section 8.3.2.3
- ANSI C63.10-2013 Section 11.9.2.3

Method AVGPM-G

The average conducted output powers were measured using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

5.1.3. Test Results

- Refer to the next page

	_		Maximum Peak Conducted Output Power (dBm)									
Mode	Freq. (MHz)	Det.		Data Rate (Mbps)								
	(1112)		1	2	5.5	11	-	-	-	-		
	2 412	2 / 1 2	PK	15.22	15.04	15.15	15.04	-	-	-	-	
		AV	12.70	12.67	12.63	12.63	-	-	-	-		
802.11b	0.407	PK	15.32	15.24	15.31	15.28	-	-	-	-		
002.110	2 437	AV	12.83	12.79	12.67	12.76	-	-	-	-		
	2 462	PK	14.91	14.89	14.68	14.88	-	-	-	-		
		AV	12.47	12.45	12.45	12.25	-	-	-	-		

	_				Maximum P	eak Conduc	ted Output F	ower (dBm)				
Mode	Freq. (MHz)	Det.		Data Rate (Mbps)								
	(11112)		6	9	12	18	24	36	48	54		
	2 412	PK	18.39	18.32	18.27	18.38	18.37	18.24	18.16	18.26		
		AV	12.74	12.52	12.65	12.62	12.55	12.51	12.49	12.50		
902 11a	2 437	PK	18.65	18.56	18.42	18.40	18.40	18.55	18.43	18.60		
802.11g		AV	13.06	13.01	12.92	12.84	13.05	12.99	13.05	12.89		
	2 462	PK	18.31	18.28	18.29	18.19	18.19	18.13	18.14	18.22		
		AV	12.65	12.59	12.60	12.40	12.63	12.49	12.59	12.43		

	_	Freq. MHz) Det.			Maximum P	eak Conduc	ted Output F	ower (dBm)				
Mode				Data Rate (MCS)								
	(0	1	2	3	4	5	6	7		
	2 412	PK	18.28	18.15	18.27	18.09	18.08	18.27	18.25	18.23		
	2412	AV	12.06	11.92	11.85	12.02	11.95	11.87	11.86	11.89		
802.11n	0.407	PK	18.55	18.34	18.35	18.47	18.42	18.52	18.32	18.38		
(HT20)	2 437	AV	12.31	12.29	12.08	12.09	12.16	12.13	12.25	12.07		
	2 462	PK	18.18	18.14	18.07	18.00	17.97	17.99	18.00	18.09		
		AV	11.94	11.73	11.82	11.79	11.78	11.88	11.83	11.90		

5.2. 6 dB Bandwidth

Test Requirements and limit, Part 15.247(a) & RSS-247 [5.2]

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

5.2.1. Test Setup

Refer to the APPENDIX I.

5.2.2. Test Procedures

- KDB558074 D01v05r02 Section 8.2
- ANSI C63.10-2013 Section 11.8.2
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2 - The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

5.2.3. Test Results


Test Mode	Frequency	Test Results (MHz)
	2 412	8.10
TM 1	2 437	8.10
	2 462	8.10
	2 412	15.13
TM 2	2 437	15.17
	2 462	15.16
	2 412	15.13
ТМ 3	2 437	15.16
	2 462	15.17

TM 1 & 2412

6 dB Bandwidth

TM 1 & 2437

6 dB Bandwidth

TM 2 & 2437

RL RF 50 Ω AC enter Freq 2.437000000			ALIGN OFF GHz g Hold: 500/500	10:06:42 AM Dec 20, 20 Radio Std: None	Frequency
0 dB/div Ref 20.00 dBm	in Gam.eow	/Atten: 30 dB		Radio Device: BTS	
99 0.0	houndand	atrenting particular surgeon	whenly		Center Fre 2.437000000 GH
0.0 0.0 0.0			- Vila		
0.0 minuter and a second and as second and a			بلايد.	19 Drow Walk Douglass	wa
0.0					
enter 2.437 GHz Res BW 100 kHz		#VBW 300 kHz		Span 40 Mł Sweep 3.867 n	15 4.000000 Mł
Occupied Bandwidth	، .262 MH	Total Powe	er 20.	0 dBm	Auto Ma
	202 IVID، 10 H			9.00 %	Freq Offs
Transmit Freq Error x dB Bandwidth	10 н 15.17 МН			.00 dB	
			STATU		

6 dB Bandwidth

<u>TM 3 & 24</u>37

STATUS

Test requirements and limit, Part 15.247(e) & RSS-247 [5.2]

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

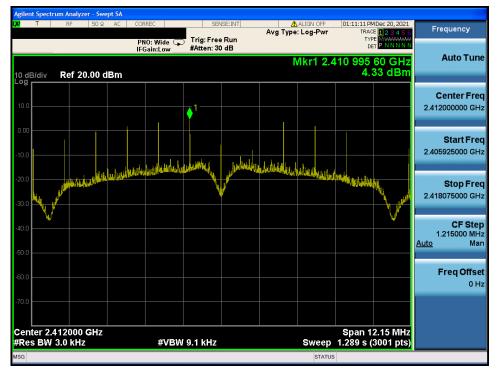
5.3.1. Test Setup

Refer to the APPENDIX I.

5.3.2. Test Procedures

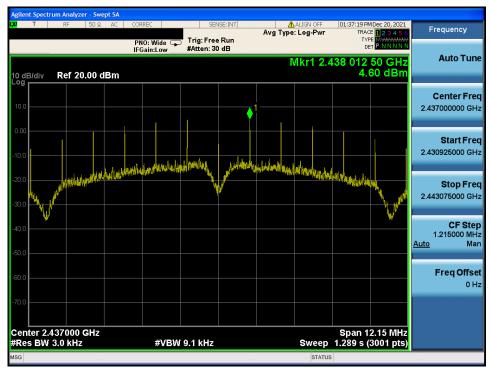
- KDB558074 D01v05r02 Section 8.4
- ANSI C63.10-2013 Section 11.10.2

Method PKPSD (peak PSD)


- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to **1.5 times** the DTS bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = **peak.**
- 6. Sweep time = **auto couple.**
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

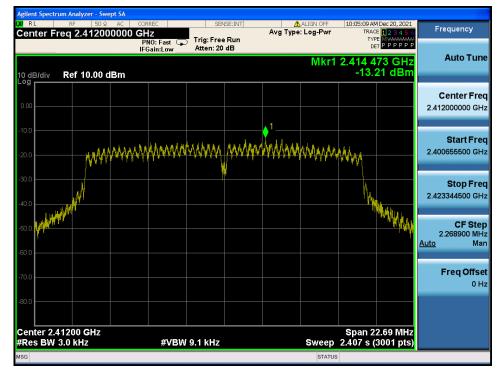
5.3.3. Test Results

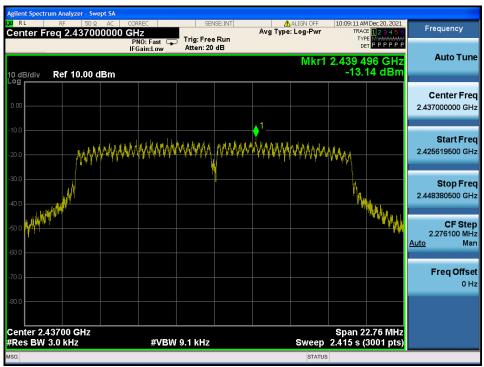
Test Mode	Frequency	RBW	PKPSD (dBm)	Limit (dBm / 3 kHz)
	2 412	3 kHz	4.33	8.00
TM 1	2 437	3 kHz	4.60	8.00
	2 462	3 kHz	4.27	8.00
	2 412	3 kHz	-13.21	8.00
TM 2	2 437	3 kHz	-13.14	8.00
	2 462	3 kHz	-13.63	8.00
	2 412	3 kHz	-13.86	8.00
TM 3	2 437	3 kHz	-13.86	8.00
	2 462	3 kHz	-12.55	8.00



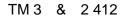

Power Spectral Density

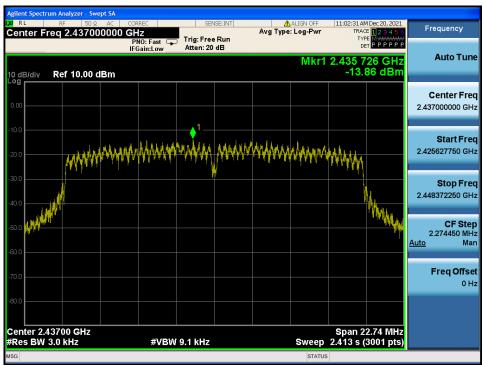
TM 1 & 2437





Power Spectral Density


TM 2 & 2437



Power Spectral Density

TM 3 & 2437

5.4. Unwanted Emissions (Conducted)

Test requirements and limit, Part 15.247(d) & RSS-247 [5.5]

In any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions :

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level. If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level. In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

5.4.1. Test Setup

Refer to the APPENDIX I including path loss

5.4.2. Test Procedures

- KDB558074 D01v05r02 Section 8.5
- ANSI C63.10-2013 Section 11.11

Reference level measurement

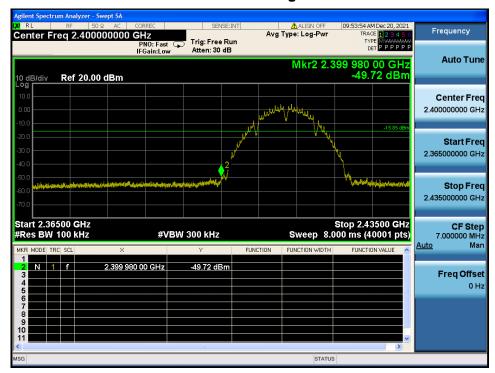
- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level LIMIT LINE = 20 dB below of the reference level.

Emission level measurement

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.(Actual 1 MHz , See below note)
- 3. Set the VBW \geq 3 x RBW. (Actual 3 MHz, See below note)
- 4. Detector = peak.
- 5. Ensure that the number of measurement points \geq span / RBW
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use the peak marker function to determine the maximum amplitude level.

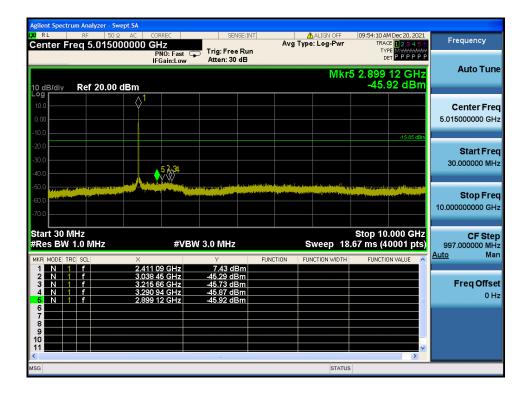
Note. The unwanted emission(conducted) was tested with below settings.									
Frequency range	RBW	VBW	Detector	Trace	Sweep Point				
9 kHz ~ 30 MHz	100 kHz	300 kHz							
30 MHz ~ 10 GHz	1 MHz	3 MHz	Peak	Max Hold	40 001				
10 GHz ~ 25 GHz	1 MHz	3 MHz]						

Note: The unwanted emission(conducted) was tested with below settings.

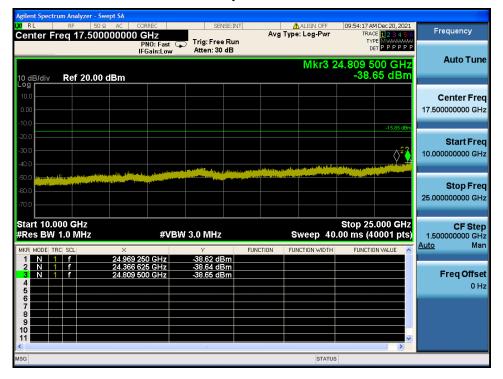

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.

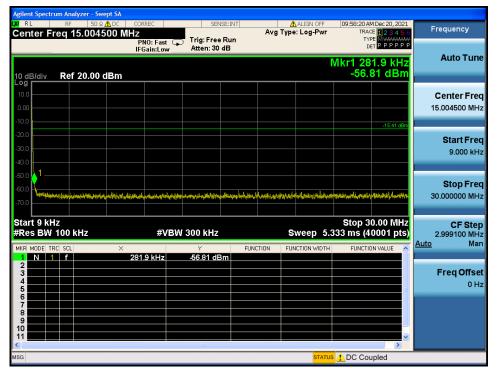
5.4.3. Test Results

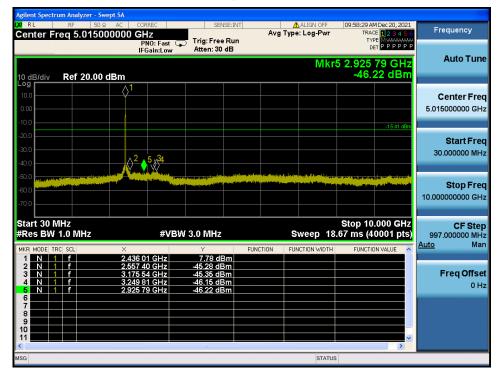

TM 1 & 2412

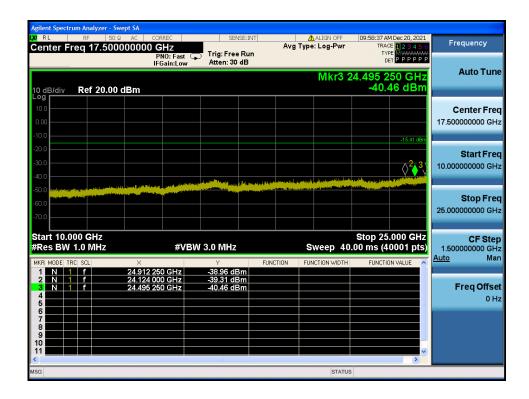

Reference alyzer ALIGN OFF Frequency Center Freq 2.412000000 GHz Trig: Free Run Atten: 30 dB PNO: Wide 🖵 IFGain:Low Auto Tune Mkr1 2.412 997 GHz 4.15 dBm Ref 20.00 dBm 10 dB/div Log **Center Freq** 2.412000000 GHz An Start Freq 2.405923500 GHz Stop Freq 2.418076500 GHz **CF Step** 1.215300 MHz Man <u>Auto</u> Freq Offset 0 Hz Center 2.412000 GHz #Res BW 100 kHz Span 12.15 MHz Sweep 1.200 ms (3001 pts) #VBW 300 kHz

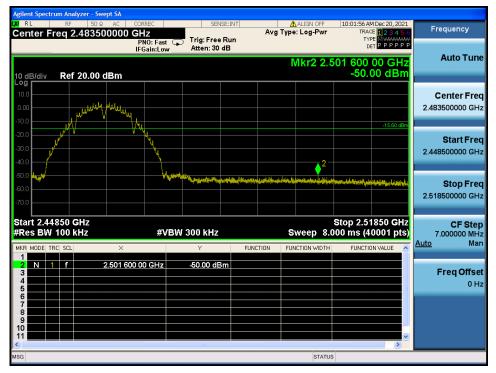
Low Band-edge



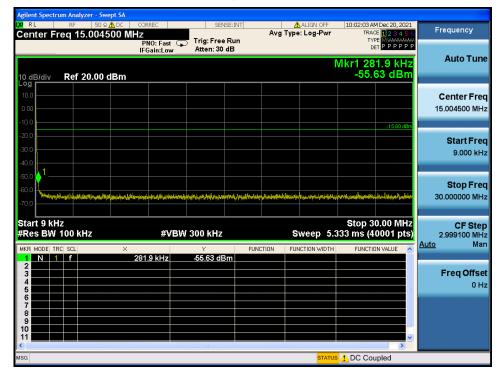


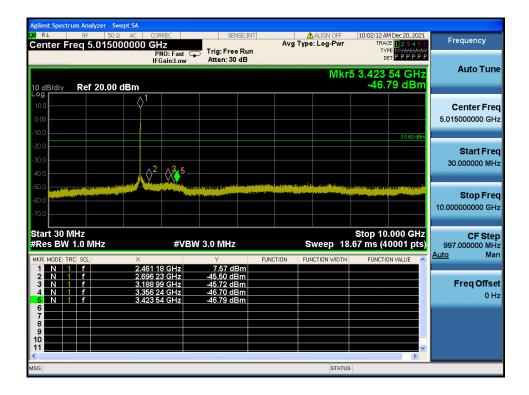

TM 1 & 2437


Reference

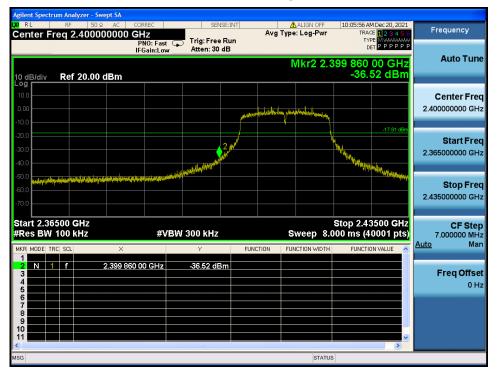


TM 1 & 2462

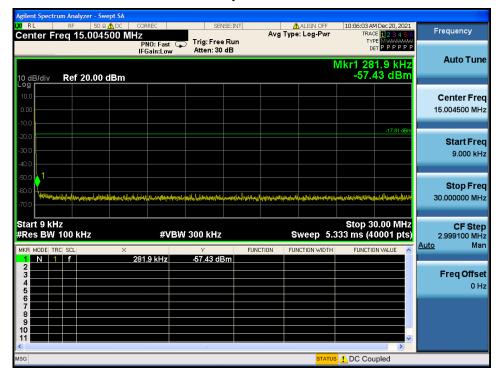

Reference

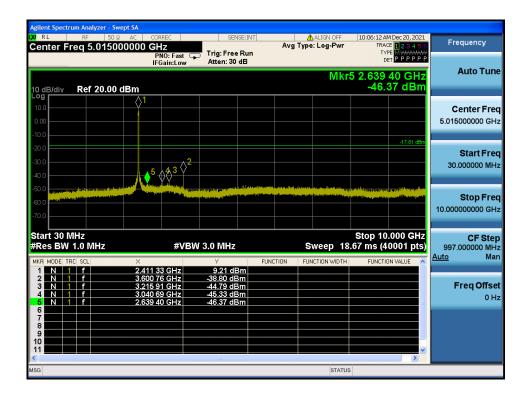


High Band-edge

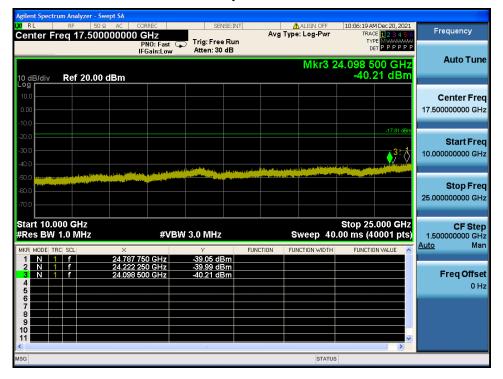

	um Analyzer - Sv						
X/RL		Ω AC CORREC	SENSE:		ALIGN OFF	10:02:20 AM Dec 20, 2021 TRACE 123456	Frequency
10 dB/div	Ref 20.00	PNO: Fast IFGain:Lov		un .		24.106 375 GHz -40.07 dBm	Auto Tune
10.0						-15.60 dBm	Center Freq 17.500000000 GHz
-20.0 -30.0 -40.0			يريد ورايتاليليكير مدود	a second seco	و مرد به مرد به مرد به مرد به مرد به مرد به	3: 1	Start Freq 10.000000000 GHz
-50.0 However -60.0				an a	<u>شماری اس میں اور اور اور اور اور اور اور اور اور اور</u>		Stop Freq 25.000000000 GHz
Start 10.0 #Res BW		#V	'BW 3.0 MHz		Sweep 40	Stop 25.000 GHz .00 ms (40001 pts)	CF Step 1.50000000 GHz
MKR MODE TF	C SCL	× 24.954 250 GHz	۲ -39.54 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Man
2 N 1 3 N 1 4 5	f	24.201 250 GHz 24.106 375 GHz	-39.88 dBm -40.07 dBm				Freq Offset 0 Hz
6 7 8 9 10							
11			Ш			×	
ISG					STATUS	5	

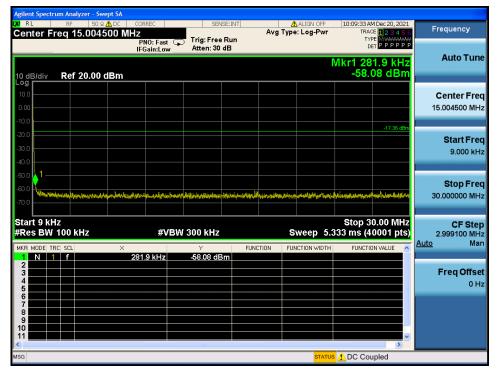
TM 2 & 2412

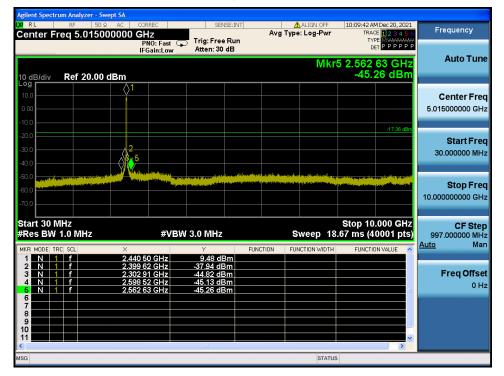

Reference

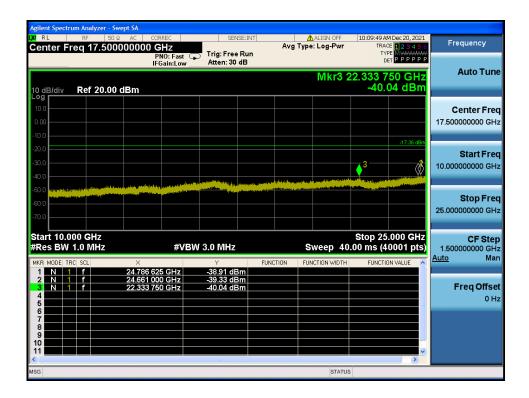


Low Band-edge

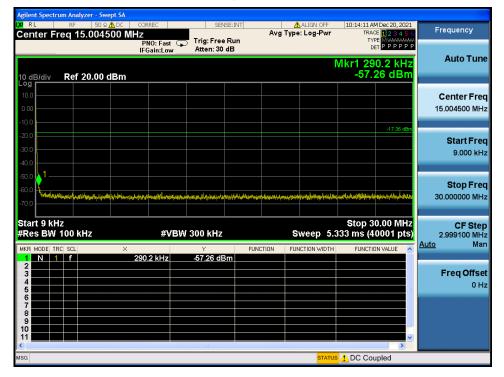


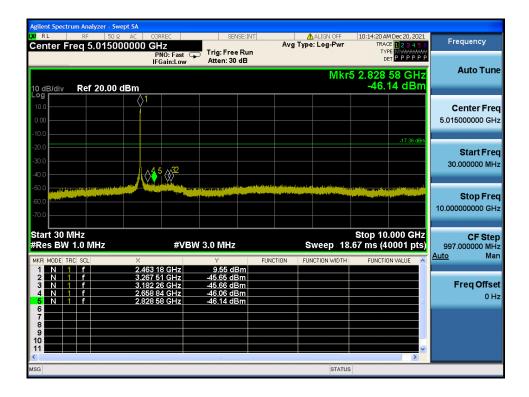



TM 2 & 2437

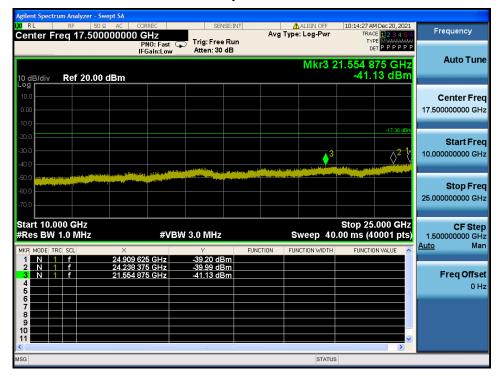

Reference

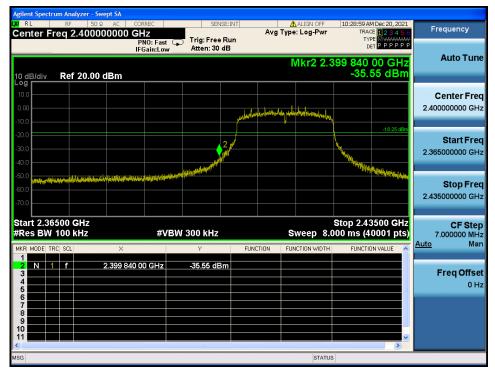
TM 2 & 2462


Reference

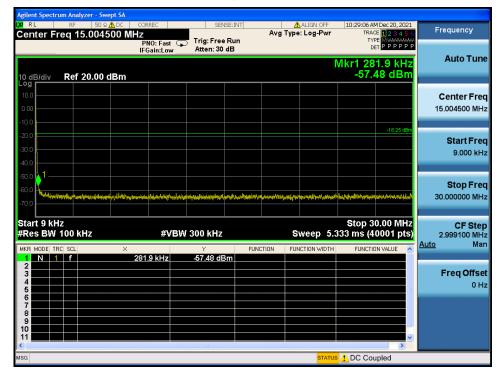


High Band-edge

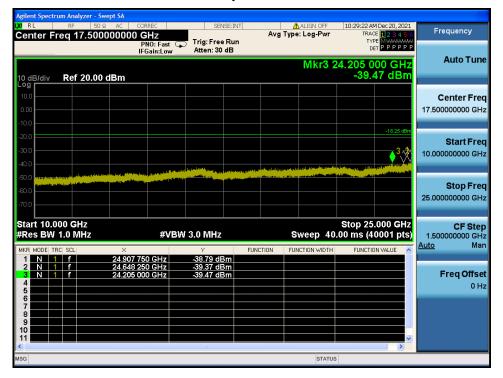




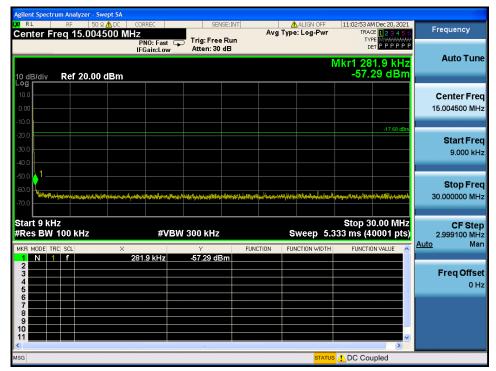
TM 3 & 2412


Reference

Low Band-edge

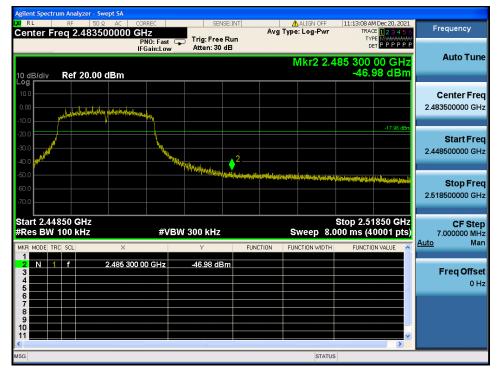


	Ω AC CORREC	SENSE:INT	ALIGN OFF	10:29:15 AM Dec 20, 2021	Frequency
enter Freq 5.0150	DOOOOO GHZ PNO: Fast C IFGain:Low	► Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWW DET PPPPP	
0 dB/div Ref 20.00) dBm		Mkr	5 3.288 45 GHz -45.30 dBm	Auto Tur
og	1				Conton Fra
.00					Center Fre 5.015000000 GH
					5.015000000 GI
0.0				-18.25 dBm	
0.0					Start Fre
0.0	A#5				30.000000 MI
0.0					
					Stop Fr
					10.000000000 G
1.0					10.0000000000
tart 30 MHz				Stop 10.000 GHz	
Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep 18	.67 ms (40001 pts)	CF Ste 997.000000 MI
KRI MODEL TRCL SCL	×	Y	UNCTION FUNCTION WIDTH		Auto M
1 N 1 f	2.410 34 GHz	8.69 dBm			
2 N 1 f 3 N 1 f	3.216 41 GHz 3.183 76 GHz	-44.53 dBm -44.99 dBm			Freq Offs
4 N 1 f	3.054 90 GHz	-45.05 dBm			01
5 N 1 f	3.288 45 GHz	-45.30 dBm		=	01
6					
8					
9					
8 9				~	

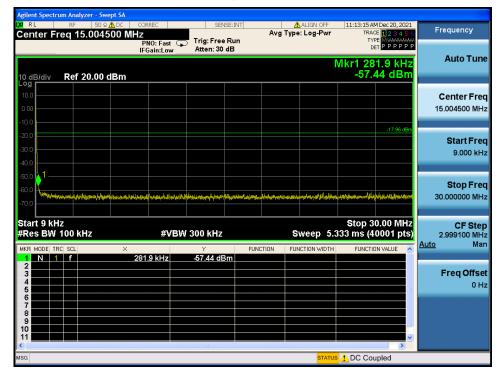


TM 3 & 2437

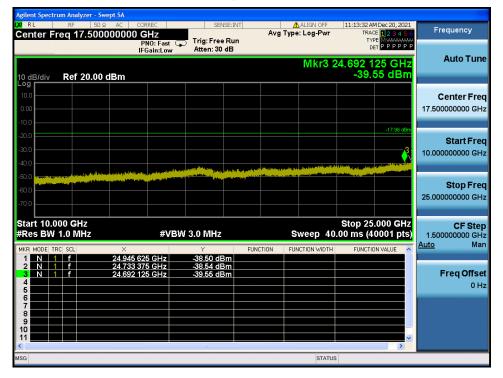
Reference


	m Analyzer - Swe	pt SA								
XIRL Contor Fra	RF 50 Ω eq 5.01500			SENS	E:INT		ALIGN OFF e: Log-Pwr		4 Dec 20, 2021	Frequency
senter Fre	eq 5.01500	PN	lO:Fast ⊂ ain:Low	Trig: Free Atten: 30 d			c. Log i m	TYF	СЕ 12345 6 Рем иниии Трррррр	
10 dB/div	Ref 20.00 c	IBm					Mkr	5 2.679 -46.0	28 GHz 09 dBm	Auto Tune
- 0g 10.0		1 								Center Fred 5.015000000 GHz
20.0 30.0 40.0			¢¶ ²						-17.68 dBm	Start Free 30.000000 MHa
50.0 Hereitaria 60.0										Stop Fred 10.000000000 GH;
tart 30 M Res BW 1	.0 MHz		#VBV	V 3.0 MHz			Sweep 18	.67 ms (4		CF Step 997.000000 MH: Auto Mar
MKR MODE TRC 1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6 7 1	SCL f f f f f	× 2.435 0 3.249 56 3.170 80 2.751 8 2.679 28	5 GHz) GHz 1 GHz	¥ 8.62 dB 44.30 dB 45.39 dB 46.09 dB 46.09 dB	m m m m	CTION FU	NCTION WIDTH	FUNCTIO	IN VALUE	Freq Offse 0 H:
8 9 10 11									×	
SG							STATUS	5		

TM 3 & 2462


Reference

High Band-edge



RL RF 50		SENSE:INT	🛕 ALIGN OFF	11:13:23 AM Dec 20, 2021	Frequency
enter Freq 5.0150	IOOOOO GHZ PNO: Fast ⊂ IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWWW DET PPPPP	requercy
0 dB/div Ref 20.00			Mkr	5 2.656 10 GHz -45.97 dBm	Auto Tun
og	1				
10.0	T T				Center Fre
					5.015000000 GH
0.0				-17.96 dBm	
20.0					Start Fre
80.0					30.000000 MI
0.0	5 ³ 24				
50.0			diten montrola a torano sua diastro a lu _{ber}	and so a stand of the	
		A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER			Stop Fre
70.0					10.00000000 GI
.0.0					
tart 30 MHz				Stop 10.000 GHz	CF Ste
Res BW 1.0 MHz	#VB	N 3.0 MHz	Sweep 18	.67 ms (40001 pts)	997.000000 MI
IKR MODE TRC SCL	X		FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
1 N 1 f	2.463 68 GHz 3.173 29 GHz	8.69 dBm -45.51 dBm			
3 N 1 f	2.796 68 GHz	-45.62 dBm			Freq Offs
4 N 1 f	3.252 05 GHz 2.656 10 GHz	-45.71 dBm -45.97 dBm			01
6	2.000 10 0112	40.97 dBill			
7 8					
9					
0				×	
		ш		>	

5.5. Unwanted Emissions (Radiated)

Test Requirements and limit,

Part 15.247(d), Part 15.205, Part 15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10]

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

- Fall 15.209 & R55-Genje	Fait 15.209 & KSS-Gen[6.9]. General requirement											
Frequency (MHz)	FCC Limit (uV/m)	IC Limit (μA/m)	Measurement Distance (m)									
0.009 - 0.490	2 400 / F (kHz)	6.37/F (F in kHz)	300									
0.490 – 1.705	2 4000 / F (kHz)	63.7/F (F in kHz)	30									
1.705 - 30.0	30	0.08	30									

- Part 15.209 & RSS-Gen[8.9]: General requirement

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	100	3
88 ~ 216	150 **	150	3
216 ~ 960	200 **	200	3
Above 960	500	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

- RSS-Gen[8.10]: Restricted frequency bands

MHz	MHz	MHz	MHz	MHz	GHz
0.090 ~ 0.110	8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 345.8 ~ 3 358	9.0 ~ 9.2
0.495 ~ 0.505	8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 427	3 500 ~ 4 400	9.3 ~ 9.5
2.173 5 ~ 2.190 5	8.414 25 ~ 8.414 75	108 ~ 138	1 435 ~ 1 626.5	4 500 ~ 5 150	10.6 ~ 12.7
3.020 ~ 3.026	12.29 ~ 12.293	149.9 ~ 150.05	1 645.5 ~ 1 646.5	5 350 ~ 5 460	13.25 ~ 13.4
4.125 ~ 4.128	12.519 75 ~ 12.520 25	156.524 75 ~	1 660 ~ 1 710	7 250 ~ 7 750	14.47 ~ 14.5
4.177 25 ~ 4.177 75	12.576 75 ~ 12.577 25	156.525 25	1 718.8 ~ 1 722.2	8 025 ~ 8 500	15.35 ~ 16.2
4.207 25 ~ 4.207 75	13.36 ~ 13.41	156.7 ~ 156.9	2 200 ~ 2 300		17.7 ~ 21.4
5.677 ~ 5.683	16.42 ~ 16.423	162.01 25 ~ 167.17	2 310 ~ 2 390		22.01 ~ 23.12
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 483.5 ~ 2 500		23.6 ~ 24.0
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 655 ~ 2 900		31.2 ~ 31.8
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	3 260 ~ 3 267		36.43 ~ 36.5
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 332 ~ 3 339		Above 38.6

5.5.1. Test Setup

Refer to the APPENDIX I.

5.5.2. Test Procedures

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: Measurement Instrument Setting for Radiated Emission Measurements.

- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12

1. Frequency Range Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

2. Frequency Range > 1 GHz

Peak Measurement > 1 GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes Average Measurement > 1 GHz

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points ≥ 2 x Span / RBW)
- 4. Averaging type = power (i.e., RMS).
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is $10 \log(1 / D)$, where D is the duty cycle.
 - 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1 / D), where D is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Test Mode	Date rate T _{on} (ms)		T _{on} (ms) T _{on+off} (ms) D = T		DCCF = 10 log(1/D) (dB)						
TM 1	1 Mbps	11.930	12.040	0.990 9	0.04						
TM 2	6 Mbps	2.064	2.206	0.935 6	0.29						
TM 3	MCS 0	1.924	2.038	0.944 1	0.25						

Duty Cycle Correction factor

Note1: Where, T= Transmission duration / D= Duty cycle

Note2: Please refer to the appendix II for duty cycle plots.

5.5.3. Test Results

- Test Notes

1. The radiated emissions were investigated 9 kHz to 1 GHz and the worst case data was reported.

- 2. Information of Distance Correction Factor
- For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.
- In this case, the distance factor is applied to the result.
- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance) At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

- 3. Sample Calculation.
 - Margin = Limit Result / Result = Reading + TF + DCCF + DCF / TF = AF + CL + HL + AL AG
 - Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

Radiated Emissions data(9 kHz ~ 1 GHz) : TM 1

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	438.73	Н	Х	PK	46.8	-5.0	N/A	N/A	41.8	46.0	4.2
	458.74	Н	Х	PK	46.4	-5.0	N/A	N/A	41.4	46.0	4.6
2 437	900.08	Н	Х	PK	38.2	3.0	N/A	N/A	41.2	46.0	4.8
2 437	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-

TM 1 & 2 437 & X axis & Hor

Detector Mode : PK

Test Notes

1. The radiated emissions were investigated up to 25 GHz. No other spurious and harmonic emissions were found below listed frequencies. 2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation. Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss,

DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor 4. Please refer to the appendix III for the worst case test plots.

Radiated Emissions data(1 GHz ~ 25 GHz) : TM 1

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 376.04	V	Х	PK	50.93	4.43	N/A	N/A	55.36	74.00	18.64
2 412	2 376.11	V	Х	AV	43.25	4.43	N/A	N/A	47.68	54.00	6.32
2 412	4 824.06	V	Х	PK	50.45	2.33	N/A	N/A	52.78	74.00	21.22
	4 824.06	V	Х	AV	41.72	2.33	N/A	N/A	44.05	54.00	9.95
2 437	4 874.26	V	Х	PK	50.74	2.17	N/A	N/A	52.91	74.00	21.09
2 437	4 874.00	V	Х	AV	41.40	2.16	N/A	N/A	43.56	54.00	10.44
	2 485.63	V	Х	PK	52.15	5.43	N/A	N/A	57.58	74.00	16.42
2 462	2 485.07	V	Х	AV	41.07	5.42	N/A	N/A	46.49	54.00	7.51
2 402	4 923.61	V	Х	PK	49.97	2.44	N/A	N/A	52.41	74.00	21.59
	4 924.09	V	Х	AV	40.56	2.45	N/A	N/A	43.01	54.00	10.99

IC : 12594A-ACE3PROF

Radiated Emissions data(1 G Hz ~ 25 GHz) : TM 2

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 375.99	V	Х	PK	51.45	4.43	N/A	N/A	55.88	74.00	18.12
2 412	2 376.10	V	Х	AV	44.13	4.43	0.29	N/A	48.85	54.00	5.15
2412	4 824.60	V	Х	PK	49.50	2.33	N/A	N/A	51.83	74.00	22.17
	4 824.25	V	Х	AV	39.42	2.33	0.29	N/A	42.04	54.00	11.96
2 437	4 874.29	V	Х	PK	50.36	2.17	N/A	N/A	52.53	74.00	21.47
2 437	4 874.53	V	Х	AV	39.74	2.17	0.29	N/A	42.20	54.00	11.80
	2 484.58	V	Х	PK	53.01	5.41	N/A	N/A	58.42	74.00	15.58
2.462	2 483.63	V	Х	AV	43.47	5.40	0.29	N/A	49.16	54.00	4.84
2 462	4 923.23	V	Х	PK	49.98	2.44	N/A	N/A	52.42	74.00	21.58
	4 923.43	V	Х	AV	39.18	2.44	0.29	N/A	41.91	54.00	12.09

Radiated Emissions data(1 G Hz ~ 25 GHz) : TM 3

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 376.06	V	Х	PK	51.13	4.43	N/A	N/A	55.56	74.00	18.44
2 412	2 376.00	V	Х	AV	44.32	4.43	0.25	N/A	49.00	54.00	5.00
2 412	4 823.59	V	Х	PK	50.62	2.33	N/A	N/A	52.95	74.00	21.05
	4 824.52	V	Х	AV	39.49	2.33	0.25	N/A	42.07	54.00	11.93
2 437	4 872.84	V	Х	PK	50.49	2.16	N/A	N/A	52.65	74.00	21.35
2 437	4 873.40	V	Х	AV	39.69	2.16	0.25	N/A	42.10	54.00	11.90
	2 483.57	V	Х	PK	52.36	5.40	N/A	N/A	57.76	74.00	16.24
2 462	2 483.57	V	Х	AV	44.04	5.40	0.25	N/A	49.69	54.00	4.31
2 402	4 924.11	V	Х	PK	49.32	2.45	N/A	N/A	51.77	74.00	22.23
	4 923.82	V	Х	AV	39.33	2.44	0.25	N/A	42.02	54.00	11.98

5.6. AC Power-Line Conducted Emissions

Test Requirements and limit, Part 15.207 & RSS-Gen [8.8]

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Conducted Limit (dBuV)	
	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5.0	56	46
5 ~ 30	60	50

* Decreases with the logarithm of the frequency

5.6.1. Test Setup

NA

5.6.2. Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

5.6.3. Test Results

NA

5.7. Occupied Bandwidth

Test Requirements, RSS-Gen [6.7]

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99 % emission bandwidth, as calculated or measured.

5.7.1. Test Setup

Refer to the APPENDIX I.

5.7.2. Test Procedures

The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 × RBW.

5.7.3. Test Results

Test Mode	Frequency	Test Results (MHz)
TM 1	2 412	13.06
	2 437	13.07
	2 462	13.07
TM 2	2 412	16.38
	2 437	16.41
	2 462	16.38
ТМ 3	2 412	17.47
	2 437	17.49
	2 462	17.49