

Report No.: SHEM200400427802 Page: 1 of 25

TEST REPORT

Application No.:	SHEM2004004278CR
FCC ID:	2ADTD-K1T341BMW
Applicant:	Hangzhou Hikvision Digital Technology Co., Ltd.
Address of Applicant:	No.555 Qianmo Road,Binjiang District Hangzhou 310052,China
Manufacturer:	Hangzhou Hikvision Digital Technology Co., Ltd.
Address of Manufacturer:	No.555 Qianmo Road,Binjiang District Hangzhou 310052,China
Factory:	1.Hangzhou Hikvision Technology Co., Ltd.
	2.Hangzhou Hikvision Electronics Co.,Ltd.
	3.Hangzhou Hikvision Digital Technology Co., Ltd.
Address of Factory:	1.No.700,Dongliu Road,Binjiang District,Hangzhou Ctiy,Zhejiang,310052,China
	2.No.299,Qiushi Road,Tonglu Economic Development Zone,Tonglu County,Hangzhou,Zhejiang,310052,China.
	3.No.555 Qianmo Road, Binjiang District Hangzhou 310052,China
Equipment Under Test (EU	Т):
EUT Name:	Face Recognition Terminal
Model No.:	DS-K1T341BMW,DS-K1T341BM,DS-K1T341BMUHK,DS- K1T341BMCKV,DS-K1T341BMUVS,DS-K1T341BMKVO,DS- K1T341BMHUN,DS-K1T341BMWUHK,DS-K1T341BMWCKV,DS- K1T341BMWUVS,DS-K1T341BMWKVO,DS-K1T341BMWHUN¤
¤	Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.
Standard(s) :	47 CFR Part 15, Subpart C 15.225
Date of Receipt:	2020-06-04
Date of Test:	2020-06-04 to 2020-06-10
Date of Issue:	2020-06-30
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

parlan share

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed
overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents,
subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx.
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is
advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of
Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a
transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced
except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or
appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the
results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.
Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Co.Ltd NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM200400427802 Page: 2 of 25

Revision Record					
Version Description Date Remark					
00	Original	2020-06-30	/		

Authorized for issue by:			
	pichal Nil	_	
	Micheal Niu / Project Engineer		
	Parlam zhan	_	
	Parlam Zhan / Reviewer		

Branch

Report No.: SHEM200400427802 Page: 3 of 25

2 Test Summary

Radio Spectrum Technical Requirement					
ltem	Standard	Method	Requirement	Result	
Antenna Requirement	47 CFR Part 15, Subpart C 15.225	N/A	47 CFR Part 15, Subpart C 15.203	Pass	

Radio Spectrum Matter Part					
Item	Standard	Method	Requirement	Result	
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.225			Pass	
20dB Bandwidth	47 CFR Part 15, Subpart C 15.225	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass	
Emission Mask	47 CFR Part 15, Subpart C 15.225	ANSI C63.10 (2013) Section 6.4	47 CFR Part 15, Subpart C 15.225(a)&(b)&(C)	Pass*	
Frequency tolerance	47 CFR Part 15, Subpart C 15.225	ANSI C63.10 (2013) Section 6.8	47 CFR Part 15, Subpart C 15.225(e)	Pass	
Radiated Emissions(9kHz- 30MHz)	47 CFR Part 15, Subpart C 15.225 ANSI C63.10 (2013) Section 6.4&6.5		47 CFR Part 15, Subpart C 15.225(d) & 15.209	Pass	
Radiated Emissions(30MHz- 1GHz)	47 CFR Part 15, Subpart C 15.225	ANSI C63.10 (2013) Section 6.4&6.5	47 CFR Part 15, Subpart C 15.225(d) & 15.209	Pass	

Note: The test level of the fundamental signal is below the limit of general spurious emission, so the test item doesn't be performed.

Declaration of EUT Family Grouping:

Note: There are series models mentioned in this report, and they are the similar in electrical and electronic characters. Only the model DS-K1T341BMW was tested since their differences were the model number and appearance.

Branch

Report No.: SHEM200400427802 Page: 4 of 25

D - ----

3 Contents

			Page
1	CC	OVER PAGE	1
2	TE	ST SUMMARY	3
3	cc	ONTENTS	4
4	GE	ENERAL INFORMATION	5
	4.1	DETAILS OF E.U.T	5
	4.2	DESCRIPTION OF SUPPORT UNITS	
	4.3	MEASUREMENT UNCERTAINTY	
	4.4		-
	4.5		
	4.6 4.7	DEVIATION FROM STANDARDS	
5	EQ	QUIPMENT LIST	7
6	RA	ADIO SPECTRUM TECHNICAL REQUIREMENT	8
	6.1	ANTENNA REQUIREMENT	8
7	RA	ADIO SPECTRUM MATTER TEST RESULTS	9
	7.1	CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)	9
	7.2	20dB Bandwidth	13
	7.3	EMISSION MASK	
	7.4	FREQUENCY TOLERANCE	-
	7.5	RADIATED EMISSIONS(9KHZ-30MHZ)	
	7.6	RADIATED EMISSIONS(30MHz-1GHz)	
8	TE	ST SETUP PHOTOGRAPHS	25
9	EU	IT CONSTRUCTIONAL DETAILS	

Branch

 Report No.:
 SHEM200400427802

 Page:
 5 of 25

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 12V by adapter
Test voltage:	AC 120V/60Hz
Antenna Type	Loop Antenna
Modulation Type	ASK
Number of Channels	1
Operation Frequency	13.56MHz

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
AC Adapter	DVE	DSA-12G-12FEU	/
Laptop	Lenovo	ThinkPad X100e	/
SecureCRT	VanDyke	V 6.2.0	/
Serial port adapter plate	/	Test Plate 3	/

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	±8.4 x 10 ⁻⁸
2	Timeout	±2s
3	Duty cycle	±0.37%
4	Occupied Bandwidth	±3%
5	RF conducted power	±0.6dB
6	RF power density	±2.84dB
7	Conducted Spurious emissions	±0.75dB
0	DE Dedicted newsr	±4.6dB (Below 1GHz)
8	RF Radiated power	±4.1dB (Above 1GHz)
		±4.2dB (Below 30MHz)
0	Dedicted Courieus emission test	±4.4dB (30MHz-1GHz)
9	Radiated Spurious emission test	±4.8dB (1GHz-18GHz)
		±5.2dB (Above 18GHz)
10	Temperature test	±1°C
11	Humidity test	±3%
12	Supply voltages	±1.5%
13	Time	±3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM200400427802 Page: 6 of 25

4.4 Test Location

All tests were performed at: Compliance Certification Services (Kunshan) Inc. No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China. Tel: +86 512 5735 5888 Fax: +86 512 5737 0818 No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L4354)

CNAS has accredited Compliance Certification Services (Kunshan) Inc. to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 2541.01)

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC (Designation Number: CN1172)

Compliance Certification Services Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED (CAB identifier: CN0072)

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

CAB Identifier: CN0072.

• VCCI (Member No.: 1938)

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-1600, C-1707, T-1499, G-10216 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SHEM200400427802 Page: 7 of 25

5 Equipment List

Item	Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal. Due Date
	ducted Emission at Mains Terminals		model	Ocha Namber	Our Dute	Can Date Date
1	EMI Test Receive	R&S	ESCI	100781	02/24/2020	02/23/2021
2	LISN	R&S	ENV216	101604	10/24/2019	10/23/2020
3	LISN	Schwarzbeck	NNLK 8129	8129-143	10/24/2019	10/23/2020
4	Pulse Limiter	R&S	ESH3-Z2	100609	02/24/2020	02/23/2021
5	CE test Cable	Thermax	/	14	02/24/2020	02/23/2021
RF	Conducted Test		•			
1	Spectrum Analyzer	Agilent	E4446A	MY44020154	07/03/2019	07/02/2020
2	Spectrum Analyzer	Keysight	N9020A	MY55370209	12/19/2019	12/18/2020
3	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
4	Vector Signal Generator	R&S	SMU 200A	102744	02/24/2020	02/23/2021
5	Universal Radio Communication Tester	R&S	CMU200	109525	12/19/2019	12/18/2020
6	Universal Radio Communication Tester	R&S	CMW500	159275	12/19/2019	12/18/2020
7	Power Meter	Anritsu	ML2495A	1445010	04/21/2020	04/20/2021
8	Power Meter	Anritsu	ML2495A	1445010	12/20/2019	12/19/2020
9	Switcher	CCSRF	FY562	KS301219	N.C.R	N.C.R
10	AC Power Source	EXTECH	6605	1570106	N.C.R	N.C.R
11	DC Power Supply	Aglient	E3632A	MY50340053	N.C.R	N.C.R
12	6dB Attenuator	Mini-Circuits	NAT-6-2W	15542-1	N.C.R	N.C.R
13	Power Divider	AISI	IOWOPE2068	PE2068	N.C.R	N.C.R
14	Filter	MICRO-TRONICS	BRM50701	5	04/21/2020	04/22/2021
15	Conducted test cable	/	RF01-RF04	/	04/21/2020	04/20/2021
16	Conducted test cable	/	RF01-RF04	/	07/03/2019	07/02/2020
17	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	12/19/2019	12/18/2020
18	Temp. / Humidity Chamber	TERCHY	MHK-120AK	X30109	10/24/2019	10/23/2020
RF R	adiated Test					
1	Spectrum Analyzer	R&S	FSV40	101493	01/08/2020	01/07/2021
2	Signal Generator	Agilent	E8257C	MY43321570	10/24/2019	10/23/2020
3	Loop Antenna	Schwarzbeck	HXYZ9170	9170-108	02/24/2020	02/23/2021
4	Bilog Antenna	TESEQ	CBL 6112D	35403	06/22/2019	06/21/2021
5	Bilog Antenna	SCHWARZBECK	VULB9160	9160-3342	04/29/2019	04/28/2021
6	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	267	11/04/2018	11/03/2020
7	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	00143290	02/25/2019	02/24/2021
8	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	BBHA9170171	02/23/2019	02/26/2021
9	Pre-Amplifier(30MHz~18GHz)	CCSRF	AMP1277	1	12/19/2019	12/18/2020
10	Pre-Amplifier(0.1~26.5GHz)	EMCI	EMC012645	980060		
11	Low Pass Filter	MICRO-TRONICS	VLFX-950	RV142900829	07/03/2019	07/02/2020 N.C.R
12	High Pass Filter	Mini-Circuits	VHF-1200	15542	N.C.R N.C.R	
13	Filter (5450MHz~5770 MHz)	MICRO-TRONICS	BRC50704-01	2		N.C.R
14	Filter (5690 MHz~5930 MHz)	MICRO-TRONICS	BRC50704-01 BRC50705-01	4	N.C.R	N.C.R
15	Filter (5150 MHz~5350 MHz)	MICRO-TRONICS	BRC50705-01 BRC50703-01	2	N.C.R	N.C.R
16		MICRO-TRONICS			N.C.R	N.C.R
17	Filter (885 MHz~915 MHz)		BRM14698	1	N.C.R	N.C.R
18	Filter (815 MHz~860 MHz)	MICRO-TRONICS	BRM14697	1	N.C.R	N.C.R
19	Filter (1745 MHz~1910 MHz)	MICRO-TRONICS	BRM14700	1	N.C.R	N.C.R
20	Filter (1922 MHz~1977 MHz)	MICRO-TRONICS	BRM50715	1	N.C.R	N.C.R
20	Filter (2550 MHz)	MICRO-TRONICS	HPM13362	5	N.C.R	N.C.R
21	Filter (1532 MHz~1845 MHz)	MICRO-TRONICS	BRM50713	1	N.C.R	N.C.R
22	Filter (2.4GHz)	MICRO-TRONICS	BRM50701	5	N.C.R	N.C.R

NO.588 West Jindu Road,Songjiang District,Shanghai,China 201612 中国・上海・松江区金都西路588号 邮编: 201612 t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM200400427802 Page: 8 of 25

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Loop and no consideration of replacement.

Antenna location: Refer to Appendix(Internal Photos)

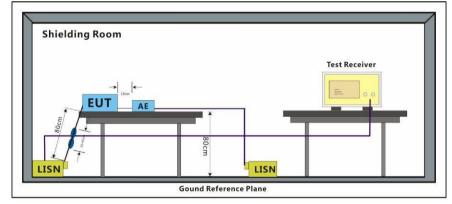
Report No.: SHEM200400427802 Page: 9 of 25

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement Test Method: Limit: 47 CFR Part 15, Subpart C 15.207 ANSI C63.10 (2013) Section 6.2

	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	


* Decreases with the logarithm of the frequency.

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1020 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode

7.1.2 Test Setup Diagram

Report No.: SHEM200400427802 Page: 10 of 25

7.1.3 Measurement Procedure and Data

Branch

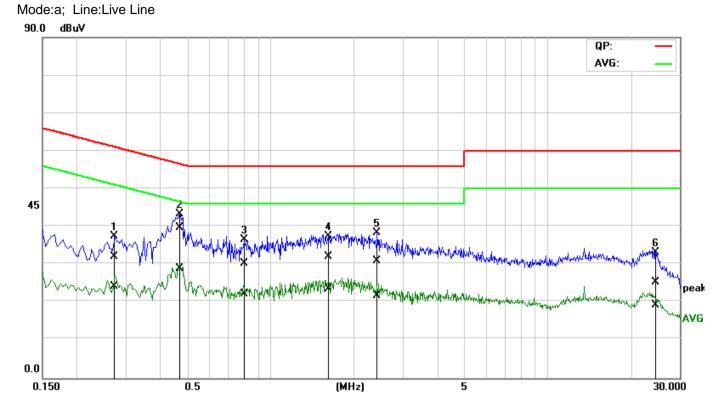
1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50 μ H + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

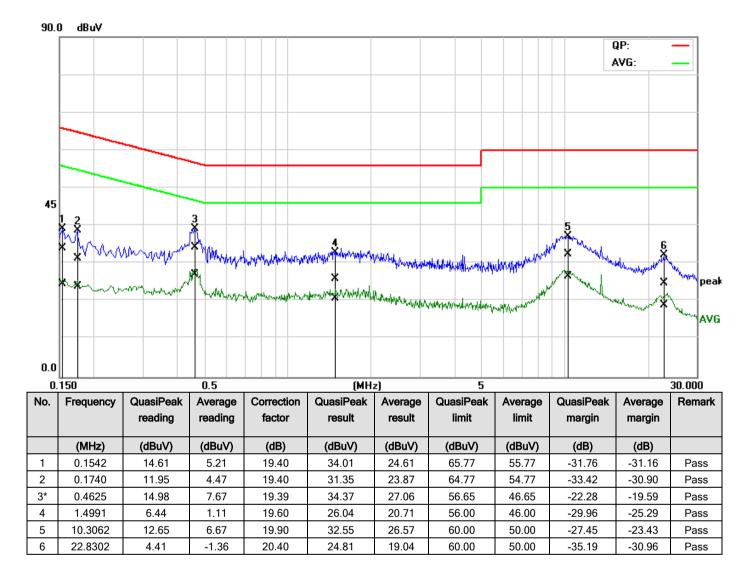

Remark:

1.LISN=Read Level+ Cable Loss+ LISN Factor

Branch

Report No.: SHEM200400427802 Page: 11 of 25

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.2737	12.68	4.89	19.39	32.07	24.28	61.00	51.00	-28.93	-26.72	Pass
2*	0.4694	20.36	9.53	19.46	39.82	28.99	56.52	46.52	-16.70	-17.53	Pass
3	0.8086	10.76	2.72	19.52	30.28	22.24	56.00	46.00	-25.72	-23.76	Pass
4	1.5865	12.45	3.85	19.63	32.08	23.48	56.00	46.00	-23.92	-22.52	Pass
5	2.4400	11.22	1.95	19.71	30.93	21.66	56.00	46.00	-25.07	-24.34	Pass
6	24.5775	4.85	-1.31	20.46	25.31	19.15	60.00	50.00	-34.69	-30.85	Pass


1	NO.588 West Jindu Road, Songjiang District, Shanghai	,China	201612
	中国・上海・松江区金都西路588号	邮编:	201612

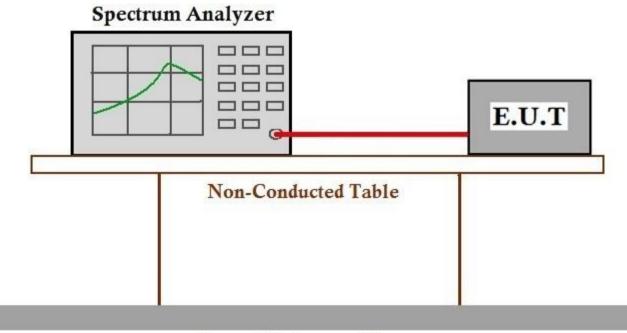
Branch

Report No.: SHEM200400427802 Page: 12 of 25

Mode:a; Line:Neutral Line

Report No.: SHEM200400427802 Page: 13 of 25

7.2 20dB Bandwidth


Limit:	N/A
Test Method:	ANSI C63.10 (2013) Section 6.9
Test Requirement	47 CFR Part 15, Subpart C 15.215

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

Branch

Report No.: SHEM200400427802 Page: 14 of 25

20dB bandwidth (kHz)	F∟ (MHz)	Fн (MHz)	Limit(MHz)	Result	
5.123	13.5574	13.5625	13.110 – 14.010	Pass	

Test plot as follows:

Spect	rum												E
Ref Le	vel 9	0.00 dBµ	Ν		RBW 100) Hz							
Att		0 0	B SWT	200 ms 👄	VBW 300	Hz Mi	ode Swe	зер					
⊖1Pk Ma	эх												
							D	1[1]					0.07 dB
80 dBµV													5.1230 kH
00 ubµv							M	1[1]					16.42 dBµ\ 74240 MH:
70 dBµ\						M2		-				13.55	74240 MH2
, o aop 4						- 👗							
60 dBµV							\sum						
50 dBµV	-				41			D1					
		1 46.440) dBµV	-	4				_		-		
40 dBµ\	<u> </u>			-	_				_	~			
	-t-												
30 dBµV				_									
20 dBµV													
10 dBµV	·+-		_		_						+		
0 dBµV-	+										-		
CF 13.	56 MH	lz				691 pt	5				_	Spar	20.0 kHz
Marker													
Туре	Ref	Trc	X-va	lue	Y-va	alue	Func	tion		Fu	nction F	Result	
M1		1		7424 MHz		42 dBµV							
D1	M1	1		5.123 kHz		0.07 dB							
M2		1		13.56 MHz	66.	44 dBµV							

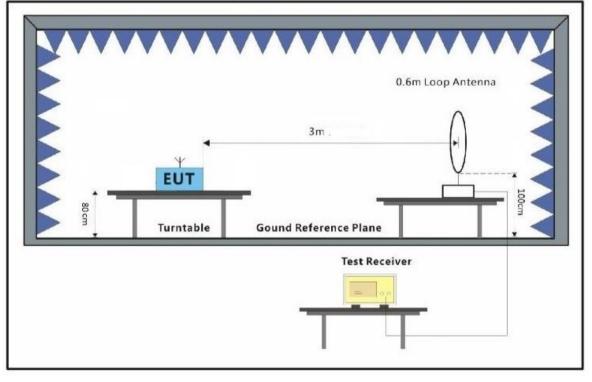
> Report No.: SHEM200400427802 Page: 15 of 25

7.3 Emission Mask

Test Requirement
Test Method:
Limit:

47 CFR Part 15 Subpart C 15.225(a)&(b)&(C) ANSI C63.10 (2013) Section 6.4

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15.848 microvolts/meter at 30 meters.


(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

7.3.1 E.U.T. Operation

Operating Environment:Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea: TX mode_Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

7.3.3 Measurement Procedure and Data

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

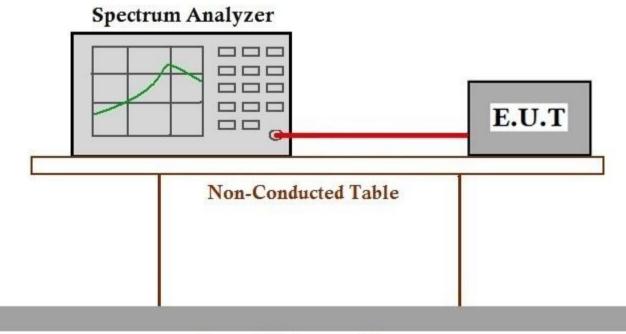
Note :The test level of the fundamental signal is below the limit of general spurious emission, so the test item doesn't be performed.

NO.588 West J	indu Road, Songjiang District, Shanghai, Chin	na 201612
中国・上海・	•松江区金都西路588号 邮编	: 201612

t(86-21) 61915666 f(86-21) 61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM200400427802 Page: 16 of 25

7.4 Frequency tolerance


Test Requirement	47 CFR Part 15, Subpart C 15.225(e)
Test Method:	ANSI C63.10 (2013) Section 6.8
Limit:	1.356kHz

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea: TX mode_Keep the EUT in transmitting with modulation mode.

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Procedure and Data

Report No.: SHEM200400427802 Page: 17 of 25

Test Co	nditions	Test Result	Deviation	Limit	Dec. II	
Temp (℃)	o (℃) Volt (V DC) (MHz)		(kHz)	(kHz)	Result	
T _{nom} (0)	V _{nom} (12)	13.55998	0.08		Pass	
T _{nom} (10)	V _{nom} (12)	13.55998	0.08		Pass	
T _{nom} (20)	V _{nom} (12)	13.55998	0.08		Pass	
T _{nom} (30)	V _{nom} (12)	13.55996	0.06	±0.01% (1.3560kHz)	Pass	
T _{nom} (40)	V _{nom} (12)	13.55996	0.06		Pass	
T (00)	V _{min} (10.2)	13.55998	0.08		Pass	
T _{nom} (20)	V _{max} (13.8)	13. 55996	0.06		Pass	

Nominal Operation Frequency: 13.56MHz

Note: Deviation (kHz) = (Test Result-13.56MHz)*1000

Report No.: SHEM200400427802 Page: 18 of 25

Test Requirement	47 CFR Part 15, \$	Subpart C 15.2	25(d) & 15.2	09					
Test Method:	ANSI C63.10 (202	13) Section 6.4	&6.5						
Limit:									
	Field strength	Limit	Detector	Measurement Distance					
Frequency(IVIHZ)	(microvolts/meter)	(dBuV/m)	Detector	(meters)					
0.009-0.490	2400/F(kHz)	-	-	300					
0.490-1.705	24000/F(kHz)	-	-	30					
1.705-30	30	-	-	30					
30-88	100	40.0	QP	3					
88-216	150	43.5	QP	3					
216-960	200	46.0	QP	3					
960-1000	500	54.0	QP	3					
Above 1000	500	54.0	AV	3					
	Test Requirement Test Method: Limit: Frequency(MHz) 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 960-1000	Test Requirement 47 CFR Part 15, S Test Method: ANSI C63.10 (207 Limit: Field strength Frequency(MHz) Field strength 0.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 960-1000 500	Test Requirement 47 CFR Part 15, Subpart C 15.2 Test Method: ANSI C63.10 (2013) Section 6.4 Limit: Field strength Limit Frequency(MHz) Field strength Limit 0.009-0.490 2400/F(kHz) - 0.490-1.705 24000/F(kHz) - 1.705-30 30 - 30-88 100 40.0 88-216 150 43.5 216-960 200 46.0 960-1000 500 54.0	Test Requirement 47 CFR Part 15, Subpart C 15.225(d) & 15.2 Test Method: ANSI C63.10 (2013) Section 6.4&6.5 Limit: Field strength (microvolts/meter) Limit (dBuV/m) Detector 0.009-0.490 2400/F(kHz) - - 0.490-1.705 24000/F(kHz) - - 1.705-30 30 - - 30-88 100 40.0 QP 88-216 150 43.5 QP 216-960 200 46.0 QP 960-1000 500 54.0 QP					

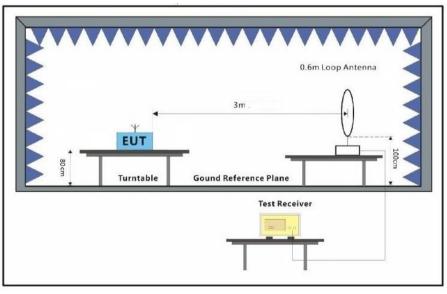
7.5 Radiated Emissions(9kHz-30MHz)

NOTE:

(1) For test distance other than what is specified, but fulfilling the requirements of section 15.31(f) (2) the field strength is calculated by adding additionally an extrapolation factor of 40dB/decade (inverse linear distance for field strength measurements).

So the Distance Extrapolation Factor in dB is 40*log (D_{TEST} / D_{SPEC}) where D_{TEST} = Test Distance and D_{SPEC} = Specified Distance.

Field strength limit $(dB\mu V/m)@$ test distance= Field strength limit $(dB\mu V/m)@$ specified distance +Distance Extrapolation Factor


(2) The lower limit shall apply at the transition frequencies.

7.5.1 E.U.T. Operation

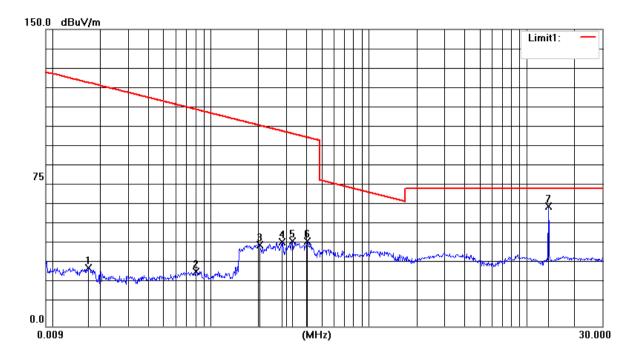
Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode

7.5.2 Test Setup Diagram

NO.588 West J	indu Road, Songjiang District, Shanghai, China	201612
中国・上海・	•松江区金都西路588号 邮编:	201612

t(86-21) 61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21) 61915666 f(86-21)61915678 e sgs.china@sgs.com


Report No.: SHEM200400427802 Page: 19 of 25

7.5.3 Measurement Procedure and Data

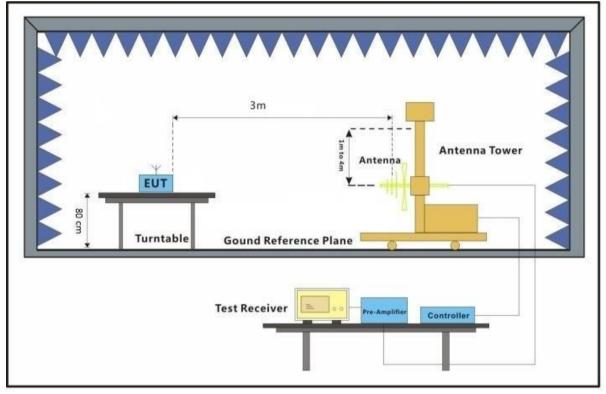
For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

Report No.: SHEM200400427802 Page: 20 of 25

Item	Freq.	Read Level	Correct Factor	Result Level@3m	Result Level@SP EC	Limit Line@SPE C	Over Limit	Detector
(Mark)	(MHz)	(dBµV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0166	14.32	15.13	29.45	-50.55	43.19	-93.74	QP
2	0.0801	12.48	15.17	27.65	-52.35	29.52	-81.87	QP
3	0.2028	26.03	15.14	41.17	-38.83	21.46	-60.29	QP
4	0.2805	27.30	15.20	42.50	-37.50	18.64	-56.14	QP
5	0.3271	27.55	15.21	42.76	-37.24	17.31	-54.55	QP
6	0.4072	27.67	15.24	42.91	-37.09	15.41	-52.50	QP
7	13.5665	45.09	15.49	60.58	20.58	29.50	-8.92	Peak

Report No.: SHEM200400427802 Page: 21 of 25

7.6 Radiated Emissions(30MHz-1GHz)


Test Requirement	47 CFR Part 15, Subpart C 15.225(d) & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5
Limit:	

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)	
30MHz-88MHz	100	40.0	Quasi-peak	3	
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	

7.6.1 E.U.T. Operation

Operating Environment:Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode

7.6.2 Test Setup Diagram

Report No.: SHEM200400427802 Page: 22 of 25

7.6.3 Measurement Procedure and Data

Branch

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground for below 1GHz at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

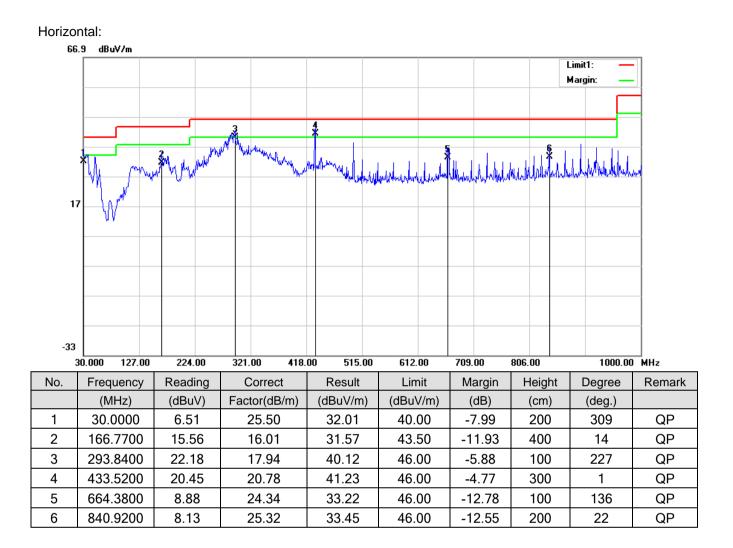
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

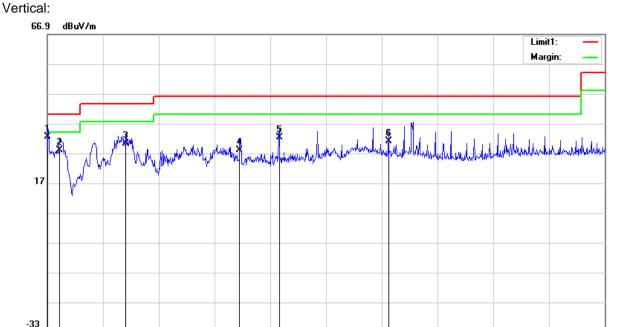
g. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.


Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Branch

 Report No.:
 SHEM200400427802

 Page:
 23 of 25



Branch

 Report No.:
 SHEM200400427802

 Page:
 24 of 25

-33	30.000 127.00	224.00	321.00 418.	00 515.00	612.00	709.00	806.00	1000.00	 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)	
1	30.0000	7.01	25.50	32.51	40.00	-7.49	108	360	QP
2	51.3400	12.01	16.13	28.14	40.00	-11.86	100	0	QP
3	166.7700	14.19	16.01	30.20	43.50	-13.30	300	152	QP
4	364.6500	8.47	19.63	28.10	46.00	-17.90	100	326	QP
5	433.5200	11.45	20.78	32.23	46.00	-13.77	400	0	QP
6	623.6400	7.12	23.89	31.01	46.00	-14.99	100	120	QP

Report No.: SHEM200400427802 Page: 25 of 25

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -