SAR TEST REPORT

For

Product Name: Mobile NAS
Brand Name: N/A
Model No.: DS-UAFS-W100I
Series Model: N/A
Test Report Number:
C170505S01-SF
Issued for

Hangzhou Hikvision Digital Technology Co., Ltd.
No. 555 Qianmo Road, Binjiang District, Hangzhou 310052, China

Issued by

Compliance Certification Services Inc.

Kun shan Laboratory

No. 10 Weiye Rd., Innovation park, Eco\&Tec, Development Zone, Kunshan City, Jiangsu, China

TEL: 86-512-57355888
FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Revision	REPORT NO.	Date	Page Revise	Contents
Original	C170505S01-SF	May 17, 2017	N/A	N/A

SGS

TABLE OF CONTENTS

1. CERTIFICATE OF COMPLIANCE (SAR EVALUATION) 4
2. EUT DESCRIPTION 5
2.1 MAXIMUM RF OUTPUT POWER WITH TEST CHANNEL 6
2.2 STATEMENT OF COMPLIANCE 7
3. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC OR IC 8
4. TEST METHODOLOGY 8
5. TEST CONFIGURATION 8
6. DOSIMETRIC ASSESSMENT SETUP 9
6.1 MEASUREMENT SYSTEM DIAGRAM 10
6.2 SYSTEM COMPONENTS 11
7. EVALUATION PROCEDURES 14
8. MEASUREMENT UNCERTAINTY 18
9. EXPOSURE LIMIT 19
10. MEASUREMENT RESULTS 20
10.1 TEST LIQUIDS CONFIRMATION 20
10.2 LIQUID MEASUREMENT RESULTS 21
10.3 SYSTEM PERFORMANCE CHECK 22
10.4 EUT TUNE-UP PROCEDURES AND TEST MODE 24
10.5 SAR TEST CONFIGURATIONS. 26
10.6 ANTENNA LOCATION 27
10.7 BODY TEST EXCLUSION THRESHOLDS 29
10.8 SAR MEASUREMENT RESULTS 32
10.9 REPEATED SAR MEASUREMENT 34
11. EQUIPMENT LIST \& CALIBRATION STATUS 35
12. FACILITIES 36
13. REFERENCES 36
Appendix A: DUT and SAR Test setup 37
Appendix B: Plots of Performance Check 37
Appendix C: DASY Calibration Certificate 41
Appendix D: Plots of SAR Test Result 41

1. CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Approved by:

Jeff.fang
RF Manager
Compliance Certification Services Inc.

Tested by:

Sam. ye
Test Engineer
Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product Name:	Mobile NAS
Brand Name:	N/A
Model Name.:	DS-UAFS-W100I
Series Model:	N/A
ICC ID:	2ADTD-HW10000
20199-HW10000	
Hoftware version	DS-UAFS-W100I
Device Category:	Production unit
Frequency Range:	WLAN 2.4GHz Band: $2412 \mathrm{MHz} \sim 2462 \mathrm{MHz}$ WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.8GHz Band: $5745 \mathrm{MHz} \sim 5825 \mathrm{MHz}$
Modulation Technique:	802.11a/b/g/n HT20/HT40/VHT20/VHT40/VHT80
Antenna Specification:	WIFI: FPC Antenna
Accessories:	Battery (rating): Capacitance: 6700mAh,3.7V Operating Mode: Maximum continuous output

2.1 Maximum RF output power with test channel

Band / Mode	Channel	SISO Average Power (dBm)
802.11b	1	17
	6	17
	11	17
802.11 g	1	16
	6	16
	11	16
802.11 n 20MHz	1	15
	6	15
	11	15
802.11 n 40 MHz	3	15.5
	6	15.5
	9	15.5
802.11 a U-NII-1	36-48	15.5
802.11 a U-NII-3	149-165	7.5
802.11 HT20 U-NII-1	36-48	15
802.11 HT20 U-NII-3	149-165	7
802.11 HT40 U-NII-1	38-46	15
802.11 HT40 U-NII-3	151-159	10.5
802.11 VHT20 U-NII-1	36-48	13
802.11 VHT20 U-NII-3	149-165	5.5
802.11 VHT40 U-NII-1	38-46	14
802.11 VHT40 U-NII-3	151-159	8
802.11 VHT80 U-NII-1	42	13
802.11 VHT80 U-NII-3	155	8.5

2.2 Statement of compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Hangzhou Hikvision Digital Technology Co., Ltd., DS-UAFS-W100I, are as follows.

Equipment Class	Frequency Band	Highest SAR Summary Body $1 \mathrm{~g} \mathrm{SAR} \mathrm{(W/kg)}$
	2.4 GHz WLAN	1.050
NII	5.2 GHz WLAN	1.189
	5.8 GHz WLAN	1.173

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 15282013.

3. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC OR IC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is $1.6 \mathrm{~W} / \mathrm{Kg}$ for an uncontrolled environment and $8.0 \mathrm{~W} / \mathrm{Kg}$ for an occupational/controlled environment as recommended by the FCC 47 CFR Part 2 (2.1093) ; RSS102 issue 5.

4. TEST METHODOLOGY

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

```
FCC 47 CFR Part 2 ( 2.1093)
    ANSI/IEEE C95.1-1992
    RSS102 issue 5
    IEEE 1528-2013
    KDB 447498 D01v06 General RF Exposure Guidance
\ KDB 865664 D01v01r04 Measurement 100 MHz to 6 GHz
KDB 865664 D02 v01r02 RF Exposure Reporting
KDB 248227 D01v02r02 802 11 Wi-Fi SAR
```


5. TEST CONFIGURATION

During WLAN SAR testing EUT is configured with the WLAN continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting

For WLAN SAR testing, WLAN engineering test software installed on the EUT can provide continuous transmitting RF signal.
Duty cycle Form

Band	Mode	Duty cycle(100\%)
2.4 GHz	802.11 b	100
	802.11 g	99
	802.11 n 20 MHz	99
	802.11 n 40 MHz	99
5	802.11 a	92.4
	802.11 HT 20 MHz	91.8
	802.11 HT 40 MHz	86.3
	802.11 VHT 20 MHz	91.7
	$802.11 \mathrm{VHT40MHz}$	88.4
	802.11 VHT 80 MHz	81.3

6. DOSIMETRIC ASSESSMENT SETUP

These measurements were performed with the automated near-field scanning system DASY 5 from Schmid \& Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than $\pm 0.02 \mathrm{~mm}$. Special E - and H -field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the E-field PROBE EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than $\pm 10 \%$. The spherical isotropy was evaluated with the procedure described in [8] and found to be better than $\pm 0.25 \mathrm{~dB}$. IEEE1528 and CENELEC IEC 62209.

The following table gives the recipes for tissue simulating liquids.

Ingredients (\% by weight)	$\begin{gathered} \hline \text { Frequency } \\ (\mathrm{MHz}) \\ \hline \end{gathered}$									
	450		835		915		1900		2450	
Tissue Type	Head	Body								
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Simulating Liquids for 5 GHz , Manufactured by SPEAG

Ingredients	(\% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6 -axis robot (St"aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

6.2 SYSTEM COMPONENTS

The DASY5 measurement server is based on a PC/104 CPU board with a 400 MHz intel ULV celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with either the DAE4(or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.
The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.

Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200 MOhm ; the inputs are symmetrical and floating. Common mode rejection is above 80 dB .

EX3DV4 Isotropic E-Field Probe for Dosimetric Measurements

Construction: Symmetrical design with triangular core
Built-in shielding against static charges
PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration: Basic Broad Band Calibration in air: 10-3000 MHz. Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon request.
Frequency: 10 MHz to $>6 \mathrm{GHz}$; Linearity: $\pm 0.2 \mathrm{~dB}(30 \mathrm{MHz}$ to 3 GHz)
Directivity: $\pm 0.3 \mathrm{~dB}$ in HSL (rotation around probe axis) $\pm 0.5 \mathrm{~dB}$ in HSL (rotation normal to probe axis)
Dynamic Range: $10 \mu \mathrm{~W} / \mathrm{g}$ to $>100 \mathrm{~mW} / \mathrm{g}$; Linearity: $\pm 0.2 \mathrm{~dB}$
(noise: typically $<1 \mu \mathrm{~W} / \mathrm{g}$)

7. EVALUATION PROCEDURES

DATA EVALUATION

The DASY 5 post processing software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY 5 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$
V_{i}=U_{i}+U_{i}^{2} \cdot \frac{c f}{d c p_{i}}
$$

with $\quad V_{i} \quad=$ Compensated signal of channel $\mathrm{i}(\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z})$
$U_{i} \quad=$ Input signal of channel $i \quad(i=x, y, z)$
cf = Crest factor of exciting field (DASY 5 parameter)
$d c p_{i}=$ Diode compression point \quad (DASY 5 parameter)
From the compensated input signals the primary field data for each channel can be evaluated:

$$
\begin{aligned}
& \text { E-field probes: } \\
& \text { H-field probes: } \quad H_{i}=\sqrt{V i} \cdot \frac{a_{i 0}+a_{i 11} f+a_{i 12} f^{2}}{f} \\
& \text { with } \quad V_{i} \quad=\text { Compensated signal of channel } \mathrm{i}(\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z}) \\
& \text { Norm }_{i}=\text { Sensor sensitivity of channel } i \quad(i=x, y, z) \\
& \mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2} \text { for EOfield Probes } \\
& \text { aij = Sensor sensitivity factors for H-field probes } \\
& f \quad=\text { Carrier frequency (} \mathrm{GHz} \text {) } \\
& \text { Ei = Electric field strength of channel i in } \mathrm{V} / \mathrm{m} \\
& \mathrm{Hi} \quad=\text { Magnetic field strength of channel } \mathrm{i} \text { in } \mathrm{A} / \mathrm{m}
\end{aligned}
$$

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$
E_{\text {tot }}=\sqrt{E_{x}^{2}+E_{y}^{2}+E_{z}^{2}}
$$

The primary field data are used to calculate the derived field units.

$$
S A R=E_{\text {tot }}^{2} \cdot \frac{\sigma}{\rho \cdot 1000}
$$

with $S A R=$ local specific absorption rate in mW / g
$E_{\text {tot }}=$ total field strength in V / m
$\sigma \quad=$ conductivity in [mho/m] or [Siemens $/ \mathrm{m}$]
$\rho \quad=$ equivalent tissue density in $\mathrm{g} / \mathrm{cm}^{3}$
Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.
The power flow density is calculated assuming the excitation field as a free space field.

$$
\begin{aligned}
& P_{p w e}=\frac{E_{\text {tot }}^{2}}{3770} \text { or } \quad P_{p w e}=H_{t o t}^{2} \cdot 37.7 \\
\text { with } \quad & P_{\text {pwe }}=\text { Equivalent power density of a plane wave in } \mathrm{mW} / \mathrm{cm}^{2} \\
& E_{\text {tot }}=\text { total electric field strength in } \mathrm{V} / \mathrm{m} \\
H_{\text {tot }} \quad & =\text { total magnetic field strength in } \mathrm{A} / \mathrm{m}
\end{aligned}
$$

SAR EVALUATION PROCEDURES

The procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

- Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY 5 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

- Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

- Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY 5 software stop the measurements if this limit is exceeded.

- Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Z-axis of the anchor location establishes the Z-axis of the grid.

SPATIAL PEAK SAR EVALUATION

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1 g and 10 g .
The DASY 5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.
Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using $5 \times 5 \times 7$ measurement points with 5 mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Boundary effect

For measurements in the immediate vicinity of a phantom surface, the field coupling effects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosimetric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary. The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as:

$$
S \approx S_{o}+S_{b} \exp \left(-\frac{z}{a}\right) \cos \left(\pi \frac{z}{\lambda}\right)
$$

Since the decay of the boundary effect dominates for small probes ($\mathrm{a} \ll \lambda$), the cos-term can be omitted. Factors Sb (parameter Alpha in the DASY 5 software) and a (parameter Delta in the DASY 5 software) are assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations.
This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as:

- the boundary curvature is small
- the probe axis is angled less than 30_ to the boundary normal
- the distance between probe and boundary is larger than 25% of the probe diameter
- the probe is symmetric (all sensors have the same offset from the probe tip)

Since all of these requirements are fulfilled in a DASY 5 system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during post processing.

8. MEASUREMENT UNCERTAINTY

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04, when the highest measured 1g SAR within a frequency band is $<1.5 \mathrm{~W} / \mathrm{kg}$, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

9. EXPOSURE LIMIT

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT
1.6 W/kg

10. MEASUREMENT RESULTS

10.1 TEST LIQUIDS CONFIRMATION

Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the SPEAG DAK3.5 dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

IEEE SCC-34ISC-2 P1528 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528

Target Frequency (MHz)	Head		Body	
	ε_{r}	$\sigma(\mathrm{~S} / \mathrm{m})$	ε_{r}	$\sigma(\mathrm{~S} / \mathrm{m})$
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
$1800-2000$	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

($\varepsilon_{r}=$ relative permittivity, $\sigma=$ conductivity and $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$)

10.2 LIQUID MEASUREMENT RESULTS

The following table show the measuring results for simulating liquid:

Liquid Type	Liquid Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Parameters	Target	Measured	Deviation $(\%)$	Limited $(\%)$	Measured Date
Body2450	21.5	Permitivity (ε)	52.70	51.83	-1.65	± 5	$2017-5-14$
		Conductivity($\sigma)$	1.95	1.96	0.31	± 5	
Body5200	21.5	Permitivity($\varepsilon)$	49.03	48.75	-0.58	± 5	$2017-5-15$
		Conductivity($\sigma)$	5.35	5.23	-2.27	± 5	
Body5800	21.5	Permitivity((ε)	48.20	47.90	-0.62	± 5	$2017-5-15$
		Conductivity($\sigma)$	6.00	6.12	1.95	± 5	

10.3 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10 \%$. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with head and body simulating liquid of the following parameters.
- The DASY5 system withan E-fileld probe EX3DV4 SN: 3798 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15 mm (below 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7 x 7 x 7 fine cube was chosen for cube integration ($\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$).
- Distance between probe sensors and phantom surface was set to 2 mm .
- The dipole less than 3 G input power was $250 \mathrm{~mW} \pm 3 \%$.
- The dipole above than 3 G input power was $100 \mathrm{~mW} \pm 3 \%$.
- The results are normalized to 1 W input power.

- Note: For SAR testing, less than 3G the liquid depth is 15 cm shown above
- Note: For SAR testing, above than 3G the liquid depth is 10 cm shown above

SYSTEM PERFORMANCE CHECK RESULTS

Liquid Type	Ambient Temp. $\left(^{\circ}\right.$ C)	Liquid Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Input Power (W)	Measured SAR1g (W/Kg)	$\begin{gathered} 1 \mathrm{~W} \\ \text { Target } \\ \text { SAR }_{19}(\mathrm{~W} / \mathrm{Kg}) \end{gathered}$	$\begin{gathered} \text { 1W } \\ \text { Normalized } \\ \text { SAR }_{19}(\mathrm{~W} / \mathrm{Kg}) \end{gathered}$	Deviatio n (\%)	Limited (\%)	Date
Body2450	22	21.5	0.25	12.60	51.50	50.40	-2.14	± 10	2017-5-14
Body5200	22	21.5	0.1	7.61	74.50	76.1	2.15	± 10	2017-5-15
Body5800	22	21.5	0.1	7.47	77.20	74.7	-3.24	± 10	2017-5-15

10.4 EUT TUNE-UP PROCEDURES AND TEST MODE

Conducted output power(dBm):

General Note:
1 Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
2 Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.

1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.
3 For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

WLAN 2.4G

Mode	Channel	Frequency (MHZ)	Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average power (dBm)
802.11 b	1	2412	16	± 1	17	15.35
	6	2437	16	± 1	17	15.86
	11	2462	16	± 1	17	15.73
802.11 g	1	2412	15	± 1	16	Not required
	6	2437	15	± 1	16	
	11	2462	15	± 1	16	
$\begin{aligned} & 802.11 \text { n } \\ & 20 \mathrm{MHz} \end{aligned}$	1	2412	14	± 1	15	
	6	2437	14	± 1	15	
	11	2462	14	± 1	15	
$\begin{gathered} 802.11 \mathrm{n} \\ 40 \mathrm{MHz} \end{gathered}$	3	2422	14.5	± 1	15.5	
	6	2437	14.5	± 1	15.5	
	9	2452	14.5	± 1	15.5	

5GHz
U-NII-1

Mode	Channel	Frequency (MHZ)	Target power(dBm)	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average Power (dBm)
802.11 a	36	5180	14.5	± 1.5	15.5	15.09
	40	5200	14.5	± 1.5	15.5	14.56
	44	5220	14.5	± 1.5	15.5	13.98
	48	5240	14.5	± 1.5	15.5	13.63
$\begin{aligned} & 802.11 \mathrm{n} \\ & \text { HT20MHz } \end{aligned}$	36	5180	13.5	± 1.5	15	Not required
	40	5200	13.5	± 1.5	15	
	44	5220	13.5	± 1.5	15	
	48	5240	13.5	± 1.5	15	
$\begin{aligned} & \hline 802.11 \mathrm{n} \\ & \text { HT40MHz } \end{aligned}$	38	5190	14	± 1	15	
	46	5230	14	± 1	15	
$\begin{gathered} 802.11 \mathrm{ac} \\ \text { VHT20MHz } \end{gathered}$	36	5180	11.5	± 1.5	13	
	40	5200	11.5	± 1.5	13	
	44	5220	11.5	± 1.5	13	
	48	5240	11.5	± 1.5	13	
$\begin{gathered} 802.11 \mathrm{ac} \\ \text { vHT40MHz } \end{gathered}$	38	5190	12.5	± 1.5	14	
	46	5230	12.5	± 1.5	14	
$\begin{gathered} \hline 802.11 \mathrm{ac} \\ \text { VHT80MHz } \end{gathered}$	42	5210	12	± 1	13	

U-NII-3

Mode	Channel	$\begin{aligned} & \text { Frequency } \\ & \text { (MHZ) } \end{aligned}$	$\begin{gathered} \text { Target } \\ \text { power }(\mathrm{dBm}) \end{gathered}$	Tune up tolerance (dBm)	Maximum Tune up power (dBm)	Average Power (dBm)
802.11 a	149	5745	6.5	± 1	7.5	Not required
	157	5785	6.5	± 1	7.5	
	165	5825	6.5	± 1	7.5	
$\begin{aligned} & 802.11 \mathrm{n} \\ & \text { HT20MHz } \end{aligned}$	149	5745	6	± 1	7	
	157	5785	6	± 1	7	
	165	5825	6	± 1	7	
$\begin{aligned} & 802.11 \mathrm{n} \\ & \text { HT40MHz } \end{aligned}$	151	5755	9.5	± 1	10.5	9.43
	159	5795	9.5	± 1	10.5	10.10
$\begin{gathered} 802.11 \mathrm{ac} \\ \text { VHT20MHz } \end{gathered}$	149	5745	4.5	± 1	5.5	Not required
	157	5785	4.5	± 1	5.5	
	165	5825	4.5	± 1	5.5	
$\begin{gathered} 802.11 \mathrm{ac} \\ \text { VHT40MHz } \end{gathered}$	151	5755	7	± 1	8	
	159	5795	7	± 1	8	
$\begin{aligned} & 802.11 \mathrm{ac} \\ & \text { VHT80MHz } \end{aligned}$	155	5775	7.5	± 1	8.5	

10.5 SAR TEST CONFIGURATIONS

Generic device

For a device that can not be categorized as any of the other specific device types, it shall be considered to be a generic device; i.e. represented by a closed box incorporating at least one internal RF transmitter and antenna.
The SAR evaluation shall be performed for all surfaces of the DUT that are accessible during intended use, as indicated in Figure. The separation distance in testing shall correspond to the intended use distance as specified in the user instructions provided by the manufacturer. If the intended use is not specified, all surfaces of the DUT shall be tested with the separation of $\leqslant 5 \mathrm{~mm}$.

Figure - Test positions for a generic device

10.6 ANTENNA LOCATION

Front View

Device dimensions for Tablet mode (H x W): 96.5x 54 mm

Antennas	Wireless Interface
WLAN Antenna	WLAN 2.4GHz
	WLAN 5.2GHz

Test Mode

IEEE 802.11
Data transmission mode(802.11a/HT40/b)

10.7 BODY TEST EXCLUSION THRESHOLDS

The following SAR test exclusion Thresholds based on KDB 447498 D01 General RF Exposure Guidance v06 4.3.1

Exposure Position	Wireless Interface	WLAN	WLAN	WLAN
		802.11 b	802.11 a U-NII-1	802.11 HT40 U-NII-3
	Maximum power	17	15.5	10.5
	Maximum rated power(mW)	50.12	35.48	11.22
Front	Antenna to user (mm)	3	3	3
	SAR exclusion threshold	5.75	3.74	3.74
	SAR testing required?	Yes	Yes	Yes
Rear	Antenna to user (mm)	21	21	21
	SAR exclusion threshold	40.25	26.16	26.16
	SAR testing required?	Yes	Yes	No
Right	Antenna to user (mm)	2.5	2.5	2.5
	SAR exclusion threshold	4.79	3.11	3.11
	SAR testing required?	Yes	Yes	Yes
Left	Antenna to user (mm)	40	40	40
	SAR exclusion threshold	76.67	49.83	49.83
	SAR testing required?	No	No	No
Top	Antenna to user (mm)	37	37	37
	SAR exclusion threshold	70.92	46.09	46.09
	SAR testing required?	No	No	No
Bottom	Antenna to user (mm)	36	36	36
	SAR exclusion threshold	69	44.84	44.84
	SAR testing required?	No	No	No

Note:

1. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
2. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
3. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is $<5 \mathrm{~mm}, 5 \mathrm{~mm}$ is used to determine SAR exclusion threshold
4. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances $\leq 50 \mathrm{~mm}$ are determined by:
$[($ max. power of channel, including tune-up tolerance, $m W) /($ min. test separation distance, $m m)] \cdot[\sqrt{ }(\mathrm{GHz})] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR
$\mathrm{f}(\mathrm{GHz})$ is the RF channel transmit frequency in GHz
Power and distance are rounded to the nearest mW and mm before calculation
The result is rounded to one decimal place for comparison
For $<50 \mathrm{~mm}$ distance, we just calculate mW of the exclusion threshold value (3.0) to do compare.
This formula is [3.0] / [$\mathrm{Vf}(\mathrm{GHz})] \cdot[($ min. test separation distance, $m m)]=$ exclusion threshold of mW .
5. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances $>50 \mathrm{~mm}$, the SAR test exclusion threshold is determined according to the following
a) [Threshold at 50 mm in step 1) + (test separation distance $-50 \mathrm{~mm}) \cdot(\mathrm{f}(\mathrm{MHz}) / 150)] \mathrm{mW}$, at 100 MHz to 1500 MHz
b) [Threshold at 50 mm in step 1) + (test separation distance $-50 \mathrm{~mm}) \cdot 10] \mathrm{mW}$ at $>1500 \mathrm{MHz}$ and $\leq 6 \mathrm{GHz}$
6. When the minimum test separation distance is $<5 \mathrm{~mm}$, a distance of 5 mm according to 5) in section
4.1 is applied to determine SAR test exclusion.

According to RSS102-2015 :
SAR evaluation for this device was performed with a separation distance of 5 mm . Observing the SAR evaluation exemption limit table (Table 1, see below) found in § 2.5.1 of RSS102:2015, it was determined that the SAR exemption limit for this device is 4 mW for 2.4 GHz transmission and 1 mW for 5 GHz transmission. No Wi-Fi mode qualified for test exemption as all power levels were above the stated thresholds.

Table 1: SAR evaluation - Exemption limits for routine evaluation based on frequency and separation distance

Frequency (MHz)	Exemption Limits (mW)				
	At separation distance of $\leq \mathbf{5} \mathbf{~ m m}$	At separation distance of $\mathbf{1 0} \mathbf{~ m m}$	At separation distance of $\mathbf{1 5} \mathbf{~ m m}$	At separation distance of $\mathbf{2 0} \mathbf{~ m m}$	At separation distance of $\mathbf{2 5} \mathbf{~ m m ~}$
≤ 300	71 mW	101 mW	132 mW	162 mW	193 mW
450	52 mW	70 mW	88 mW	106 mW	123 mW
835	17 mW	30 mW	42 mW	55 mW	67 mW
1900	7 mW	10 mW	18 mW	34 mW	60 mW
2450	4 mW	7 mW	15 mW	30 mW	52 mW
3500	2 mW	6 mW	16 mW	32 mW	55 mW
5800	1 mW	6 mW	15 mW	27 mW	41 mW

Frequency (MHz)	Exemption Limits (mW)				
	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of $\geq 50 \mathrm{~mm}$
≤ 300	223 mW	254 mW	284 mW	315 mW	345 mW
450	141 mW	159 mW	177 mW	195 mW	213 mW
835	80 mW	92 mW	105 mW	117 mW	130 mW
1900	99 mW	153 mW	225 mW	316 mW	431 mW
2450	83 mW	123 mW	173 mW	235 mW	309 mW
3500	86 mW	124 mW	170 mW	225 mW	290 mW
5800	56 mW	71 mW	85 mW	97 mW	106 mW

The following SAR test exclusion Thresholds based on RSS102 issue5 2.5.1

Exposure Position	Wireless Interface	WLAN	WLAN	WLAN
		802.11 b	802.11 a U-NII-1	802.11 HT40 U-NII-3
	Maximum power	17	15.5	10.5
	Maximum rated power(mW)	50.12	35.48	11.22
Front	Antenna to user (mm)	3	3	3
	SAR exclusion threshold	4	1	1
	SAR testing required?	Yes	Yes	Yes
Rear	Antenna to user (mm)	21	21	21
	SAR exclusion threshold	52	41	41
	SAR testing required?	No	No	No
Right	Antenna to user (mm)	2.5	2.5	2.5
	SAR exclusion threshold	4	1	1
	SAR testing required?	Yes	Yes	Yes
Left	Antenna to user (mm)	40	40	40
	SAR exclusion threshold	173	85	85
	SAR testing required?	No	No	No
Top	Antenna to user (mm)	37	37	37
	SAR exclusion threshold	173	85	85
	SAR testing required?	No	No	No
Bottom	Antenna to user (mm)	36	36	36
	SAR exclusion threshold	173	85	85
	SAR testing required?	No	No	No

Note:

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm , except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

10.8 SAR MEASUREMENT RESULTS

Note:

1. Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
b. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
2. Per KDB 447498 D01, for each exposure position, if the highest output channel reported SAR $\leq 0.8 \mathrm{~W} / \mathrm{kg}$, other channels SAR testing is not necessary.
3. Per KDB 447498 D01, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported $1-\mathrm{g}$ or 10-g SAR for the mid-band or highest output power channel is:

- $\leq 0.8 \mathrm{~W} / \mathrm{kg}$ or $2.0 \mathrm{~W} / \mathrm{kg}$, for $1-\mathrm{g}$ or $10-\mathrm{g}$ respectively, when the transmission band is $\leq 100 \mathrm{MHz}$
- $\leq 0.6 \mathrm{~W} / \mathrm{kg}$ or $1.5 \mathrm{~W} / \mathrm{kg}$, for $1-\mathrm{g}$ or $10-\mathrm{g}$ respectively, when the transmission band is between 100 MHz and 200 MHz
- $\leq 0.4 \mathrm{~W} / \mathrm{kg}$ or $1.0 \mathrm{~W} / \mathrm{kg}$, for $1-\mathrm{g}$ or $10-\mathrm{g}$ respectively, when the transmission band is $\geq 200 \mathrm{MHz}$

2.4GHz Standalone SAR Results for Test Records

Band	Mode	Test Position	Dist. (mm)	$\begin{aligned} & \text { Freq. } \\ & \text { (MHZ) } \end{aligned}$	max Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Duty Cycle Factor	SAR1g (mW / g)	Scaled SAR1g (mW/g)
$\begin{aligned} & \text { WLAN } \\ & \text { 2.4Ghz } \end{aligned}$	802.11b	Front	0	2412	15.35	17	1.462	-0.10	1	0.715	1.045
$\begin{aligned} & \text { WLAN } \\ & \text { 2.4Ghz } \end{aligned}$	802.11b	Front	0	2437	15.86	17	1.300	-0.04	1	0.766	0.996
$\begin{aligned} & \hline \text { WLAN } \\ & \text { 2.4Ghz } \end{aligned}$	802.11b	Front	0	2462	15.73	17	1.340	-0.12	1	0.784	1.050
$\begin{aligned} & \text { WLAN } \\ & \text { 2.4Ghz } \end{aligned}$	802.11b	Rear	0	2437	15.86	17	1.300	0.09	1	0.115	0.150
$\begin{aligned} & \hline \text { WLAN } \\ & \text { 2.4Ghz } \end{aligned}$	802.11b	Right	0	2437	15.86	17	1.300	0.04	1	0.407	0.529

Remark: SAR is not required for the following 2.4 GHz OFDM conditions.

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \mathrm{~W} / \mathrm{kg}$.
The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \mathrm{~W} / \mathrm{kg}$. So 2.4 GHz OFDM mode is not require.

5GHz Standalone SAR Results for Test Records
U-NII-1

Band	Mode	Test Position	Dist. (mm)	Freq. (MHZ)	max Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Duty Cycle Factor	SAR1g $(\mathrm{mW} / \mathrm{g})$	Scaled SAR1g $(\mathrm{mW} / \mathrm{g})$
WLAN 5Ghz	802.11 a	Front	0	5180	15.09	15.5	1.099	0.03	1.08	0.502	0.597
WLAN 5Ghz	802.11 a	Rear	0	5180	15.09	15.5	1.099	0.04	1.08	0.022	0.026
WLAN 5Ghz	802.11 a	Right	0	5180	15.09	15.5	1.099	0.04	1.08	1.00	1.189
WLAN 5Ghz	802.11 a	Right	0	5200	14.56	15.5	1.242	0.03	1.08	0.823	1.106
WLAN 5Ghz	802.11 a	Right	0	5240	13.63	15.5	1.538	0.07	1.08	0.702	1.169

U-NII-3

Band	Mode	Test Position	Dist. (mm)	Freq. (MHZ)	max Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Duty Cycle Factor	SAR1g $(\mathrm{mW} / \mathrm{g})$	Scaled SAR1g $(\mathrm{mW} / \mathrm{g})$
WLAN 5 Ghz	802.11 HT40	Front	0	5795	10.1	10.5	1.096	-0.06	1.16	0.569	0.723
WLAN 5Ghz	802.11 HT40	Right	0	5755	9.43	10.5	1.279	0.03	1.16	0.761	1.128
WLAN $5 G h z$	802.11 HT40	Right	0	5795	10.1	10.5	1.096	0.01	1.16	0.912	1.159

Repeated SAR Test Records for 5GHz

Band	Mode	Test Position	Dist. (mm)	Freq. (MHZ)	max Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Duty Cycle Factor	SAR1g $(\mathrm{mW} / \mathrm{g})$	Scaled SAR1g $(\mathrm{mW} / \mathrm{g})$
WLAN $5 G h z$	802.11 a	Right	0	5180	15.09	15.5	1.099	0.06	1.08	0.986	1.173
WLAN $5 G h z$	802.11 HT40	Right	0	5795	10.1	10.5	1.096	-0.17	1.16	0.923	1.173

10.9 REPEATED SAR MEASUREMENT

Note:

1. Per KDB 865664 D01v01,for each frequency band, repeated SAR measurement is required only when the measured SAR is $\geqslant 0.8 \mathrm{~W} / \mathrm{Kg}$
2. Per KDB 865664 D01v01, if the ratio of largest to smallest SAR for the original and first repeated measurement is $\leqslant 1.2$ and the measured SAR $<1.45 \mathrm{~W} / \mathrm{Kg}$,only one repeated measurement is required.
3. The ratio is the difference in percentage between original and repeated measured SAR.

Band	Mode	Test Position	Freq (MHZ)	Original Measured SAR1g $(\mathrm{mW} / \mathrm{g})$	1st Repeated SAR1g $(\mathrm{mW} / \mathrm{g})$	Ratio	Original Measured SAR1g $(\mathrm{mW} / \mathrm{g})$	2nd Repeated SAR1g $(\mathrm{mW} / \mathrm{g})$	Ratio
WLAN 5GHz	802.11 a	Right	5180	1.00	0.986	1.014	--	--	--
WLAN 5GHz	802.11 HT 40	Right	5795	0.912	0.923	1.012			

11. EQUIPMENT LIST \& CALIBRATION STATUS

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Due
P C	HP	Core(rm)3.16G	CZCO48171H	N/A	N/A
Signal Generator	Agilent	E8257C	US37101915	$2 / 28 / 2017$	$02 / 27 / 2018$
S-Parameter Network Analyzer	Agilent	E5071B	MY42301382	$02 / 28 / 2017$	$02 / 27 / 2018$
Power Meter	Anritsu	ML2495A	1445010	$02 / 28 / 2017$	$02 / 27 / 2018$
Peak \& Average sensor	Anritsu	MA2411B	1339220	$02 / 28 / 2017$	$02 / 27 / 2018$
E-field PROBE	SPEAG	EX3DV4	3798	$07 / 27 / 2016$	$07 / 26 / 2017$
DAE	SPEAG	DEA4	1245	$07 / 26 / 2016$	$07 / 25 / 2017$
DIPOLE 2450MHZ ANTENNA	SPEAG	D2450V2	817	$05 / 31 / 2016$	$05 / 28 / 2019$
DIPOLE 5GHZ ANTENNA	SPEAG	D5GHzV2	1095	$05 / 25 / 2016$	$05 / 22 / 2019$
DUMMY PROBE	SPEAG	DP_2	SPDP2001AA	N/A	N/A
SAM PHANTOM (ELI4 v4.0)	SPEAG	QDOVA001BB	1102	N/A	N/A
Twin SAM Phantom	SPEAG	QD000P40CD	1609	N/A	N/A
ROBOT	SPEAG	TX60	F10/5E6AA1/A101	N/A	N/A
ROBOT KRC	SPEAG	CS8C	F10/5E6AA1/C101	N/A	N/A
LIQUID CALIBRATION KIT	ANTENNESSA	$41 / 05$ OCP9	00425167	N/A	N/A

12. FACILITIES

All measurement facilities used to collect the measurement data are located at
® No.10, Weiye Rd., Innovation Park, Eco \& Tec. Development Part, Kunshan City, Jiangsu Province, China.

13. REFERENCES

[1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
[2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commision, O_ce of Engineering \& Technology, Washington, DC, 1997.
[3] Thomas Schmid, Oliver Egger, and Niels Kuster, WAutomated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105\{113, Jan. 1996.
[4] Niels Kuster, Ralph K.astle, and Thomas Schmid, IDosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645\{652, May 1997.
[5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range $30 \mathrm{MHz}-6 \mathrm{GHz}$ ", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
[6] ANSI, ANSI/IEEE C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz , The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
[7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15\{17, 1997, pp. 120\{124.
[8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, $23\{25$ June, 1996, pp. 172\{175.
[9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, IThe dependence of EM energy absorption upon human head modeling at 900 MHz , IEEE Transactions onMicrowave Theory and Techniques, vol. 44, no. 10, pp. 1865\{1873, Oct. 1996.
[10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, IThe dependence of EM energy absorption upon human head modeling at 1800 MHz , IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
[11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
[12] W. H. Press, S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992..Dosimetric Evaluation of Sample device, month 19989
[13] NIS81 NAMAS, IThe treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
[14] Barry N. Taylor and Christ E. Kuyatt, IGuidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 199810

APPENDIX A: DUT AND SAR TEST SETUP
 APPENDIX B: PLOTS OF PERFORMANCE CHECK

The plots are showing as followings.

Test Laboratory: Compliance Certification Services Inc.
Date: 5/14/2017

SystemPerformanceCheck-Body D2450

DUT: Dipole 2450 MHz D2450V2; Type: D24500V2; Serial: 817
Communication System: UID 0, CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz ;Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.956 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.83 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Room Ambient Temperature: $22^{\circ} \mathrm{C}$; Liquid Temperature: $21.5^{\circ} \mathrm{C}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY Configuration:

- Probe: EX3DV4 - SN3798; ConvF(7.07, 7.07, 7.07); Calibrated: 7/27/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/26/2016
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- DASY52 52.8.8(1222);
- SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above $1 \mathrm{GHz} /$ Pin= 250 mW , dist=10mm (EX-
Probe)/Area Scan (9x10x1): Measurement grid: $d x=12 \mathrm{~mm}$, $d y=12 \mathrm{~mm}$
Maximum value of SAR (measured) $=16.9 \mathrm{~W} / \mathrm{kg}$
System Performance Check at Frequencies above $1 \mathrm{GHz} /$ Pin= 250 mW , dist=10mm (EX-
Probe)/Zoom Scan ($7 \times 7 \times 7$) ($7 \times 7 \times 7$)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, dy=5mm, dz=5mm
Reference Value $=98.29 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR (extrapolated) $=25.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=12.6 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.18 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.3 \mathrm{~W} / \mathrm{kg}$
dB
0
4.48

$0 \mathrm{~dB}=19.3 \mathrm{~W} / \mathrm{kg}=12.86 \mathrm{dBW} / \mathrm{kg}$

APPENDIX C: DASY CALIBRATION CERTIFICATE

The DASY Calibration Certificates are showing in the file named Appendix C DASY Calibration Certificate.

APPENDIX D: PLOTS OF SAR TEST RESULT

The plots are showing in the file named Appendix D: Plots of SAR Test Result.

