

FCC Test Report

Report No.: AGC09218200702FE02

FCC ID	:	2ADRG-BRY7301
APPLICATION PURPOSE		Original Equipment
PRODUCT DESIGNATION	:	Bluetooth keyboard
BRAND NAME	:	BRYDGE
MODEL NAME		BRY7301
APPLICANT	i	BRYDGE GLOBAL
DATE OF ISSUE	:	Aug. 01, 2020
STANDARD(S)	© •	FCC Part 15.247
REPORT VERSION	:	V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated Pasting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09218200702FE02 Page 2 of 50

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Aug. 01, 2020	Valid	Initial Release

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festive/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issue of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	
2.GENERAL INFORMATION	6
2.1PRODUCT DESCRIPTION	
3. MEASUREMENT UNCERTAINTY	
4. DESCRIPTION OF TEST MODES	
5. SYSTEM TEST CONFIGURATION	
5.1 CONFIGURATION OF TESTED SYSTEM 5.2 EQUIPMENT USED IN TESTED SYSTEM 5.3. SUMMARY OF TEST RESULTS	10 10
6. TEST FACILITY	
7. PEAK OUTPUT POWER	
7.1. MEASUREMENT PROCEDURE 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 7.3. LIMITS AND MEASUREMENT RESULT	
8. 6 DB BANDWIDTH	
8.1. MEASUREMENT PROCEDURE 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 8.3. LIMITS AND MEASUREMENT RESULTS	
9. CONDUCTED SPURIOUS EMISSION	
9.1. MEASUREMENT PROCEDURE 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 9.3. MEASUREMENT EQUIPMENT USED 9.4. LIMITS AND MEASUREMENT RESULT	17 17
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	
10.1 MEASUREMENT PROCEDURE 10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 10.3 MEASUREMENT EQUIPMENT USED 10.4 LIMITS AND MEASUREMENT RESULT.	
11. RADIATED EMISSION	
11.1. MEASUREMENT PROCEDURE 11.2. TEST SETUP 11.3. LIMITS AND MEASUREMENT RESULT 11.4. TEST RESULT	
14. FCC LINE CONDUCTED EMISSION TEST	

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the abeliated restro/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09218200702FE02 Page 4 of 50

14.1. LIMITS OF LINE CONDUCTED EMISSION TEST	
14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	
14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	
14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

1. VERIFICATION OF COMPLIANCE

Applicant	BRYDGE GLOBAL	
Address	1912 Sidewinder Dr #104, Park City Utah 84060, United States	
Manufacturer	Brydge Technologies LLC.	
Address	1912 Sidewinder Drive Suite 104 Park City, Utah 84060 USA	
Factory	DONGUAN KEYCEO TECH CO.,LTD	
Address	No.1, factory building, Tangkou, Miaoyi, Miaobianwang Village, Shipai Town Dongguan, China. CN52330	
Product Designation	Bluetooth keyboard	
Brand Name	BRYDGE	
Test Model	BRY7301	
Date of test	Jul. 13, 2020 to Aug. 01, 2020	
Deviation	No any deviation from the test method	
Condition of Test Sample	Normal	
Test Result	Pass	
Report Template	AGCRT-US-BLE/RF	

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.247.

Prepared By

Sky dong

Sky Dong (Project Engineer)

Max Zhank

Aug. 01, 2020

Reviewed By

Max Zhang (Reviewer)

Aug. 01, 2020

Approved By

owa

Forrest Lei (Authorized Officer)

Aug. 01, 2020

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated for the distance of the test results stamp. Stamp is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

2.GENERAL INFORMATION

2.1PRODUCT DESCRIPTION

The EUT is designed as a "Bluetooth keyboard". It is designed by way of utilizing the GFSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz	
RF Output Power	wer -6.612dBm(Max)	
Bluetooth Version	V 5.1	
Modulation	BR □GFSK, EDR □π /4-DQPSK, □8DPSK BLE ⊠GFSK 1Mbps □GFSK 2Mbps	
Number of channels	40 Channel	
Antenna Designation	Integral Antenna(Comply with requirements of the FCC part 15.203)	
Antenna Gain	-2.03dBi	
Hardware Version	V1.0	
Software Version	V1.1	
Power Supply	DC 5V by adapter or DC 3.7V by battery	

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	0	2402MHZ
		2404MHZ
2400~2483.5MHZ		
	38	2478 MHZ
	39	2480 MHZ

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand of the test results of the test results been altered in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day affective is not permitted without the written authorization of AGC of the test results be addressed to AGC by agc@agc~cert.com.

2.3 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for FCC ID: 2ADRG-BRY7301 filing to comply with the FCC Part 15.247 requirements.

2.4TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.7. ANTENNA REQUIREMENT

This intentional radiator is designed with a permanently attached antenna of an antenna to ensure that no antenna other than that furnished by the responsible party shall be used with the device. For more information of the antenna, please refer to the APPENDIX B: PHOTOGRAPHS OF EUT.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand of the stand of the test results stamp. Is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day affective report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, $Uc = \pm 0.8 dB$
- Uncertainty of RF power density, conducted, Uc = ±2.6 dB
- Uncertainty of spurious emissions, conducted, $Uc = \pm 2.7 \text{ dB}$
- Uncertainty of Occupied Channel Bandwidth: $Uc = \pm 2 \%$

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated fresh g/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter aphorization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX

Note:

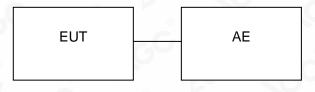
1. Only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

4. The test software is the nRFgo Studio which can set the EUT into the individual test modes.

5. The battery is full charged during the test.


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand resting in the stand of the test results been at the stand of the test results of the test results of the test apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

5. SYSTEM TEST CONFIGURATION

5.1 CONFIGURATION OF TESTED SYSTEM

Radiated Emission Configure :

Conducted Emission Configure :

EUT	AE

5.2 EQUIPMENT USED IN TESTED SYSTEM

ltem	Equipment	Model No.	ID or Specification	Remark
1	Bluetooth keyboard	BRY7301	2ADRG-BRY7301	EUT
2	Adapter	TY0500100E1MN	DC 5V	AE
3	Charger line	G258	N/A	AE
4	Control Box	N/A	USB-TTL	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(3)	Peak Output Power	Compliant
15.247 (a)(2)	6 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.247 (e)	Maximum Conducted Output Power Density	Compliant
15.209	Radiated Emission	Compliant
15.207	Conducted Emission	Compliant

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the submitted restriction of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd	
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China	
Designation Number	CN1259	
FCC Test Firm Registration Number	975832	
A2LA Cert. No.	5054.02	
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA	

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

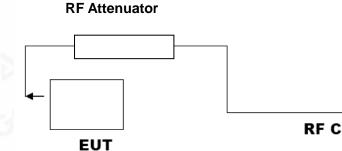
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	May 15, 2020	May 14, 2022
LISN	R&S	ESH2-Z5	100086	Aug. 26, 2019	Aug. 25, 2020
Test software	R&S	ES-K1(Ver.V1.71)	N/A	N/A	N/A

TEST EQUIPMENT OF RADIATED EMISSION TEST(May 19, 2020 to Jun. 10, 2020)

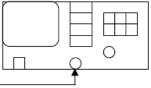
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	May 15, 2020	May 14, 2022
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 12, 2019	Dec. 11, 2020
2.4GHz Fliter	EM Electronics	2400-2500MHz	N/A	Mar. 23, 2020	Mar. 22, 2022
Attenuator	ZHINAN	E-002	N/A	Aug. 26, 2019	Aug. 25, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 09, 2019	Sep. 08, 2021
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	May 22, 2020	May 21, 2022
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 17, 2019	May 16, 2021
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 15, 2019	Oct. 16, 2020
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 09, 2019	Jan. 08, 2021
Test software	Tonscend	JS32-RE (Ver.2.5)	O N/A	N/A	N/A

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

7. PEAK OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For peak power test:


- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. RBW≥DTS bandwidth
- 3. VBW≥3*RBW.
- 4. SPAN≥VBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

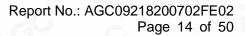
Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP

Spectrum Analyzer

RF Cable

Compliance Dedicated Fes Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by th g/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter aphorization of AGE he test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15d 🐙 after the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.


7.3. LIMITS AND MEASUREMENT RESULT

PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION							
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail				
2.402	-6.612	30	Pass				
2.440	-7.014	30	Pass				
2.480	-7.125	30	Pass				

CH0

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

CH19

CH39

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter approver, and AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

8.6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW \ge 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

8.3. LIMITS AND MEASUREMENT RESULTS

LIMITS AND MEASUREMENT RESULT							
Applicable Limite	Applicable Limits						
Applicable Limits	Test Data	Criteria					
S. C.	Low Channel	685.4	PASS				
>500KHZ	Middle Channel	686.4	PASS				
	High Channel	687.3	PASS				

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand in the report is not permitted without the written authorization of AGE in the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphroization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT							
Angliaghta Limita	Measurement Result						
Applicable Limits	Test Data	Criteria					
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.	At least -20dBc than the reference level	PASS PASS					

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Parting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC in the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day authorization of AGC in the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

TEST RESULT FOR ENTIRE FREQUENCY RANGE GFSK MODULATION IN LOW CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphroization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

Report No.: AGC09218200702FE02 Page 19 of 50

Agilent Spectrum	Analyzer - Swept S	iA					
LXI R	RF 50 Ω	AC CORREC	SEN	VSE:INT	ALIGN AUTO	11:04:35 AM Jul 14, 202	
Center Fre	eq 13.7417	50000 GHz	Trig: Free		g Type: Log-Pwr Hold: 10/10	TRACE 1234	
		PNO: Fas IFGain:Lo				TYPE MWWWW DET PNNN	N N
		II Gain.EU			841	4 04 770 0 01	Auto Tune
					IVIKI	1 24.779 3 GH	
10 dB/div	Ref 20.00 d	Bm				-48.621 dBi	m
Log							
10.0							Center Freq
0.00							13.741750000 GHz
-10.0							
-20.0						-26.73 d	Start Freq
-30.0						20.10 4	2.483500000 GHz
-40.0							1
-50.0					an and a star story where where	and specify we needed a strategy of the second	Stop Freq
-60.0 Heatles Room		al dia mandra dia dia dia dia dia dia dia dia dia di		and the state of t	and the strength of the	A Statistics of the second	
TO 0							25.00000000 GHz
-70.0							
Start 2.48 0	24-					Oton 35 00 CL	Z CF Step
#Res BW 1		-443	/BW 300 kHz		Curson	Stop 25.00 GF 2.152 s (30000 pt	
#Res DW		#\			Sweep	2. 152 S (30000 pt	Auto Man
MKR MODE TRC		×	Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
1 N 1	f	24.779 3 GHz	-48.621 dE	3m			
2							Freq Offset
4							0 Hz
5							0112
6							
8							
9							
10							
11							
MSG					STATU	5	

GFSK MODULATION IN MIDDLE CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand of the test results of the test results been at the report is not permitted without the writter aphorization of AGE in the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09218200702FE02 Page 20 of 50

gilent Spectrum Analyzer - Swep R RF 50 Center Freq 1.2150	Ω AC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 10/10	11:07:38 AM Jul 14, 2020 TRACE 123456 TYPE MWWWAWW	Frequency
0 dB/div Ref 20.00	PNO: Fast ↔ IFGain:Low	Atten: 30 dB		1 2.311 99 GHz -56.227 dBm	Auto Tun
0 dB/div Ref 20.00					Center Fre 1.215000000 GF
0.0				-27.11 dBm	Start Fre 30.000000 M⊦
0.0 0.0 0.0 	tills ford for consistent of sound to fail and	र्ग क्रा कस्थार कर कर के लिए हो है है। जान		e educer ster star and a star star and a liter	Stop Fre 2.400000000 G⊦
0.0 tart 30 MHz Res BW 100 kHz	#VBV	/ 300 kHz	Sweep 22	Stop 2.400 GHz 8.0 ms (30000 pts)	CF Ste 237.000000 MH
KR MODE TRC SCL	×	Y F	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
1 N 1 f 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.311 99 GHz	-56.227 dBm			Freq Offse 0 H
6 7 8 9					
				▼	
G			STATUS		
jilent Spectrum Analyzer - Swep R RF 50 :		SENSE:INT	ALIGNAUTO	11:08:03 AM Jul 14, 2020	
enter Freq 13.741		Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Frequency
0 dB/div Ref 20.00			Mkr	24.988 0 GHz -48.522 dBm	Auto Tun
					Center Fre 13.741750000 GH
20.0				-27.11 dBm	Start Free 2.483500000 GH
40.0 50.0 60.0			alata di Alia ana ana ana ana ana ana ana ana ana a		Stop Fre
					25.000000000 GH
Start 2.48 GHz #Res BW 100 kHz		V 300 kHz		Stop 25.00 GHz 152 s (30000 pts)	CF Ste 2.251650000 GH <u>Auto</u> Ma
MKR MODE TRC SCL 1 N 1 f 2	× 24.988 0 GHz	Y F -48.522 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offse
5 6 7 C					
8 9 10 11					
(

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuerce of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

	GFSK N				
	50 Ω AC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	11:11:25 AM Jul 14, 2020	Frequency
Center Freq 2.480	PNO: Wide * IFGain:Low	→ Trig: Free Run Atten: 30 dB	Avg Hold: 10/10	TRACE 123456 TYPE MWWWW DET PNNNNN	
	II Galil.EUw		Mkr1 2.	480 001 7 GHz	Auto Tui
10 dB/div Ref 20.0	0 dBm			-7.218 dBm	
10.0					Center Fre
0.00		_ 1			2.48000000 GH
-10.0		- marine - marine	The second se		
-20.0			- Water		Start Fre
-40.0			- Margan	~~~n~	2.478500000 GI
-50.0	n ny hy				Stop Fre
-00.0					2.481500000 GI
-70.0					
Center 2.480000 G #Res BW 100 kHz		W 300 kHz	Sween 20	Span 3.000 MHz 00 ms (30000 pts)	CF Ste 300.000 ki
MKR MODE TRC SCL	***B		Sweep 2.0	FUNCTION VALUE	<u>Auto</u> Ma
1 N 1 f	2.480 001 7 GHz	-7.218 dBm			
3					Freq Offs 0 F
5 6					01
7 8					
9					
11				v	
MSG			STATUS		
Agilent Spectrum Analyzer - Sw XI R RF S Center Freq 1.215	50 Ω AC CORREC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 10/10	11:11:34 AM Jul 14, 2020 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
	IFGain:Low	Atten: 30 dB		DET <mark>PNNNN</mark>	Auto Tur
10 dB/div Ref 20.0	0 dBm		IVIKE	1 2.352 36 GHz -56.792 dBm	
Log 10.0					Comton Em
0.00					Center Fre 1.215000000 GH
-10.0					
-20.0				-27.22 dBm	Start Fre
-30.0					30.000000 MH
-40.0				4	
					Stop Fre
-60.0			and the product of the	and the standing of the state street land	
		e specification i provinsi pro Na sela se interna interna provinsi provinsi provinsi provinsi provinsi provinsi provinsi provinsi provinsi pro	n bei producen piene inn fot foi period af differen y en forder til differen. Ne de gran period af de service period af difference period af difference period af difference period af differ		2.400000000 GH
-60.0	n general de la comparate de la participa de la comparate de la comparate de la comparate de la comparate de la Comparate de la comparate de la Comparate de la comparate de la		nd felg yn egyn glwer aw fel fel yn yr defel yn gyn gwy ar gyn gwl yn ar fel fel Men fel y gyn gwr gor a gwl en yn gwr a gyn gwl yn gwl gor gwr ef glwer gwl	Stop 2.400 GHz	
-60.0 -70.0 Start 30 MHz	politi cili de la constanta de #VB	W 300 kHz	Sweep 22	Stop 2.400 GHz 8.0 ms (30000 pts)	CF Ste 237.000000 Mi
-60.0	X	Y	Sweep 22		CF Ste 237.000000 Mi
600 500 510 510 510 510 510 510 5				8.0 ms (30000 pts)	CF St e 237.00000 Mł <u>Auto</u> Ma
-60.0 -70.0 -7	X	Y		8.0 ms (30000 pts)	CF Ste 237.000000 Mł <u>Auto</u> Mł Freq Offs
-60.0 -70.0 -7	X	Y		8.0 ms (30000 pts)	CF Ste 237.000000 Mł <u>Auto</u> Mł Freq Offs
-60.0 -00.0	X	Y		8.0 ms (30000 pts)	CF Ste 237.000000 Mł <u>Auto</u> Mł Freq Offs
60.0 Add Market (1996) .70.0	X	Y		8.0 ms (30000 pts)	2.40000000 GH CF Ste 237.00000 MH <u>Auto</u> Ma Freq Offs 0 H
60.0	X	Y		8.0 ms (30000 pts) Function Value	CF Ste 237.000000 MH <u>Auto</u> Ma Freq Offs

GFSK MODULATION IN HIGH CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09218200702FE02 Page 22 of 50

	Spectrun	n Analy	zer - Swept	SA											
L <mark>XI</mark> R		RF	50 Ω		CORREC		SEI	NSE:INT	_		ALIGN AUTO		M Jul 14, 2020		Frequency
Cen	ter Fr	eq 1	13.7500	000000	GHz		Trig: Free	- Dun		g Type ∦Hold:	: Log-Pwr		CE 123456 PE MWWWW		Trequency
					PNO: Fast IFGain:Lov	{ → →	Atten: 30		Avg	grioia.	10/10		ET P NNNN		
					II Gain.cov	P									Auto Tune
											WKr	1 20.61	0 1 GHz		
10 dE	3/div	Ref	f 20.00 (dBm								-49.2	82 dBm		
Log															
10.0															Center Freq
0.00														13	3.750000000 GHz
-10.0															
-20.0													-27.22 dBm		Start Freq
-30.0													-27.22 GDm		2.500000000 GHz
															2.5000000000000
-40.0												1			
-50.0											liter and the second state	Antiber Charge and	म् <mark>जन्म का राजे जुन्द्र का लेखा</mark>		01
-60.0	Sector Isla	-	and the state	a the later of the second	ويسالع بالمح والع			a de lite			No. of Concession, Name	Contraction of the latter	and a star of a starting of		Stop Freq
	and and a second		and a second			C. MARINE								25	5.000000000 GHz
-70.0															
	t 2.50										_		25.00 GHz		CF Step
#Re	s BW	100	kHz		#V	BW.	300 kHz				Sweep :	2.152 s (3	30000 pts)	Au	2.250000000 GHz ito Man
MKR N	IODE TR	CI SCL		×			Y		FUNCTION	FUN	ICTION WIDTH	FUNCTI	ON VALUE	Au	ito iviari
1	N 1			20.6	10 1 GHz		-49.282 di	Зm							
2															Freq Offset
3															•
4															0 Hz
6															
7								<u>کو کار</u>							
8															
10															
11								_ ک					-		
i -															
MSG											STATUS	6			

Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit.


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter explorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

TEST RESULT FOR BAND EDGE GFSK MODULATION IN LOW CHANNEL

GFSK MODULATION IN HIGH CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphroization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuence of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 10.2 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 7.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.


10.4 LIMITS AND MEASUREMENT RESULT

Channel No.	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low Channel	-24.127	8	Pass
Middle Channel	-24.547	8	Pass
High Channel	-24.708	8	Pass

TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated for the distribution of stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day affective issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

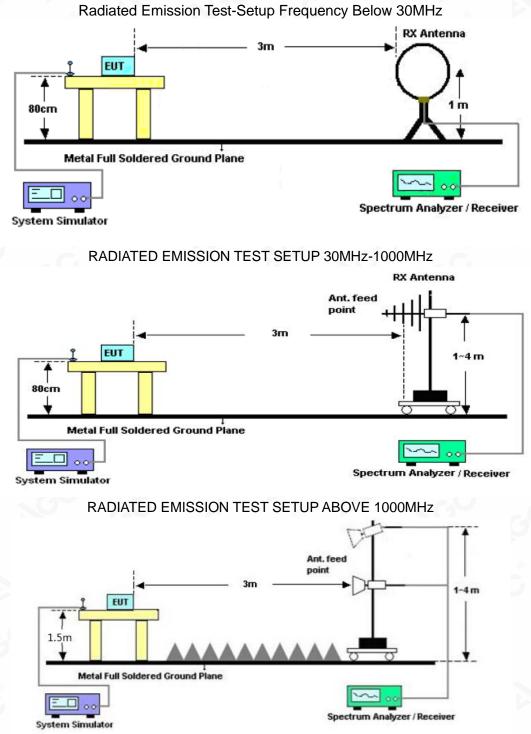
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter aphrorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE


- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09218200702FE02 Page 27 of 50

11.2. TEST SETUP

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated restriction of Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter aphorization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

11.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

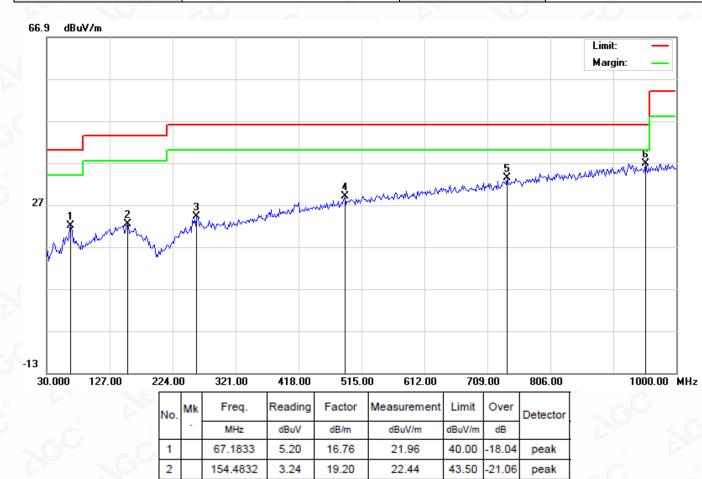
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter extinorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09218200702FE02 Page 29 of 50

RADIATED EMISSION BELOW 1GHZ

EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Bedicated Pertug/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGE" he test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after he issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

3

4

5

6

261.1833

489.1333

739.7167

953.1167

5.85

4.16

4.32

4.61

18.41

24.77

29.05

32.16

24.26

28.93

33.37

36.77

46.00

46.00

46.00

46.00

-21.74

-17.07

-12.63

-9.23

peak

peak

peak

peak

1000.00 MHz

EUT		Bluetoo	th keyboa	rd		Model N	ame	BRY	7301
Temperatu	ire	25° C				Relative	Humidity	55.4	%
Pressure		960hPa				Test Voltage		Norr	nal Voltage
Test Mode		Mode 1				Antenna		Verti	cal
66.9 dBuV	/m								Limit: — Margin: —
27	2 M M M	Jurnah	Hender Marchader	and the second		. Å.			mmm

2	24.00)	321.00	418.00	515.0	0 612.00	709	.00	806.00
	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector
		•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
	1		67.1833	12.86	16.76	29.62	40.00	-10.38	peak
	2		138.3167	8.47	19.12	27.59	43.50	-15.91	peak
	3		460.0333	5.22	24.19	29.41	46.00	-16.59	peak
	4		600.6833	4.70	26.96	31.66	46.00	-14.34	peak
	5		768.8167	4.54	29.71	34.25	46.00	-11.75	peak
	6	*	928.8667	5.24	31.95	37.19	46.00	-8.81	peak

RESULT: PASS Note:

30.000

127.00

- 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.
- 2. All test modes had been tested. The mode 1 is the worst case and recorded in the report.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.

Report No.: AGC09218200702FE02 Page 31 of 50

EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal
		Antenna	TIONZONIA

RADIATED EMISSION ABOVE 1GHZ

Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
44.69	0.08	44.77	74	-29.23	peak
35.47	0.08	35.55	54	-18.45	AVG
40.12	2.21	42.33	74	-31.67	peak
32.56	2.21	34.77	54 💿	-19.23	AVG
8			C.	®	
. 6	C			C.	3
		© .			a G
enna Factor + C	able Loss –	Pre-amplifier.			
	(dBµV) 44.69 35.47 40.12 32.56	(dBµV) (dB) 44.69 0.08 35.47 0.08 40.12 2.21 32.56 2.21	(dBµV) (dB) (dBµV/m) 44.69 0.08 44.77 35.47 0.08 35.55 40.12 2.21 42.33	(dBµV) (dB) (dBµV/m) (dBµV/m) 44.69 0.08 44.77 74 35.47 0.08 35.55 54 40.12 2.21 42.33 74 32.56 2.21 34.77 54	(dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 44.69 0.08 44.77 74 -29.23 35.47 0.08 35.55 54 -18.45 40.12 2.21 42.33 74 -31.67 32.56 2.21 34.77 54 -19.23

() () () () () () () () () () () () () (0
EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Ture
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4804.000	46.19	0.08	46.27	74	-27.73	peak
4804.000	37.18	0.08	37.26	54 💿	-16.74	AVG
7206.000	41.98	2.21	44.19	74	-29.81	peak
7206.000	32.67	2.21	34.88	54	-19.12	AVG
		- 60	\odot		<u>.</u>	60
emark:			20		0	
actor = Ante	enna Factor + C	able Loss – Pi	re-amplifier.		C.	R

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.000	45.62	0.14	45.76	74	-28.24	peak
4880.000	36.18	0.14	36.32	54	-17.68	AVG
7320.000	40.25	2.36	42.61	74	-31.39	peak
7320.000	31.26	2.36	33.62	54	-20.38	AVG
	0				®	
						(2)

EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.000	45.19	0.14	45.33	74 💿	-28.67	peak
4880.000	37.23	0.14	37.37	54	-16.63	AVG
7320.000	41.03	2.36	43.39	74	-30.61	peak
7320.000	32.44	2.36	34.8	54	-19.2	AVG
8			60		©	
emark:						

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated restruction of Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter aphorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.000	45.29	0.22	45.51	74	-28.49	peak
4960.000	36.47	0.22	36.69	54	-17.31	AVG
7440.000	38.16	2.64	40.8	74	-33.2	peak
7440.000	29.18	2.64	31.82	54	-22.18	AVG
<u> </u>	8			C	®	
		3			- C.	8
emark:	0 - 0		6		100	- (
actor = Ante	enna Factor + Ca	ble Loss –	Pre-amplifier.			

EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.000	43.58	0.22	43.8	74	-30.2	peak
4960.000	34.17	0.22	34.39	54 💿	-19.61	AVG
7440.000	39.24	2.64	41.88	74	-32.12	peak
7440.000	29.53	2.64	32.17	54	-21.83	AVG
. (2)		10 ⁰				<u>69</u>
emark:						

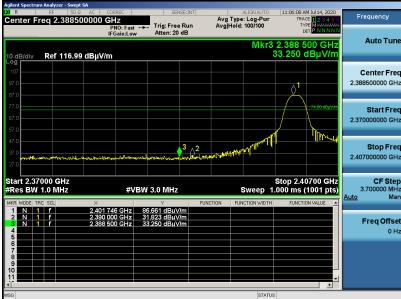
Factor = Antenna Factor + Cable Loss – Pre-amplifier.

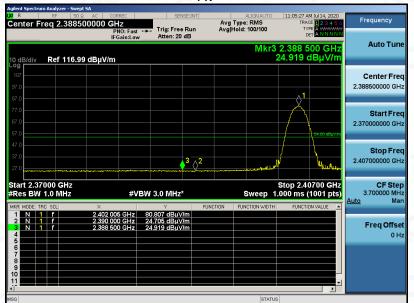
RESULT: PASS

Note:

The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.

Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit. The "Factor" value can be calculated automatically by software of measurement system.


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the step dedicated restron/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGS. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.


EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

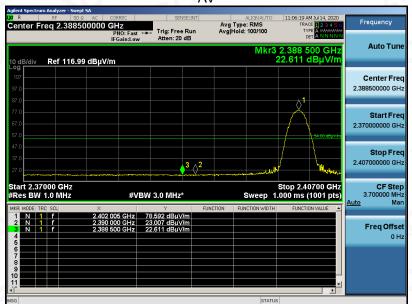
PK

AV

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

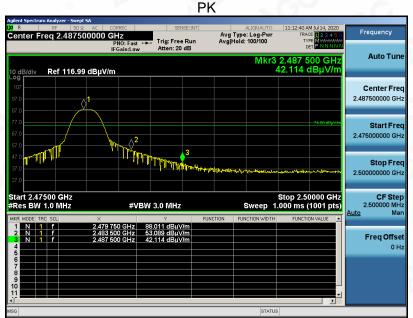
Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/



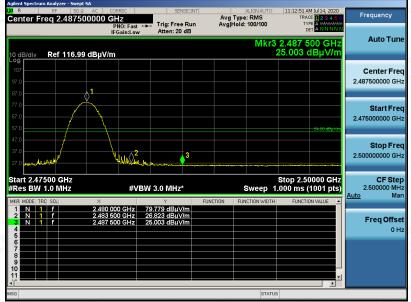
Report No.: AGC09218200702FE02 Page 35 of 50

EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical
	F C F	РК	

AV


RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.



Report No.: AGC09218200702FE02 Page 36 of 50

EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal
DI/			

AV

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the topologicated restron/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09218200702FE02 Page 37 of 50

EUT	Bluetooth keyboard	Model Name	BRY7301
Temperature	25° C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

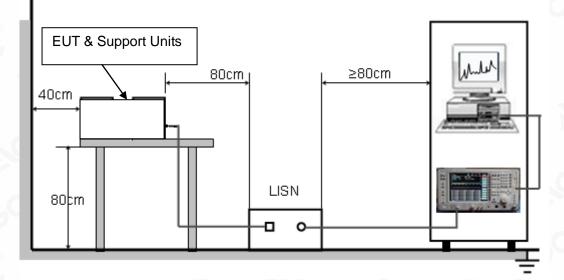
97.0 1 2.487500000 GH 97.0 1 1 1 97.0 1 1 1 97.0 1 1 1 1 97.0 1 1 1 1 1 97.0 1 1 1 1 1 1 97.0 1 <

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated Pestua/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

14. FCC LINE CONDUCTED EMISSION TEST


14.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Franciscov	Maximum RF Line Voltage					
Frequency	Q.P.(dBuV)	Average(dBuV)				
150kHz~500kHz	66-56	56-46				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the second device of the test results stamp. Is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written aphorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less -2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the topompliance strug/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Line Conducted Emission Test Line 1-L Level [dBµV] 70 60 50 40 30 20 10 0 -10 -20 150k 600k 400k 800k 1M 3M 4M 5M 6M 10M 20M 30N 300k 2M 8M Frequency [Hz] x x MES agc_fin

14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

MEASUREMENT RESULT: "agc fin"

2020/7/15 11:1	11						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.162000 0.250000 0.294000 0.614000 0.722000 0.918000	34.50 27.70 26.70 30.00 29.40 24.80	9.3 9.3 9.3 9.3 9.3 9.3	65 62 56 56 56	30.9 34.1 33.7 26.0 26.6 31.2	QP QP QP	L1 L1 L1 L1 L1 L1	FLO FLO FLO FLO FLO FLO

MEASUREMENT RESULT: "agc fin2"


2020/7/15 11:	11							
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.174000	18.60	9.3	55	36.2	AV	L1	FLO	
0.242000	16.80	9.3	52	35.2	AV	L1	FLO	
0.294000	14.10	9.3	50	36.3	AV	L1	FLO	
0.618000	19.80	9.3	46	26.2	AV	L1	FLO	
0.726000	18.60	9.3	46	27.4	AV	L1	FLO	
0.918000	14.50	9.3	46	31.5	AV	L1	FLO	

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Festing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGE. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Report No.: AGC09218200702FE02 Page 41 of 50

Line Conducted Emission Test Line 2-N

MEASUREMENT RESULT: "agc fin"

:02						
Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
34.90	9.3	66	30.7	QP	N	FLO
26.10	9.3	60	33.8	QP	N	FLO
26.90	9.3	56	29.1	QP	N	FLO
28.30	9.3	56	27.7	QP	N	FLO
23.70	9.3	56	32.3	QP	N	FLO
21.80	9.3	56	34.2	QP	Ν	FLO
	dBµV 26.10 26.90 28.30 23.70	Level Transd dBµV dB 34.90 9.3 26.10 9.3 26.90 9.3 28.30 9.3 23.70 9.3	Level Transd Limit dBµV dB dBµV 34.90 9.3 66 26.10 9.3 60 26.90 9.3 56 28.30 9.3 56 23.70 9.3 56	Level Transd Limit Margin dBµV dB dBµV dB 34.90 9.3 66 30.7 26.10 9.3 60 33.8 26.90 9.3 56 29.1 28.30 9.3 56 27.7 23.70 9.3 56 32.3	Level Transd Limit Margin Detector dBµV dB dBµV dB 34.90 9.3 66 30.7 QP 26.10 9.3 60 33.8 QP 26.90 9.3 56 29.1 QP 28.30 9.3 56 27.7 QP 23.70 9.3 56 32.3 QP	Level Transd Limit Margin Detector Line dBµV dB dBµV dB 34.90 9.3 66 30.7 QP N 26.10 9.3 60 33.8 QP N 26.90 9.3 56 29.1 QP N 28.30 9.3 56 27.7 QP N 23.70 9.3 56 32.3 QP N

MEASUREMENT RESULT: "agc fin2"

2020/7/15 11:	02						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.158000	17.80	9.3	56	37.8	AV	N	FLO
0.274000	15.10	9.3	51	35.9	AV	N	FLO
0.506000	14.30	9.3	46	31.7	AV	N	FLO
0.738000	15.50	9.3	46	30.5	AV	N	FLO
1.226000	12.70	9.3	46	33.3	AV	N	FLO
2.034000	10.10	9.3	46	35.9	AV	N	FLO

RESULT: PASS

Note: All the test modes had been tested, the mode 1 was the worst case. Only the data of the worst case would be record in this test report.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated fracting/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written beinvalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written beinvalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written beinvalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written beinvalid. Copying or excerpting portion of or eport issued by AGC should be submitted to AGC within 15day affective is in the report apply only to the test report should be addressed to AGC by agc@agc-cert.com.

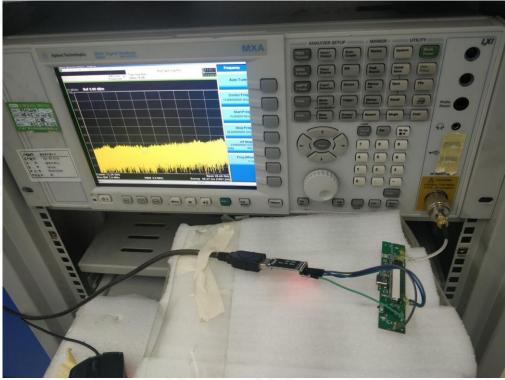
Report No.: AGC09218200702FE02 Page 42 of 50

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHZ

RADIATED EMISSION TEST SETUP ABOVE 1GHZ

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated for the formation of the stamp. Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

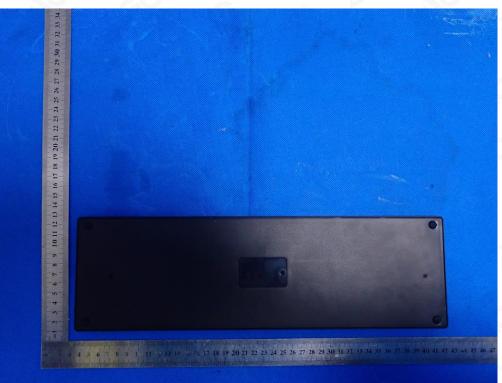


Report No.: AGC09218200702FE02 Page 43 of 50

CONDUCTED EMISSION TEST SETUP

CONDUCTED TEST SETUP

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pasting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuer of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

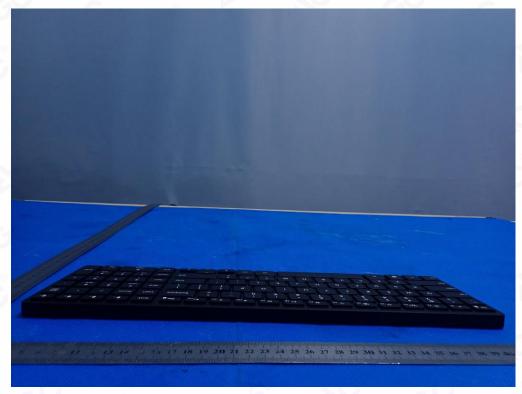

Report No.: AGC09218200702FE02 Page 44 of 50

APPENDIX B: PHOTOGRAPHS OF EUT

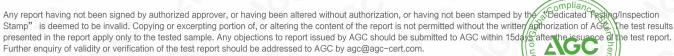
TOP VIEW OF EUT

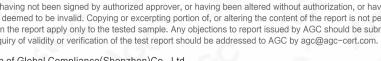
BOTTOM VIEW OF EUT

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated resting/inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter authorization of AGE the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15da/Cafter the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc~cert.com.



Report No.: AGC09218200702FE02 Page 45 of 50


FRONT VIEW OF EUT


BACK VIEW OF EUT

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the bedicated restriction of Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the writter aphorization of AGC the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issue of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

RIGHT VIEW OF EUT

LEFT VIEW OF EUT

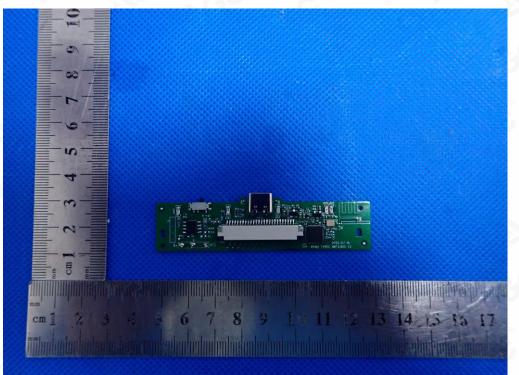
Report No.: AGC09218200702FE02 Page 46 of 50

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.

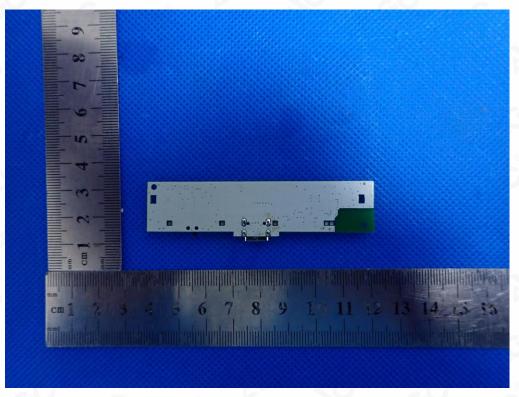
 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com



Report No.: AGC09218200702FE02 Page 47 of 50

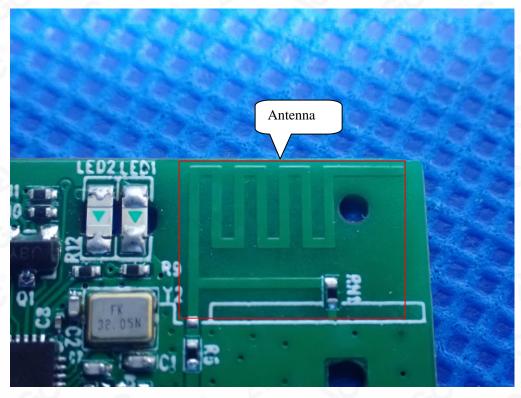


Report No.: AGC09218200702FE02 Page 48 of 50

INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2

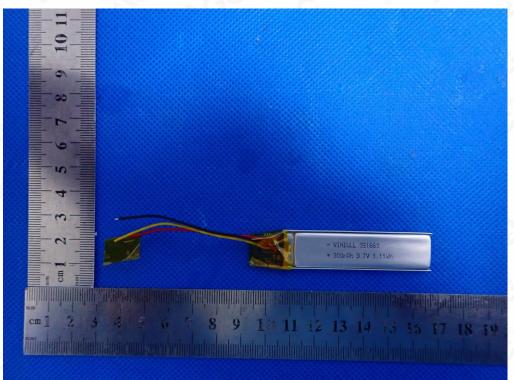
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the test results of the report is not permitted without the written authorization of AGE, the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issues of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.



Report No.: AGC09218200702FE02 Page 49 of 50

INTERNAL VIEW OF EUT-3

INTERNAL VIEW OF EUT-4



Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the stand of the test results of the test results been altered in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day affective is not permitted without the written authorization of AGC of the test results be addressed to AGC by agc@agc~cert.com.

Report No.: AGC09218200702FE02 Page 50 of 50

VIEW OF BATTERY

----END OF REPORT----

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the Bedicated Pesting/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written approver, and the test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15day after the issuerce of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc@agc-cert.com.