

Report Seal

TEST REPORT

Product : Easi-Scope Visual

Trade mark : TTS

Model/Type reference : SC10202

Serial Number : N/A

Report Number : EED32M80075901

FCC ID : 2ADRESC10202

Date of Issue : Dec. 18, 2020

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

TTS-Group Ltd

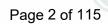
Unit 1, Park Lane Business Park Park Lane, Kirkby in Ashfield, NG179GU, United Kingdom

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

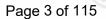
TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:	Tom chen	Reviewed by:	Lavon Ma
MTERNATION	Tom Chen		Aaron Ma
Approved by:	David Wany	Date:	Dec. 18, 2020
E (CTI)	David Wang	0	0
00	/		Ch1v-7050404420


Check:7059161120

2 Version

Version No.	Date	(c	Description	Y)
00	Dec. 18, 2020		Original	
0				



3 Test Summary

o rest duminiary	J-17		
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

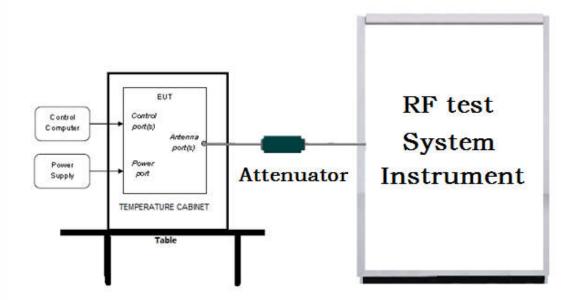
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 4 of 115

4 Content

1 CO	VER PAGE					1
2 VEI	RSION			•••••		2
3 TE	ST SUMMARY		•••••	•••••	•••••	3
4 CO	NTENT				•••••	4
5 TE	ST REQUIREMENT	1/2			•••••	
5.2	1 TEST SETUP	setupsions test setupsions test setup				6
6 GE	NERAL INFORMATION.		•••••	•••••	•••••	7
6.2 6.3 6.4 6.5 6.6 6.7 6.8	CLIENT INFORMATION GENERAL DESCRIPTION OF PRODUCT SPECIFICATION OF SUPPORE TEST LOCATION	OF EUT I SUBJECTIVE TO THIS SET UNITS ARDS TANDARD CONDITIONS QUESTED BY THE CUSTAINTY (95% CONFIDENCE	GTANDARD FOMER CE LEVELS, K=2)			
7 EQ	UIPMENT LIST				•••••	10
	DIO TECHNICAL REQU					
	Appendix A): Conducted Appendix B): 6dB Occup Appendix C): Band-edge Appendix D): RF Conductor C	ied Bandwidthfor RF Conducted Erected Spurious Emission ctral Densityequirement	missions onssionssionsionsionsionsionsionsionsionsionsionsionsionsion.	adiated)		
PHO	TOGRAPHS OF TEST S	ETUP		•••••	•••••	101
PHO [.]	TOGRAPHS OF EUT CO	INSTRUCTIONAL DE	ETAILS			104



Page 5 of 115

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

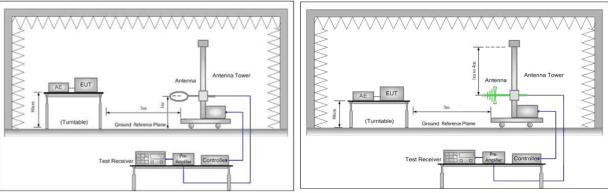


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

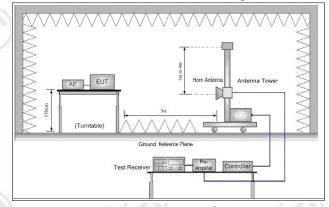
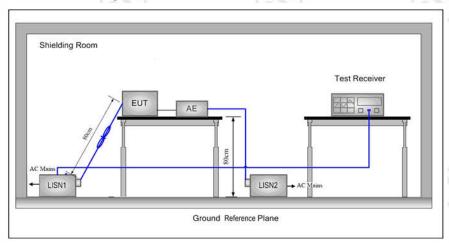



Figure 3. Above 1GHz

Page 6 of 115

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

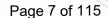
5.2 Test Environment

Operating Environment:			(0)
Temperature:	24.0 °C		
Humidity:	54 % RH	160	
Atmospheric Pressure:	1010mbar		0

5.3 Test Condition

Test channel:

Test Mode	Ty/Dy	RF Channel			
rest Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
902 11h/a/a/UT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)	24 12WITZ ~2402 WITZ	2412MHz	2437MHz	2462MHz	
900 11m/LIT40)	04000411- 0450 0411-	Channel 1	Channel 4	Channel7	
802.11n(HT40)	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				


Test mode:

Pre-scan under all rate at lowest channel 1

Through Pre-scan, 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of802.11n(HT40).

6 General Information

6.1 Client Information

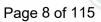
Applicant:	TTS-Group Ltd
Address of Applicant:	Unit 1, Park Lane Business Park Park Lane, Kirkby in Ashfield, NG179GU, United Kingdom
Manufacturer:	Sunpet Industries Limited
Address of Manufacturer: Unit 618, Lakeside 2, No. 10 Science Park West Avenue, Hong Ko	
Factory:	Zhongshan Sunpet Plastics & Electronics Mfy. Ltd.
Address of Factory:	109 Zhongshan Port Avenue, Zhongshan Torch Development Zone, Zhongshan City, Guangdong Province, China

6.2 General Description of EUT

Product Name:	Easi-Scope Visual				
Model No.(EUT):	SC10202	(15)			
Trade mark:	TTS	(25)			
EUT Supports Radios application:	IEEE 802.11 b/g/n(HT20)(HT40): 2412MHz to 2462MHz				
Power Supply:	DC 5V				
(ci)	Lithium Polymer Battery	Model:ICR17335 DC 3.7V 700mAh			
Sample Received Date:	Nov. 16, 2020				
Sample tested Date:	Nov. 16, 2020 to Nov. 27, 2020				

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz		
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels		
Channel Separation:	5MHz		
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,QPSK,BPSK)		
Test Power Grade:	Reference Table		
Test Software of EUT:	SecureCRT		
Antenna Type and Gain:	Type: Dipole Antenna Gain:3 dBi		
Test Voltage:	DC 3.7V		



Channel	Frequency	Channel	Frequency	Channel	Frequ	ency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442	MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447	MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452	MHz		
Operation	Frequency ea	ch of chann	el(802.11n HT ₄	10)		9		
Channel	Frequ	ency	Channel	Frequenc	су	Chan	nel	Frequency
1	2422	MHz	4	2437MH	z	7	13	2452MHz
2	2427	MHz	5	2442MH	z			
3	2432	MHz	6	2447MH	z			

Page 9 of 115

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associ	ated equipment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC
AE2	Power supply Unit	OPPO	Ak933JH	J51642000007	СТІ	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

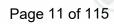
6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
(1)	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
	Kr power, conducted	0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages 0.026%	

Report No. :EED32M80075901 Page 10 of 115


7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	(0.)	(ـــ ال
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		(O)	(6)
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(6)	(5)

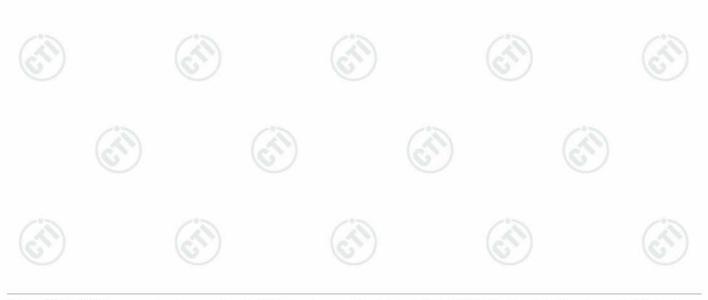
ra	- 0.7%	- 0		400	-0-		
Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Cal. date Number (mm-dd-yyyy)		Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021		
Temperature/ Humidity Indicator	Defu	TH128		/	- (is		
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021		
Barometer	changchun	DYM3	1188				

1.43	1.20		1 631		1.63
	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/107 11112	(F)		(E1)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	/ - 30	
Cable line	Fulai(3M)	SF106	5217/6A	(24.7)	

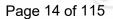
Page 12 of 115

Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date
	Manuacturer	Wiodei No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
test software		JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980597	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	(20)	
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		/3
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(C)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Report No. :EED32M80075901 Page 13 of 115


8 Radio Technical Requirements Specification

Reference documents for testing:


No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

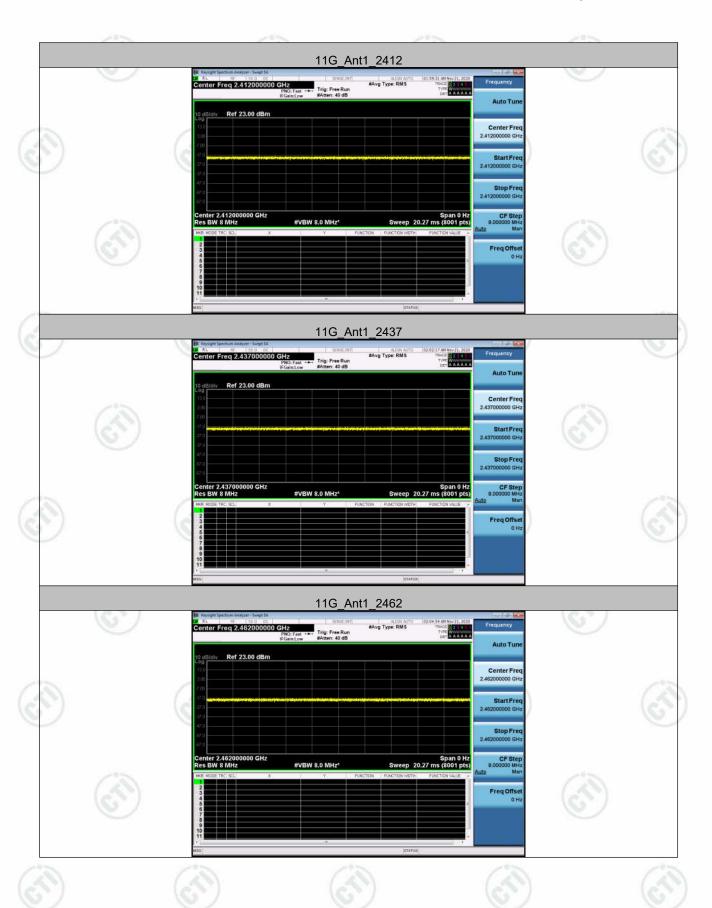
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

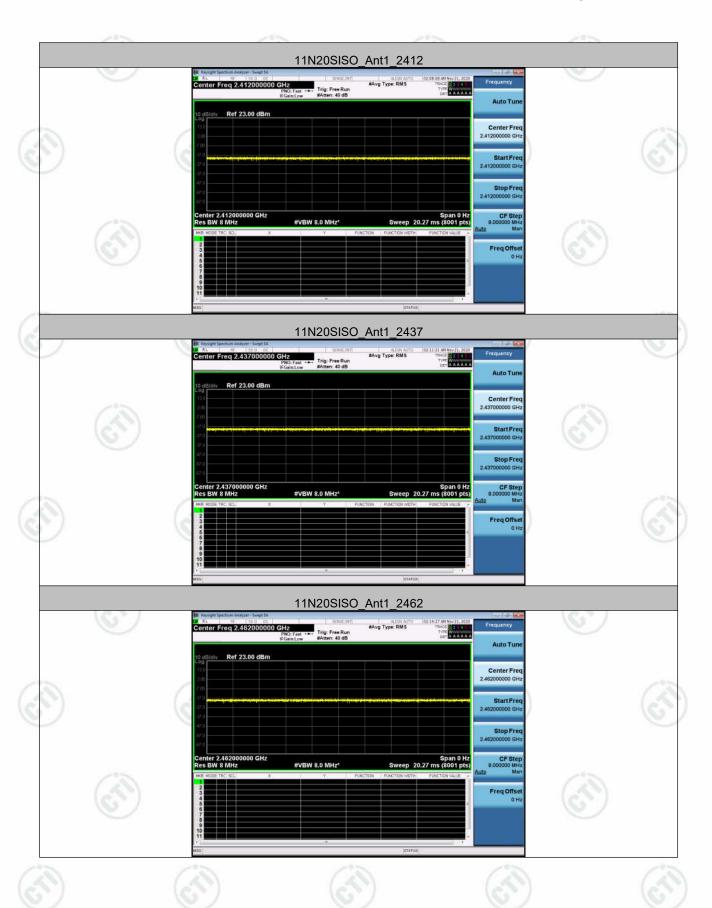
EUT DUTY CYCLE

Result Table

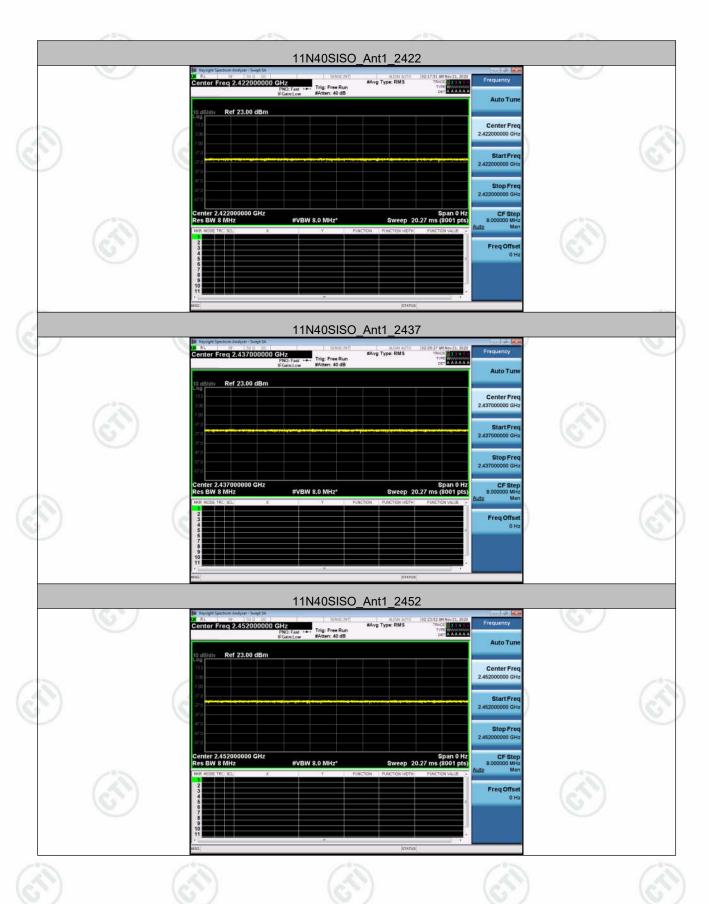
		A Section 1			
Test Mode	Antenna	Channel	Duty Cycle [%]	Limit	Verdict
	Ant1	2412	100		PASS
11B	Ant1	2437	100	S	
)	Ant1	2462	100	(°)	PASS
	Ant1	2412	100		PASS
11G	Ant1	2437	100		PASS
	Ant1	2462	100		PASS
6	Ant1	2412	100		PASS
11N20SISO	Ant1	2437	100		PASS
	Ant1	2462	100		PASS PASS PASS PASS PASS PASS PASS PASS
	Ant1	2422	100	<u></u>	PASS
11N40SISO	Ant1	2437	100	<u> </u>	PASS PASS PASS PASS PASS PASS PASS PASS
	Ant1	2452	100		PASS




Page 15 of 115



Page 16 of 115



Page 17 of 115

Page 18 of 115

Report No. :EED32M80075901 Page 19 of 115

Appendix A): Conducted Peak Output Power

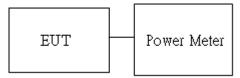
Test Limit

According to §15.247(b)(3),

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi. If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Limit	Ci	 ✓ Antenna not exceed 6 dBi: 30dBm ☐ Antenna with DG greater than 6 dBi: [Limit = 30 - (DG - 6)] ☐ Point-to-point operation: 	(FI)
-------	----	--	------


Average output power: For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Test Setup

Test Result

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	12.26	PASS
11B	MCH	12.53	PASS
11B	НСН	12.9	PASS
11G	LCH	11.52	PASS
11G	MCH	12.41	PASS
11G	HCH	12.78	PASS
11N20SISO	LCH	10.88	PASS
11N20SISO	MCH	11.74	PASS
11N20SISO	HCH	12.2	PASS
11N40SISO	LCH	10.83	PASS
11N40SISO	MCH	11.28	PASS
11N40SISO	НСН	11.64	PASS

Page 21 of 115

Appendix B): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2),

6 dB Bandwidth:

31 (6.3)		100
Limit	Shall be at least 500kHz	(0)
LIIIII	Chair be at least obold iz	

Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 and ANSI C63.10: 2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100KHz , VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	10.06	15.120	PASS
11B	MCH	10.07	15.134	PASS
11B	НСН	9.094	15.109	PASS
11G	LCH	16.52	16.745	PASS
11G	MCH	16.52	16.744	PASS
11G	НСН	16.53	16.748	PASS
11N20SISO	LCH	17.74	17.935	PASS
11N20SISO	MCH	17.74	17.938	PASS
11N20SISO	НСН	17.76	17.930	PASS
11N40SISO	LCH	36.36	36.125	PASS
11N40SISO	МСН	36.32	36.098	PASS
11N40SISO	НСН	36.31	36.025	PASS

Page 23 of 115

Test Graph

Page 24 of 115



Page 25 of 115



Page 26 of 115

Page 27 of 115

Page 28 of 115

Page 29 of 115

Page 30 of 115

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

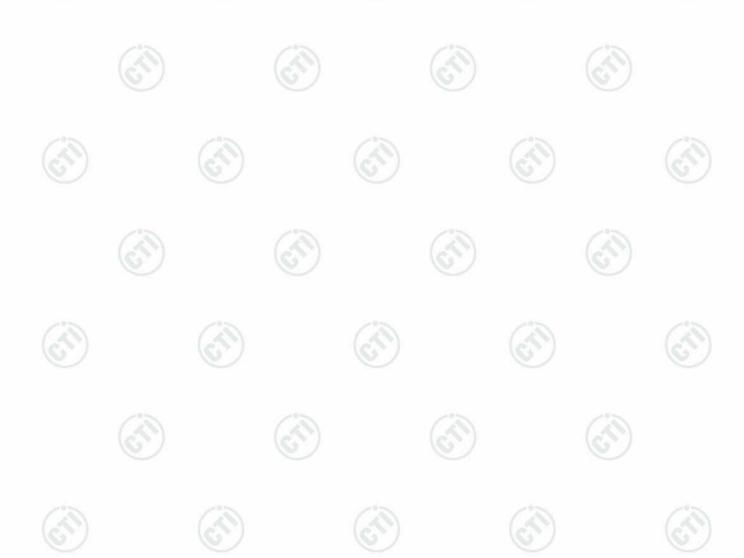
In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01.

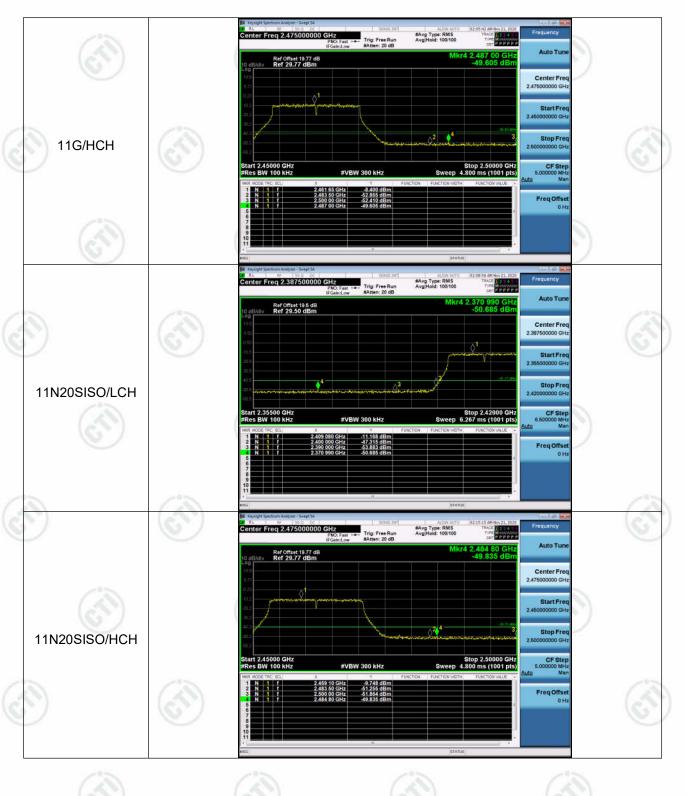
- EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


Test Setup EUT Spectrum Analyzer

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	-0.690	-50.312	-30.69	PASS
11B	НСН	-0.012	-49.621	-30.01	PASS
11G	LCH	-9.580	-50.398	-39.58	PASS
11G	НСН	-8.400	-49.605	-38.4	PASS
11N20SISO	LCH	-11.168	-50.685	-41.17	PASS
11N20SISO	НСН	-9.748	-49.835	-39.75	PASS
11N40SISO	LCH	-14.100	-49.890	-44.1	PASS
11N40SISO	НСН	-13.409	-49.916	-43.41	PASS

Page 33 of 115


Test Graph

Page 34 of 115

Page 35 of 115

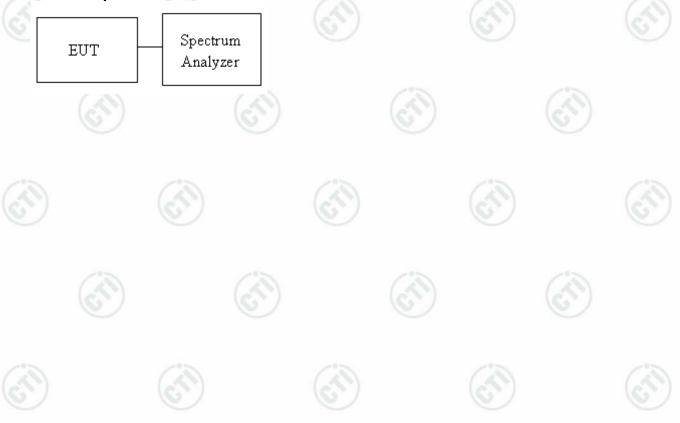
Report No. :EED32M80075901 Page 36 of 115

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,


Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

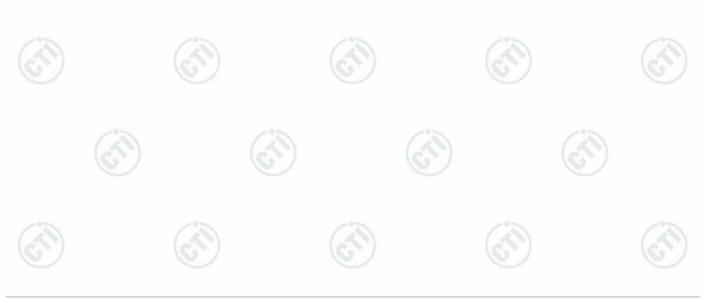
Test method Refer as KDB 558074 D01.


- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

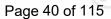
Test Setup

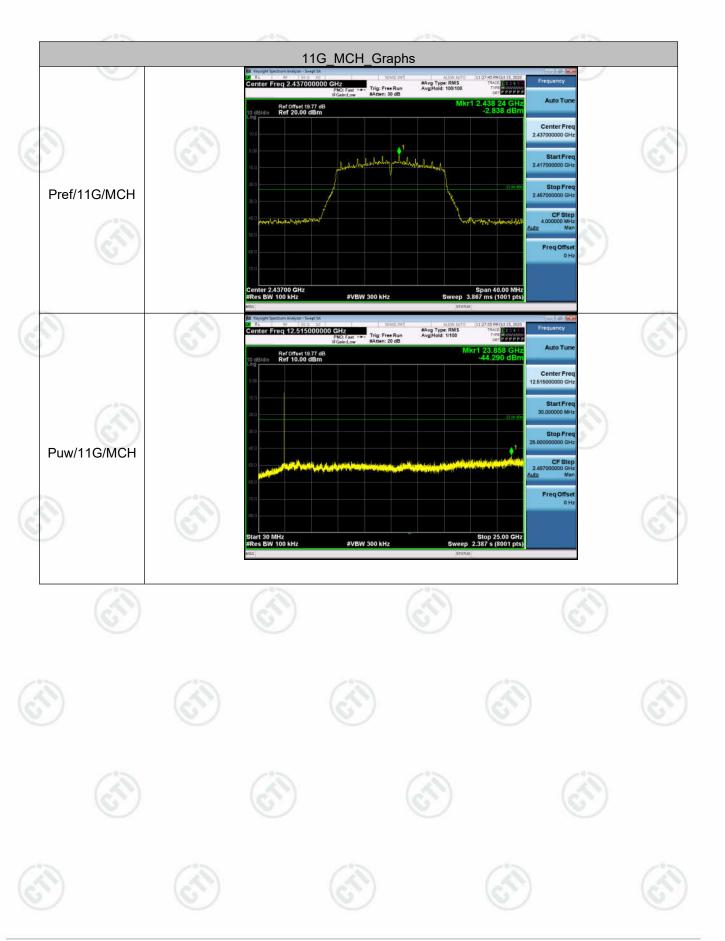
Result Table

		A DE A COLOR DE LA		
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	-2.903	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	-2.042	<limit< td=""><td>PASS</td></limit<>	PASS
11B	нсн	-1.972	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-8.042	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-8.582	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	-7.422	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-11.102	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-11.19	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-11.262	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-15.947	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	-13.449	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	НСН	-13.849	<limit< td=""><td>PASS</td></limit<>	PASS



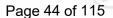
Test Graph



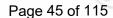


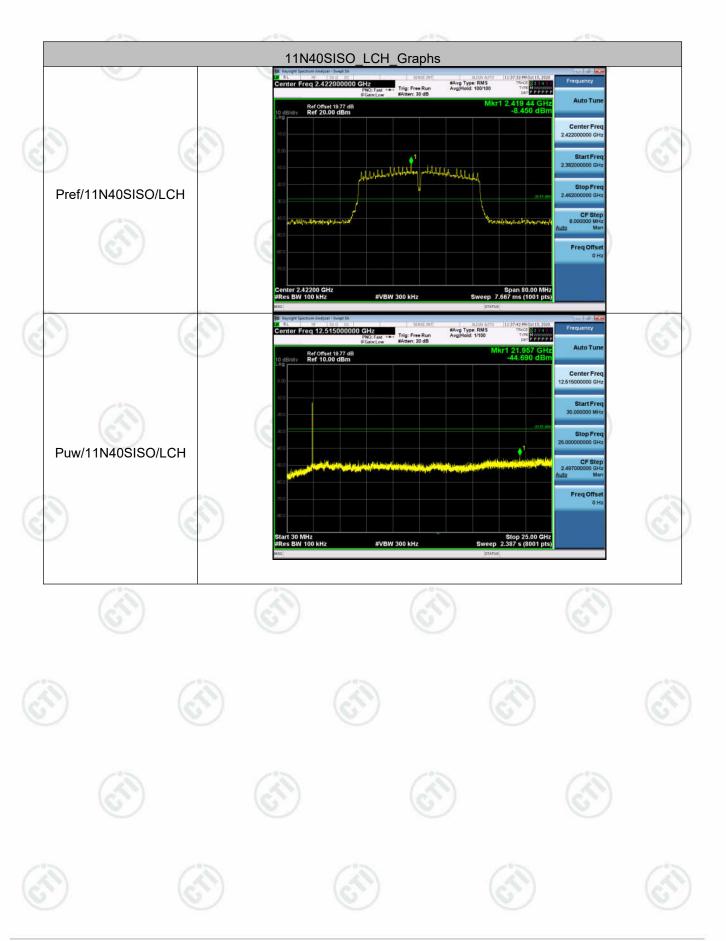


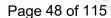
Page 42 of 115

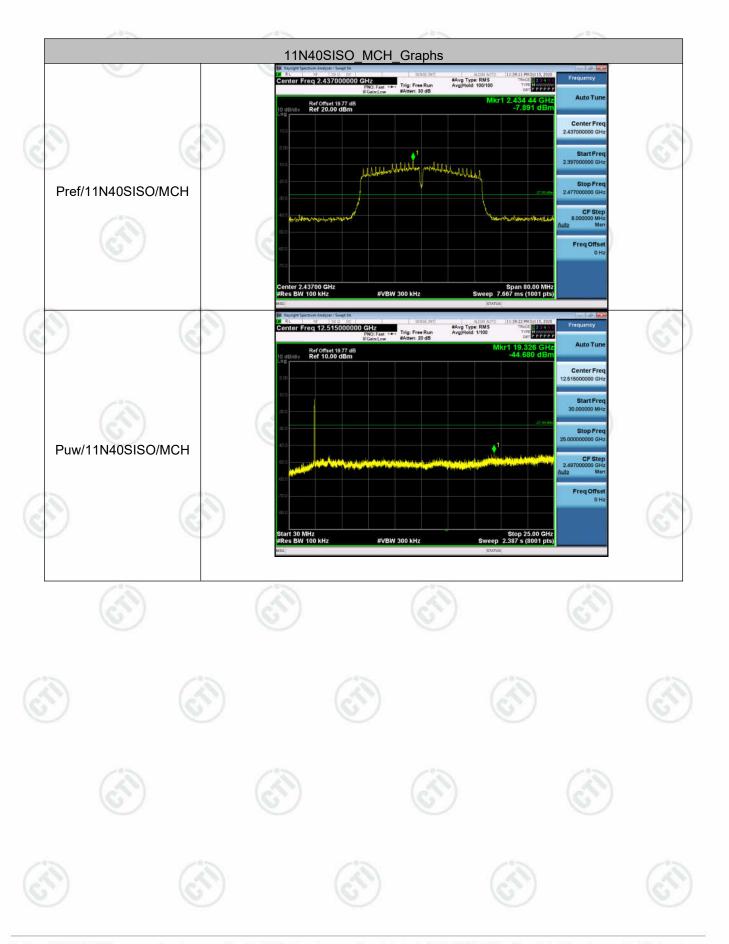


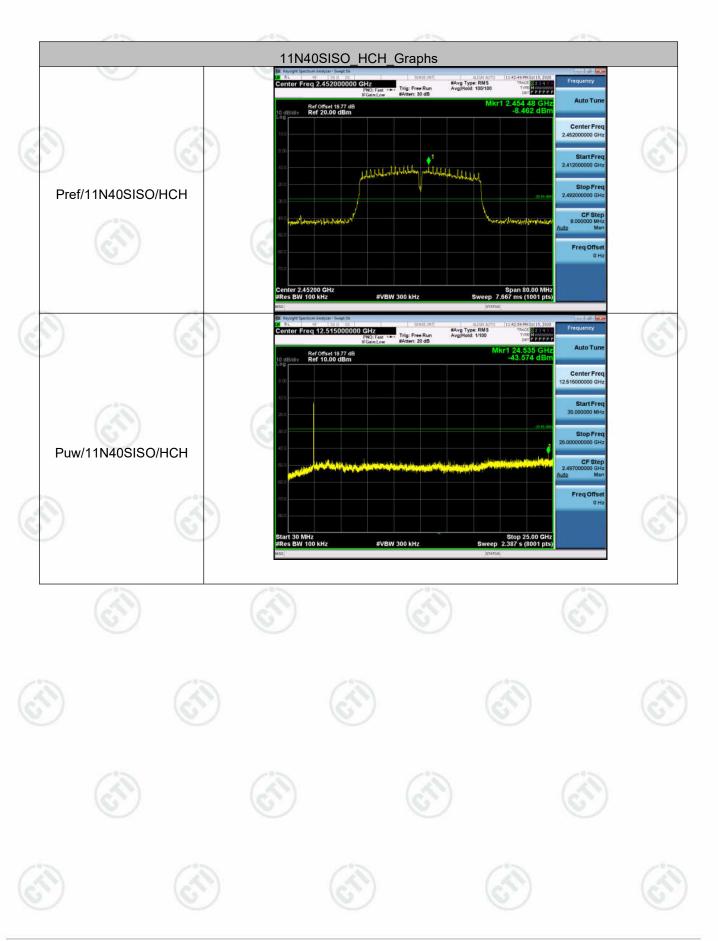

Page 43 of 115

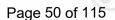












Page 49 of 115

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit C	 ✓ Antenna not exceed 6 dBi: 8dBm ☐ Antenna with DG greater than 6 dBi: [Limit = 8 – (DG – 6)] 	
	☐ Point-to-point operation:	

Test Procedure

Test method Refer as KDB 558074 D01.


- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss was compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

Test Setup

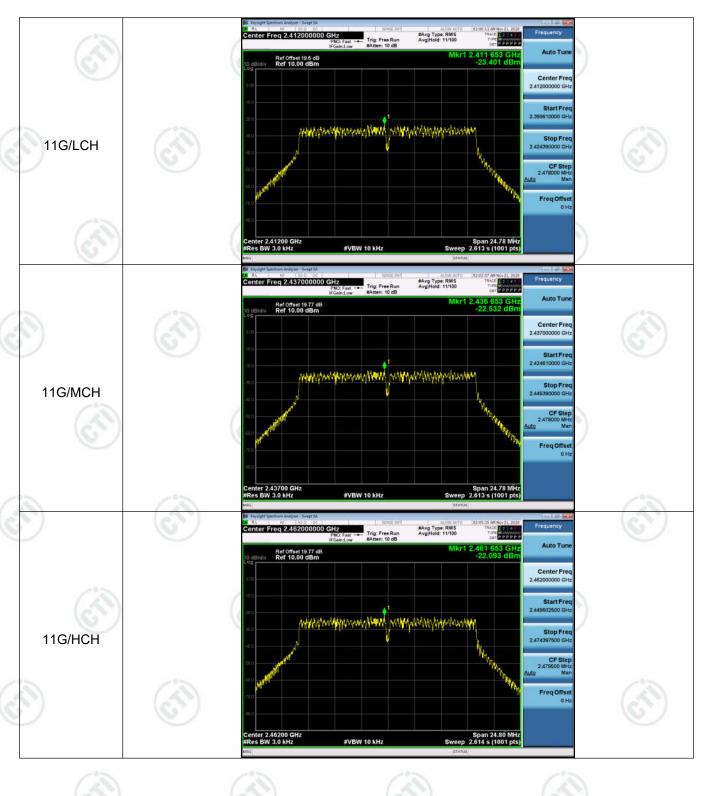
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Result Table

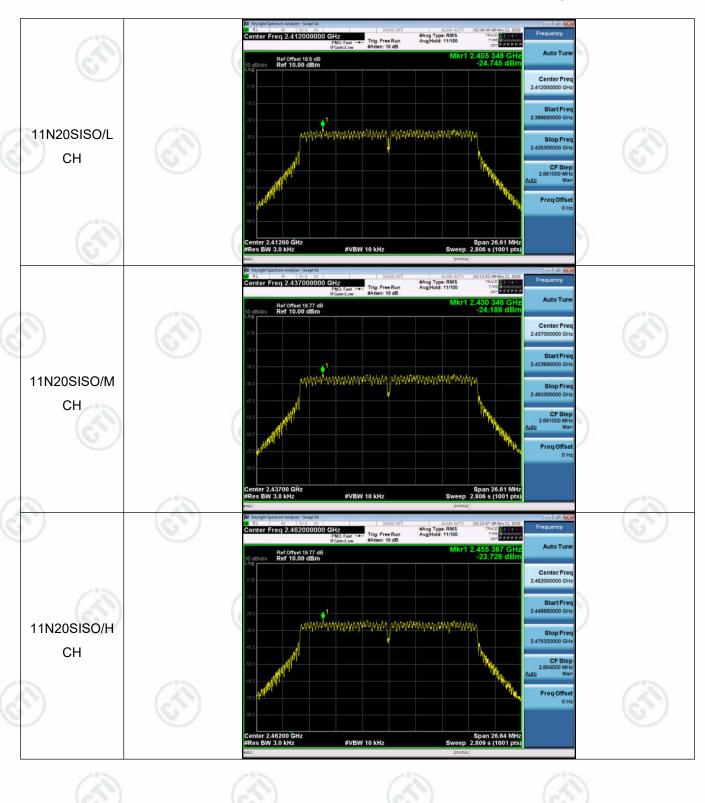
A Review of the second	A STATE A	16747	W
Mode	Channel	Power Spectral Density [dBm]	Verdict
11B	LCH	-20.734	PASS
11B	MCH	-20.392	PASS
11B	HCH	-20.086	PASS
11G	LCH	-23.401	PASS
11G	MCH	-22.532	PASS
11G	HCH	-22.093	PASS
11N20SISO	LCH	-24.745	PASS
11N20SISO	MCH	-24.188	PASS
11N20SISO	HCH	-23.726	PASS
11N40SISO	LCH	-25.102	PASS
11N40SISO	MCH	-26.111	PASS
11N40SISO	нсн	-23.683	PASS

Page 52 of 115

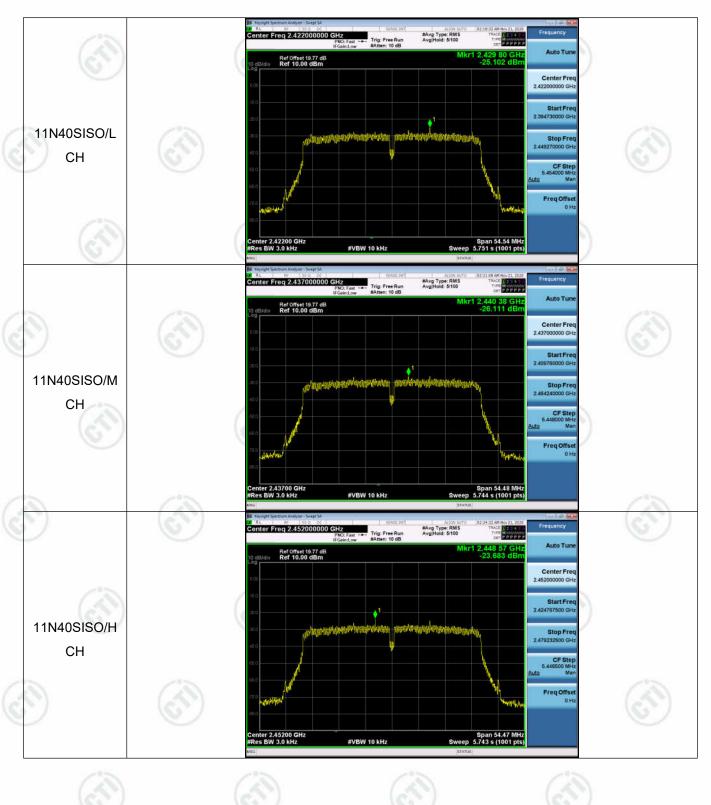
Test Graph



Page 53 of 115



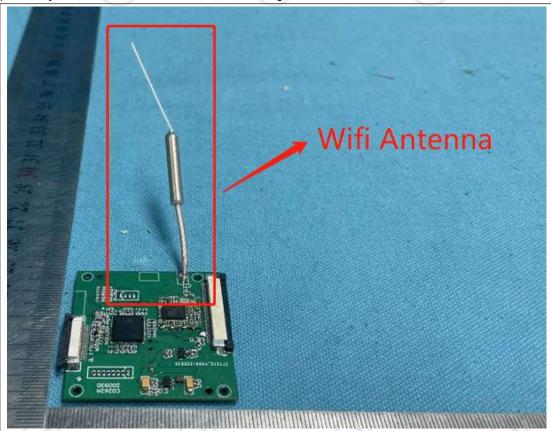
Page 54 of 115



Page 55 of 115

Report No. :EED32M80075901 Page 56 of 115

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

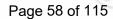
15.247(b) (4) requirement:

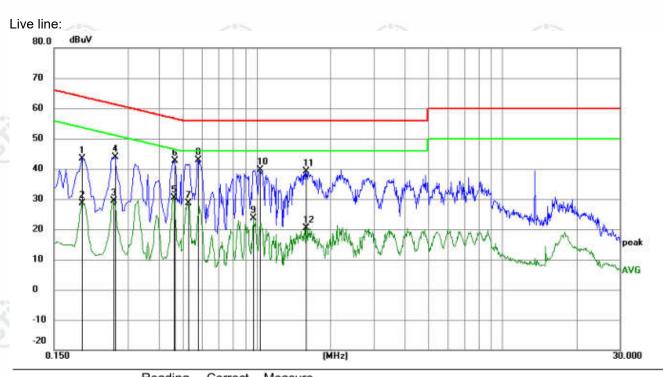
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Dipole Antenna on the main PCB and no consideration of replacement. The best case gain of the antenna is 3 dBi.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com




Page 57 of 115 Report No. :EED32M80075901

shall be 0.4 m from the vertical ground reference plane. The vertical gr reference plane was bonded to the horizontal ground reference plane. The LI was placed 0.8 m from the boundary of the unit under test and bonded to a gr reference plane for LISNs mounted on top of the ground reference plane. distance was between the closest points of the LISN 1 and the EUT. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condumeasurement. Limit: Condumn	Test Procedure:	Test frequency range :150KHz-30MHz 1) The mains terminal disturbance voltage test was conducted in a shielded room.							
which was bonded to the ground reference plane in the same way as the LISN the unit being measured. A multiple socket outlet strip was used to connect mu power cables to a single LISN provided the rating of the LISN was not exceede 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the greference plane. And for floor-standing arrangement, the EUT was placed on horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the shall be 0.4 m from the vertical ground reference plane. The vertical greference plane was bonded to the horizontal ground reference plane. The LI was placed 0.8 m from the boundary of the unit under test and bonded to a greference plane for LISNs mounted on top of the ground reference plane. The LI was placed 0.8 m from the closest points of the LISN 1 and the EUT. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condumeasurement. Limit: Frequency range (MHz)		Stabilization Network) w	hich provides a 50Ω /	50μH + 5Ω linear im	pedance. The				
the unit being measured. A multiple socket outlet strip was used to connect mupower cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the greference plane. And for floor-standing arrangement, the EUT was placed on horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The rear of the shall be 0.4 m from the vertical ground reference plane. The vertical greence plane was bonded to the horizontal ground reference plane. The LI was placed 0.8 m from the boundary of the unit under test and bonded to a greference plane for LISNs mounted on top of the ground reference plane. distance was between the closest points of the LISN 1 and the EUT. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condumeasurement. Limit: Frequency range (MHz)									
reference plane. And for floor-standing arrangement, the EUT was placed of horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The rear of the shall be 0.4 m from the vertical ground reference plane. The vertical greference plane was bonded to the horizontal ground reference plane. The LI was placed 0.8 m from the boundary of the unit under test and bonded to a greference plane for LISNs mounted on top of the ground reference plane. The LI was placed 0.8 m from the boundary of the unit under test and bonded to a greference plane for LISNs mounted on top of the ground reference plane. The LISN 2 mounted on top of the ground reference plane. The LISN 2 mounted on top of the ground reference plane. The LISN 2 mounted to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condumeasurement. Limit: Frequency range (MHz)		the unit being measured.	A multiple socket outle	et strip was used to co	nnect multiple				
4) The test was performed with a vertical ground reference plane. The rear of the shall be 0.4 m from the vertical ground reference plane. The vertical greference plane was bonded to the horizontal ground reference plane. The LI was placed 0.8 m from the boundary of the unit under test and bonded to a greference plane for LISNs mounted on top of the ground reference plane. distance was between the closest points of the LISN 1 and the EUT. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condumeasurement. Frequency range (MHz) Limit (dBμV)		reference plane. And for	floor-standing arrang						
distance was between the closest points of the LISN 1 and the EUT. All other of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and the interface cables must be changed according to ANSI C63.10 on condumeasurement. Limit: Frequency range (MHz)		4) The test was performed with a vertical ground reference plane. The rear of the EU shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN was placed 0.8 m from the boundary of the unit under test and bonded to a ground							
the interface cables must be changed according to ANSI C63.10 on condumeasurement. Limit: Frequency range (MHz) Limit (dBµV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency NOTE: The lower limit is applicable at the transition frequency Note: The lower limit is applicable at the transition frequency Note: The lower limit is applicable at the transition frequency Note: The lower limit is applicable at the transition frequency Note: The lower limit is applicable at the transition frequency Note: The lower limit is applicable at the transition frequency Note: The lower limit is applicable at the transition frequency Note: The lower limit is applicable at the transition frequency Note: The lower limit is applicable at the transition frequency Note: The lower limit is applicable at the transition frequency Note: The lower limit is applicable at the transition frequency		distance was between th of the EUT and associate	e closest points of the ed equipment was at le	LISN 1 and the EUT. ast 0.8 m from the LIS	All other units N 2.				
Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency leasurement Data In initial pre-scan was performed on the live and neutral lines with peak detector. Reasi-Peak and Average measurement were performed at the frequencies with maximized peak emission		5) In order to find the maximum emission, the relative positions of equipment and all o the interface cables must be changed according to ANSI C63.10 on conducted measurement.							
Prequency range (MHz) Quasi-peak O.15-0.5 66 to 56* 56 to 46* O.5-5 56 46 5-30 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency easurement Data In initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peak emission	_imit:								
Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency easurement Data In initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peak emission		Eroguanay rango (MUz)	Limit (dBμV)						
0.5-5 56 46 5-30 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency easurement Data In initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peak emission		Frequency range (MH2)	Quasi-peak	Average					
* The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency easurement Data initial pre-scan was performed on the live and neutral lines with peak detector. lasi-Peak and Average measurement were performed at the frequencies with maximized peak emission		0.15-0.5	66 to 56*	to 56* 56 to 46*					
* The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency easurement Data initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peak emission		0.5-5	56	46					
to 0.50 MHz. NOTE: The lower limit is applicable at the transition frequency easurement Data i initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peak emission		5-30	60	50					
n initial pre-scan was performed on the live and neutral lines with peak detector. uasi-Peak and Average measurement were performed at the frequencies with maximized peak emission									
uasi-Peak and Average measurement were performed at the frequencies with maximized peak emission	easurement Data								
	n initial pre-scan wa	s performed on the live and ne	utral lines with peak de	etector.					
etected.	uasi-Peak and Aver	age measurement were perforr	ned at the frequencies	with maximized peak	emission were				
	etected.								

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	0.1949	33.52	9.87	43.39	63.83	-20.44	QP	
	0.1949	18.79	9.87	28.66	53.83	-25.17	AVG	
	0.2625	19.28	10.00	29.28	51.35	-22.07	AVG	
	0.2670	33.78	10.00	43.78	61.21	-17.43	QP	
	0.4605	20.41	9.96	30.37	46.68	-16.31	AVG	
	0.4650	32.59	9.96	42.55	56.60	-14.05	QP	
	0.5280	18.60	9.98	28.58	46.00	-17.42	AVG	
*	0.5775	32.79	10.04	42.83	56.00	-13.17	QP	
	0.9735	13.91	9.84	23.75	46.00	-22.25	AVG	
	1.0275	29.90	9.83	39.73	56.00	-16.27	QP	
	1.5900	29.30	9.81	39.11	56.00	-16.89	QP	
	1.5900	10.67	9.81	20.48	46.00	-25.52	AVG	
_		MHz 0.1949 0.1949 0.2625 0.2670 0.4605 0.4650 0.5280 * 0.5775 0.9735 1.0275 1.5900	Mk. Freq. Level MHz dBuV 0.1949 33.52 0.1949 18.79 0.2625 19.28 0.2670 33.78 0.4605 20.41 0.4650 32.59 0.5280 18.60 * 0.5775 32.79 0.9735 13.91 1.0275 29.90 1.5900 29.30	Mk. Freq. Level Factor MHz dBuV dB 0.1949 33.52 9.87 0.1949 18.79 9.87 0.2625 19.28 10.00 0.2670 33.78 10.00 0.4605 20.41 9.96 0.4650 32.59 9.96 0.5280 18.60 9.98 * 0.5775 32.79 10.04 0.9735 13.91 9.84 1.0275 29.90 9.83 1.5900 29.30 9.81	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1949 33.52 9.87 43.39 0.1949 18.79 9.87 28.66 0.2625 19.28 10.00 29.28 0.2670 33.78 10.00 43.78 0.4605 20.41 9.96 30.37 0.4650 32.59 9.96 42.55 0.5280 18.60 9.98 28.58 * 0.5775 32.79 10.04 42.83 0.9735 13.91 9.84 23.75 1.0275 29.90 9.83 39.73 1.5900 29.30 9.81 39.11	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.1949 33.52 9.87 43.39 63.83 0.1949 18.79 9.87 28.66 53.83 0.2625 19.28 10.00 29.28 51.35 0.2670 33.78 10.00 43.78 61.21 0.4605 20.41 9.96 30.37 46.68 0.4650 32.59 9.96 42.55 56.60 0.5280 18.60 9.98 28.58 46.00 * 0.5775 32.79 10.04 42.83 56.00 1.0275 29.90 9.83 39.73 56.00 1.5900 29.30 9.81 39.11 56.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB 0.1949 33.52 9.87 43.39 63.83 -20.44 0.1949 18.79 9.87 28.66 53.83 -25.17 0.2625 19.28 10.00 29.28 51.35 -22.07 0.2670 33.78 10.00 43.78 61.21 -17.43 0.4605 20.41 9.96 30.37 46.68 -16.31 0.4650 32.59 9.96 42.55 56.60 -14.05 0.5280 18.60 9.98 28.58 46.00 -17.42 * 0.5775 32.79 10.04 42.83 56.00 -13.17 0.9735 13.91 9.84 23.75 46.00 -22.25 1.0275 29.90 9.83 39.73 56.00 -16.27 1.5900 29.30 9.81 39.11 56.0	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB Detector 0.1949 33.52 9.87 43.39 63.83 -20.44 QP 0.1949 18.79 9.87 28.66 53.83 -25.17 AVG 0.2625 19.28 10.00 29.28 51.35 -22.07 AVG 0.2670 33.78 10.00 43.78 61.21 -17.43 QP 0.4605 20.41 9.96 30.37 46.68 -16.31 AVG 0.4650 32.59 9.96 42.55 56.60 -14.05 QP 0.5280 18.60 9.98 28.58 46.00 -17.42 AVG * 0.5775 32.79 10.04 42.83 56.00 -13.17 QP 0.9735 13.91 9.84 23.75 46.00 -22.25 AVG 1.0275 29.90

