MPE Calculation

Model	:	CE-OSK201
Product Type	:	Smart Kit
Applicant	:	GD Midea Air-conditioning Equipment Co.,Ltd
Address	:	Lingang Road, Beijiao, Shunde, FOSHAN, Guangdong, China
Manufacturer	:	GD Midea Air-conditioning Equipment Co.,Ltd
Address	:	Lingang Road, Beijiao, Shunde, FOSHAN, Guangdong, China
FCC ID	:	2ADQOMDNA18

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Averaging Time (minutes)				
0.3–1.34	614	1.63	*(100)	30				
1.34–30	824/f	2.19/f	*(180/f²)	30				
30–300	27.5	0.073	0.2	30				
300–1,500	/	1	f/1500	30				
1,500–100,000	/	/	1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/(4\pi R^2) =$ power density (in appropriate units, e.g. mW/cm2);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

China

Calculated Data:

Maximum peak output power at antenna input terminal (dBm):	16.6
Maximum peak output power at antenna input terminal (mW):	45.7
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	1.8
Maximum Antenna Gain (numeric):	1.51
The worst case is power density at predication frequency at 20 cm (mW/cm2):	0.0137
MPE limit for general population exposure at prediction frequency (mW/cm2):	1.0

0.0137 (mW/cm2) < 1 (mW/cm2)

Result: Compliant

TUV SUD China, Guangzhou Branch

Reviewed by:

> 5 2

Tony Liu / Project Reviewer Date: 2020-05-19

Prepared By:

last orgenz

Kevin Ouyang / Project Handler Date: 2020-05-19