

FCC - TEST REPORT

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment Under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	9
9	Technical Requirement	10
9.	Conducted Emission	10
9.	Conducted peak output power	13
9.	Power spectral density	15
9.	6 dB Bandwidth and 99% Occupied Bandwidth	17
9.	Spurious RF conducted emissions	20
9.	Band edge	25
9.	Spurious radiated emissions for transmitter	27
10	Test Equipment List	34
11	System Measurement Uncertainty	35

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052 P.R. China
Telephone:	86 755 8828 6998
Fax:	86 755 8828 5299
FCC Registration No.:	514049
FCC Designation Number:	CA5009
IC Registration No.:	10320A

3 Description of the Equipment Under Test

Product:	2.4G Bluetooth Communication Module
Model no.:	MDA6K21-2
FCC ID:	2ADQOMDA6K21-2
Options and accessories:	N/A
Rating:	5Vdc, 50mA
RF Transmission Frequency:	2402MHz-2480MHz
No. of Operated Channel:	40
Modulation:	GFSK
Antenna Type:	Integrated antenna
Antenna Gain:	0.0dBi
Description of the EUT:	The Equipment Under Test (EUT) is a 2.4G Bluetooth Communication Module which support Bluetooth function(BLE 1M only).

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES			
10-1-2020 Edition	Subpart C - Intentional Radiators			

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements						
FCC Part 15 Subpar	t C	1	1			
Test Condition		Pages	Test	Test Result		
		·	Site	Pass	Fail	N/A
§15.207	Conducted emission AC power port	10	Site 1	\boxtimes		
§15.247 (b) (1)	Conducted peak output power	13	Site 1	\boxtimes		
§15.247(a)(1)	20dB bandwidth					\square
§15.247(a)(1)	Carrier frequency separation					\boxtimes
§15.247(a)(1)(iii)	Number of hopping frequencies					\boxtimes
§15.247(a)(1)(iii)	Dwell Time					\boxtimes
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth	17	Site 1	\boxtimes		
§15.247(e)	Power spectral density	15	Site 1	\boxtimes		
§15.247(d)	Spurious RF conducted emissions	20	Site 1	\boxtimes		
§15.247(d)	Band edge	25 Site 1		\boxtimes		
§15.247(d)	Spurious radiated emissions for transmitter	27 Site 1		\boxtimes		
§15.203	Antenna requirement	See note 2		\boxtimes		

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an Integrated antenna, which gain is 0.0dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2ADQOMDA6K21-2 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

This report is for Bluetooth Low Energy only.

SUMMARY:

All tests according to the regulations cited on page 5 were.

- Performed
- □ Not Performed
- The Equipment under Test
- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: 2021-07-22

Testing Start Date: 2021-07-23

Testing End Date: 2021-08-04

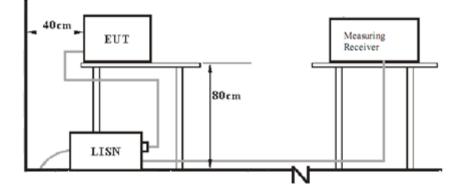
- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

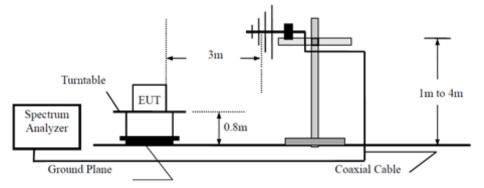
John Zhi Project Manager

Prepared by: Warlen Song

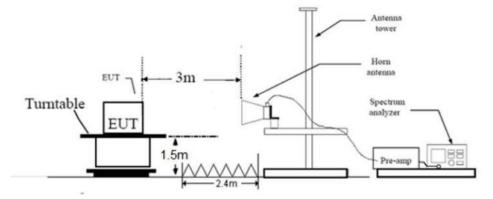
Project Engineer

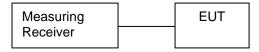

Tested by:

Carry Cai Test Engineer



7 Test Setups


7.1 AC Power Line Conducted Emission test setups


7.2 Radiated test setups Below 1GHz

Above 1GHz

7.3 Conducted RF test setups

Auxiliary Equipment Used during Test:

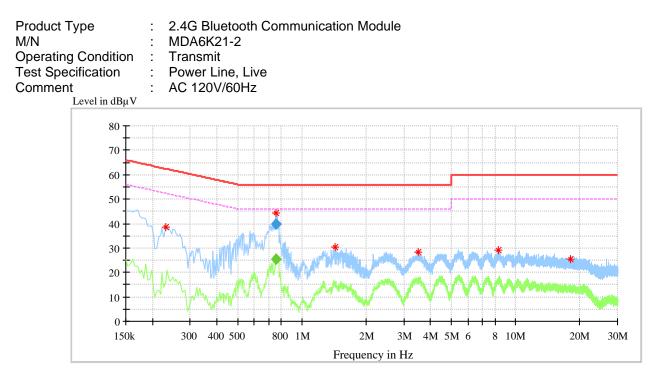
DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Notebook	Lenovo	X240	
Adapter	Apple	A1443	

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

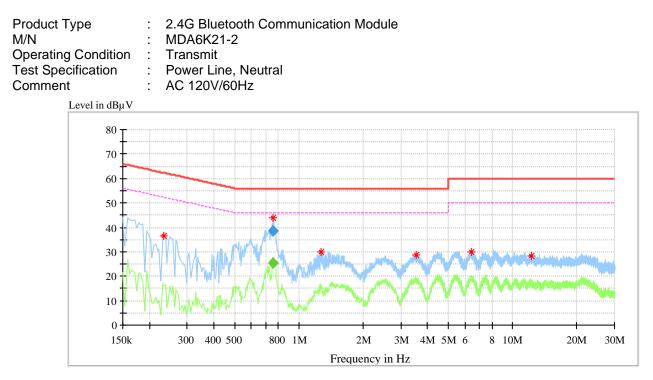
Limit


According to §15.207, conducted emissions limit as below:

Frequency	QP Limit	AV Limit
MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Remark: "*" Decreasing linearly with logarithm of the frequency

Conducted Emission

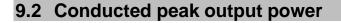

Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.230000	38.62		62.45	23.83	L1	9.64
0.757500	44.39		56.00	11.61	L1	9.66
1.434000	30.41		56.00	25.59	L1	9.67
3.498000	28.23		56.00	27.77	L1	9.73
8.270000	29.07		60.00	30.93	L1	9.86
18.070000	25.37		60.00	34.63	L1	9.96
Frequency	QuasiPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.757500		25.40	46.00	20.60	L1	9.66
0.757500	39.85		56.00	16.15	L1	9.66

Remark :

Level=Reading Level + Correction Factor Correction Factor=Cable Loss + LISN Factor (The Reading Level is recorded by software which is not shown in the sheet)

Conducted Emission

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.234000	36.71		62.31	25.60	Ν	9.63
0.753500	43.75		56.00	12.25	Ν	9.65
1.270000	30.15		56.00	25.85	Ν	9.66
3.542000	28.71		56.00	27.29	Ν	9.72
6.390000	30.14		60.00	29.86	Ν	9.80
12.270000	28.42		60.00	31.58	Ν	9.88
Frequency	QuasiPea	Average	Limit	Margin	Line	Corr.
0.753500		25.26	46.00	20.74	Ν	9.65
0.753500	38.46		56.00	17.54	Ν	9.65


Remark :

Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

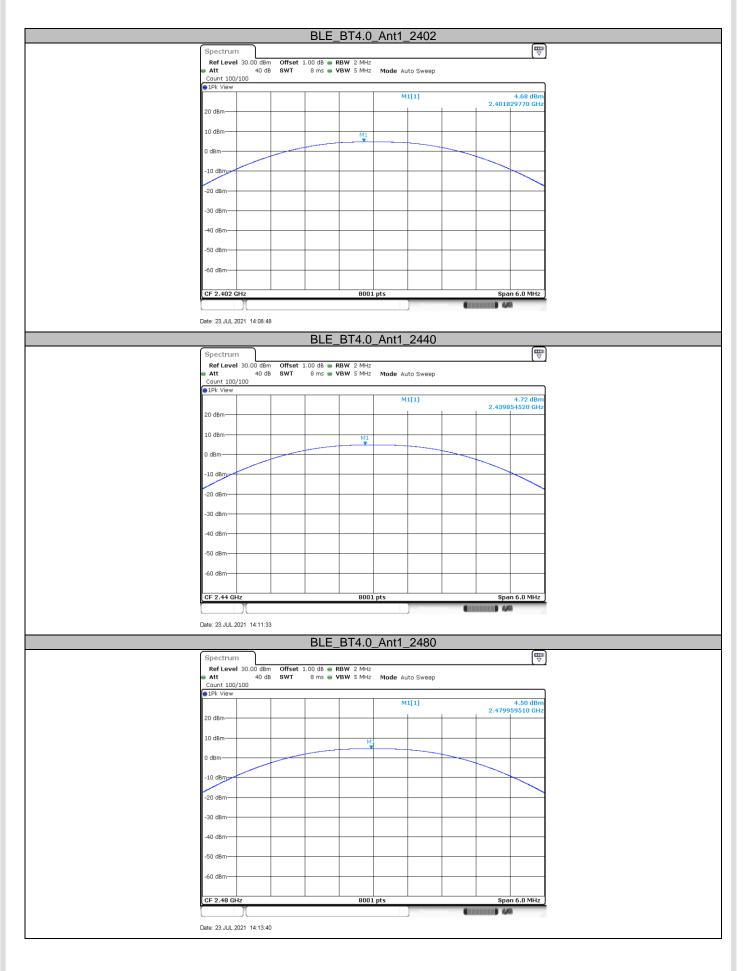
(The Reading Level is recorded by software which is not shown in the sheet)

EMC_SZ_FR_23.03 FCC Release 2017-06-20

Test Method

- 1. The RF output of EUT was connected to the power meter by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following test receiver settings: Span = approximately 5 times the 6dB bandwidth, centered on a hopping channel RBW > the 6dB bandwidth of the emission being measured, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power and record the results in the test report.
- 5. Repeat above procedures until all frequencies measured were complete.

Limits


According to §15.247 (b) (1), conducted peak output power limit as below:

Freque	ncy Range	Limit	Limit
	MHz	W	dBm
2400)-2483.5	≤1	≤30

Test result as below table

Frequency MHz	Data Rate bps	Conducted Peak Output Power dBm	Result
Bottom channel 2402MHz	LE 1M	4.68	Pass
Middle channel 2440MHz	LE 1M	4.72	Pass
Top channel 2480MHz	LE 1M	4.5	Pass

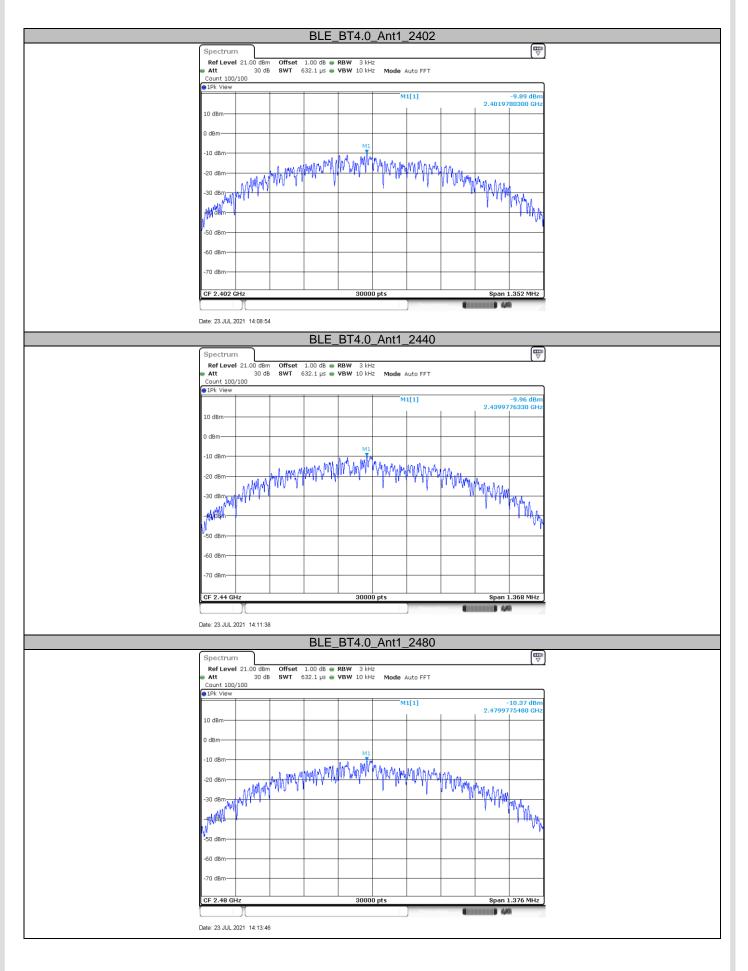
EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 14 of 35

9.3 Power spectral density

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power and record the results in the test report.
- 5. Repeat above procedures until other frequencies measured were completed.

Limit


Limit [dBm/3KHz]

≤8

Test result

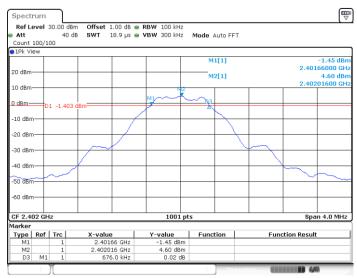
Frequency MHz	Data Rate bps	Power spectral density dBm/3KHz	Result
Bottom channel 2402MHz	LE 1M	-9.89	Pass
Middle channel 2440MHz	LE 1M	-9.96	Pass
Top channel 2480MHz	LE 1M	-10.37	Pass

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 16 of 35

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following test receiver settings: Span = approximately 5 times the 6dB bandwidth, centered on a hopping channel RBW =100KHz, VBW≥3RBW,
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit


Limit [kHz]

≥500

Test result

Frequency	Data Rate	6dB bandwidth	99% bandwidth	Result
MHz	bps	MHz	MHz	Result
Bottom channel 2402MHz	LE 1M	0.676	1.011	Pass
Middle channel 2440MHz	LE 1M	0.684	1.019	Pass
Top channel 2480MHz	LE 1M	0.688	1.019	Pass

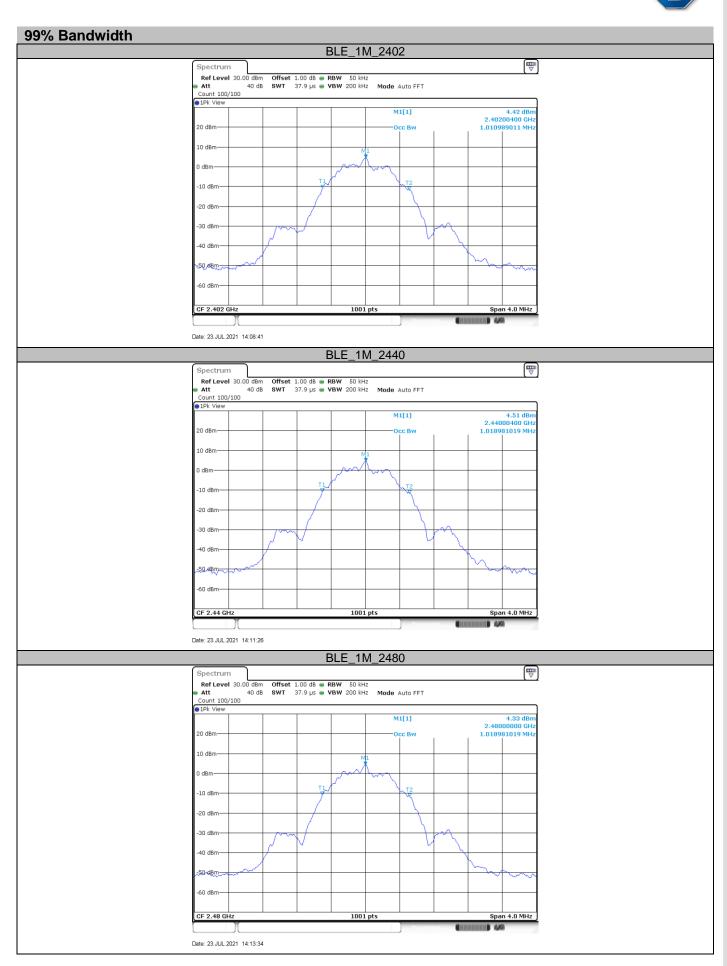
6 dB Bandwidth

Date: 23.JUL.2021 14:08:31

BLE_1M_2440

Spectrum					
Ref Level 30.00		RBW 100 kHz			
Att 4 Count 100/100	+0 dB SWT 18.9 μs	😑 VBW 300 kHz	Mode Auto FFT		
100/100					
JIFK VIEW			M1[1]		-1.59 dBr
			and the		2.43965200 GH
20 dBm			M2[1]		4.62 dBr
10 dBm					2.44000800 GH
TO OBIII		M2			
0 dBm 1	380 dBm	M1			
	Soo usin				
-10 dBm	1				
-20 dBm					
-30 dBm					
-40 dBm				+	~
-50 dBm					
-60 dBm					
-00 0011					
CF 2.44 GHz		1001 pt	5		Span 4.0 MHz
Marker		1001 pt			opan 4.0 MHz
Type Ref Trc	X-value	Y-value	Function	Fund	tion Result
M1 1		-1.59 dBm		T une	
M2 1		4.62 dBm			
D3 M1 1	684.0 kHz	0.19 dB			
			Measu		429

Date: 23.JUL.2021 14:11:16


BLE_1M_2480

Spect		30.00 dB	m Offcot 1.00 dB	RBW 100 kHz			T T
Att	ever	40 (VBW 300 kHz	Mede Auto FFT	r.	
Count	100/1		10 9441 10'a ha	- YDYY 300 KH2	MOUE AUTOFF	1	
1Pk Vi		00					
					M1[1]		-1.60 dBr
							2.47965600 GH
20 dBm	-				M2[1]		4.43 dB
10 dBm·							2.48000800 GH
TO OBU-				M2			
0 dBm-	_			MI	~ <u></u>		
0 00111	D	1 -1.575	dBm		A L		
-10 dBm				4			
-20 dBm							
			m				
-30 dBm	ا ا						
-40 dBm							
-40 UBII							~ _
-50 dBm	$\sim \uparrow$	~~~					<u> </u>
	.						
-60 dBm				_			
CF 2.4	3 GHz			1001 pt	s		Span 4.0 MHz
Marker							
Type	Ref	Trc	X-value	Y-value	Function	Functi	on Result
M1		1	2.479656 GHz	-1.60 dBm			
M2		1	2.480008 GHz	4.43 dBm			
D3	M1	1	688.0 kHz	-0.08 dB			

Date: 23.JUL.2021 14:13:23

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 18 of 35

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 19 of 35

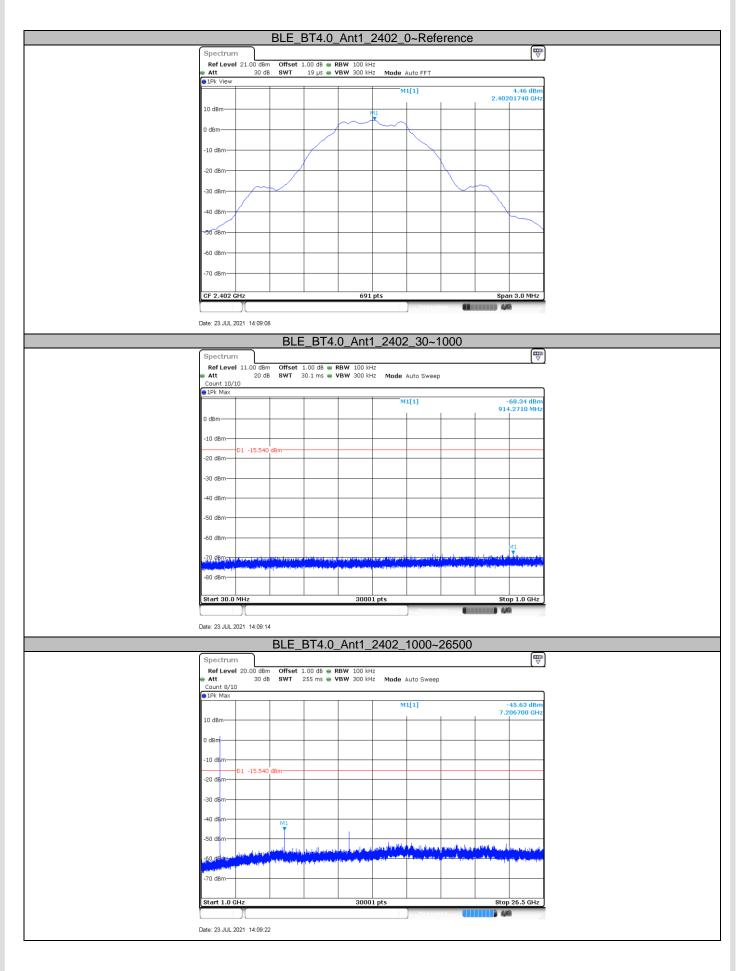
9.5 Spurious RF conducted emissions

Test Method

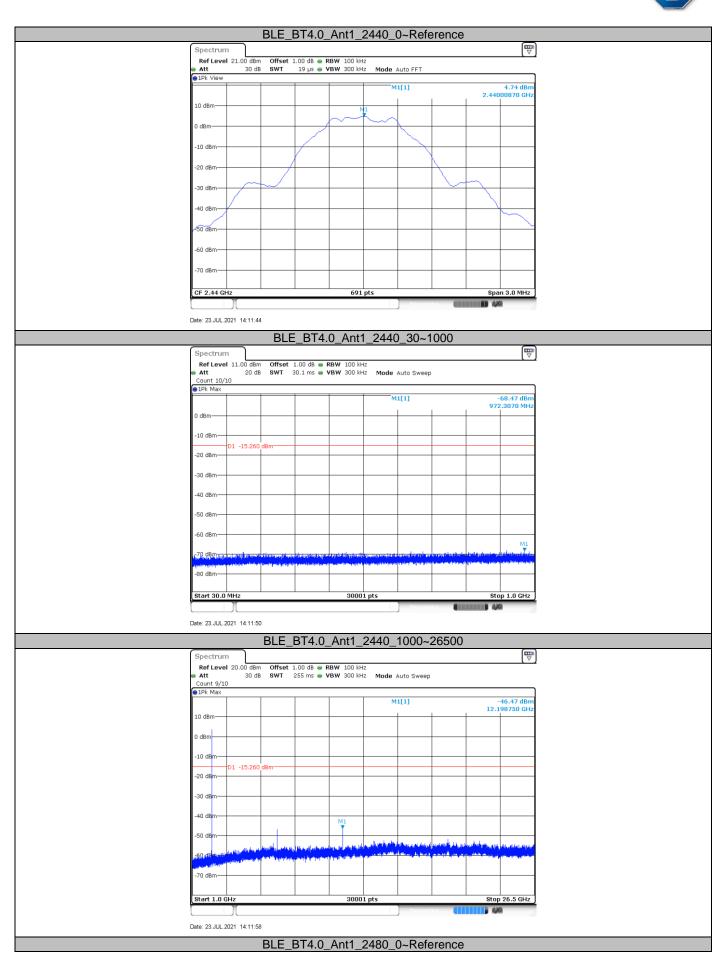
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency

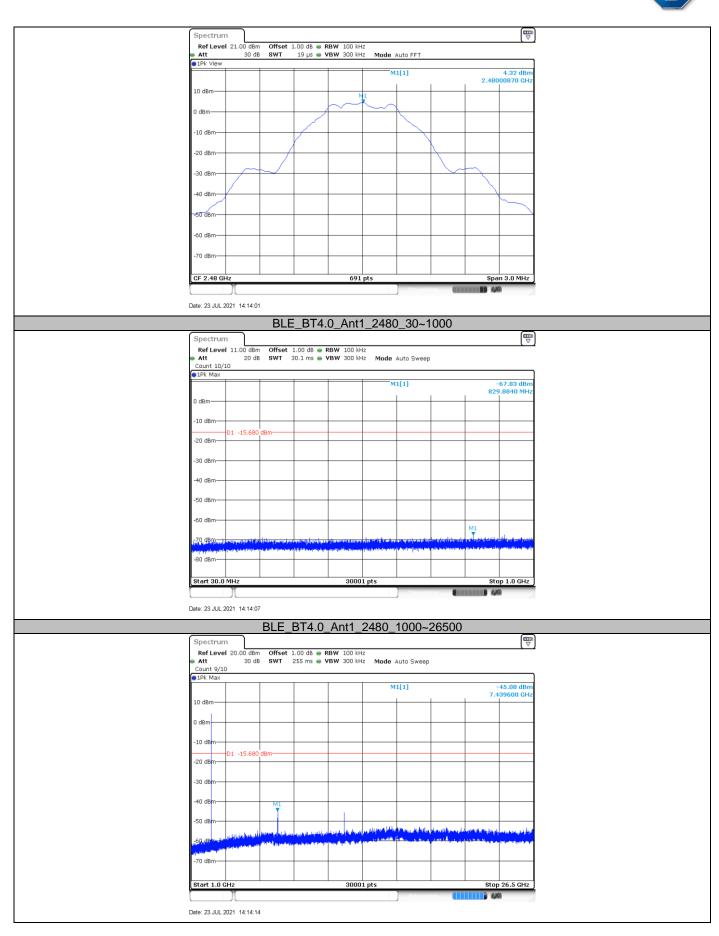
Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20



Spurious RF conducted emissions


TestMode	Antenna	Channel (MHz)	FreqRange (MHz)	RefLevel	Result (dBm)	Limit (dBm)	Verdict
		2402	Reference	4.46 dBm	4.46		PASS
	BLE_1M Ant1	2402	30~1000	30~1000 MHz	-68.34	<=-15.54	PASS
		2402	1000~26500	1000~26500 MHz	-45.63	<=-15.54	PASS
		2440	Reference	4.74 dBm	4.74		PASS
BLE_1M		2440	30~1000	30~1000 MHz	-68.47	<=-15.26	PASS
		2440	1000~26500	1000~26500 MHz	-46.47	<=-15.26	PASS
	2480	Reference	4.32 dBm	4.32		PASS	
	2480	30~1000	30~1000 MHz	-67.83	<=-15.68	PASS	
		2480	1000~26500	1000~26500 MHz	-45.08	<=-15.68	PASS



EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 22 of 35

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 23 of 35

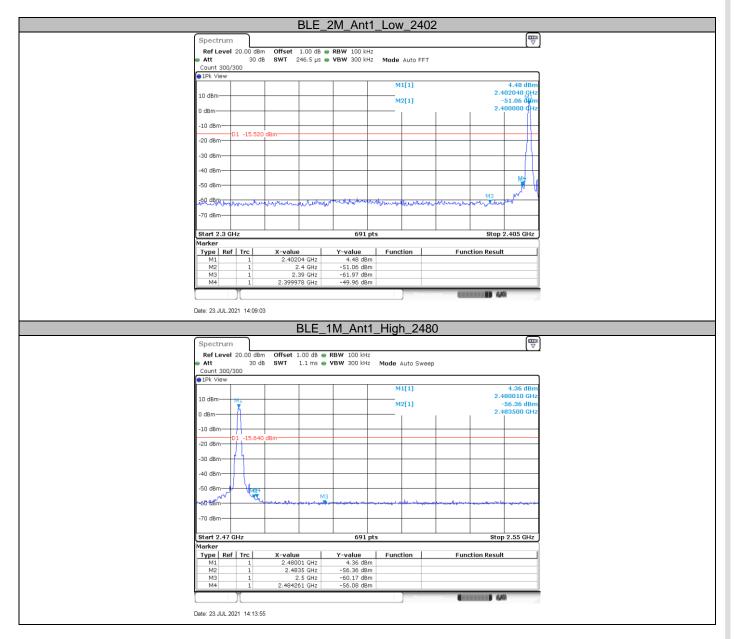
EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 24 of 35

9.6 Band edge

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency
- 6. Set to the maximum power setting and enable the EUT hopping mode, repeat the test.


Limit

Frequency Range MHz	Limit (dBm)
30-25000	-20

Band edge testing

Test Mode bps	Antenna	ChName	Channel (MHz)	RefLevel (dBm)	Result (dBm)	Limit (dBm)	Verdict
	A pt1	Low	2402	4.48	-49.96	<=-15.52	PASS
BLE_1M	Ant1	High	2480	4.36	-56.08	<=-15.64	PASS

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement ,Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

a) RBW = 1 MHz.

b) VBW ≥[3 × RBW].

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] $\ RBW / 2$. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D,where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

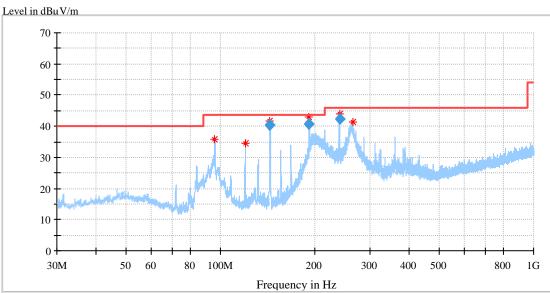
g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty

cycle was 50%, then 3 dB shall be added to the measured emission levels. 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

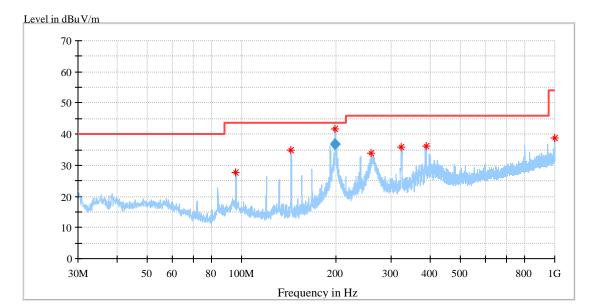
Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

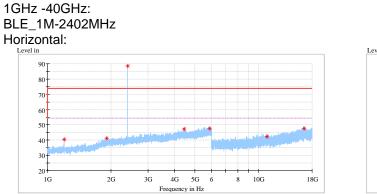


Spurious radiated emissions for transmitter


According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

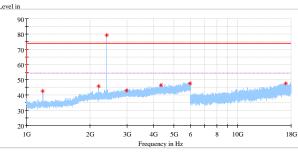
Transmitting spurious emission test result as below:

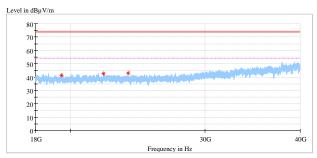
30MHz-1000MHz:



requency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
95.899375	35.96	43.50	7.54	200.0	Н	0.0	12.30
119.967500	34.38	43.50	9.12	200.0	Н	172.0	11.01
143.914375	41.70	43.50	1.80	200.0	Н	339.0	9.76
191.880938	43.02	43.50	0.48	183.0	Н	82.0	12.58
239.883750	43.82	46.00	2.18	100.0	Н	321.0	14.15
263.891250	41.45	46.00	4.55	100.0	Н	313.0	14.70
Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
143.914375	40.48	43.50	3.02	200.0	Н	339.0	9.76
191.880938	40.69	43.50	2.81	183.0	Н	82.0	12.58
239.883750	42.22	46.00	3.78	100.0	Н	321.0	14.15

Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
95.899375	27.79	43.50	15.71	200.0	V	104.0	12.30
143.853750	34.97	43.50	8.53	100.0	V	248.0	9.76
199.191875	41.71	43.50	1.79	238.0	V	94.0	13.24
259.768750	33.76	46.00	12.24	200.0	V	176.0	14.58
323.364375	35.71	46.00	10.29	200.0	V	192.0	16.21
389.142500	36.05	46.00	9.95	100.0	v	0.0	18.10
996.786875	38.66	54.00	15.34	100.0	V	359.0	27.78
Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
199.191875	36.65	43.50	6.85	238.0	V	94.0	13.25

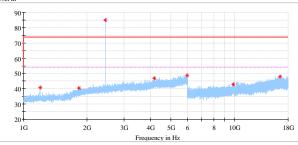


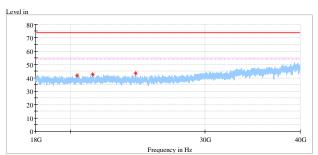


	Frequency in Hz	
18G	30G	40
0+		
10		
20		
30		
40 * *	*	and a state of the life
50		- he at a file
00		
/0		
80T		

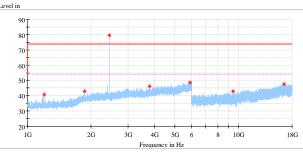
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1200.500000	40.41	74.00	33.59	150.0	Н	255.0	-9.80
1912.000000	41.29	74.00	32.71	150.0	Н	192.0	-4.75
2402.000000	88.53	74.00	-14.53	150.0	Н	9.0	-2.99
4437.500000	47.19	74.00	26.81	150.0	Н	41.0	1.84
5848.500000	47.67	74.00	26.33	150.0	Н	264.0	4.88
10978.000000	42.14	74.00	31.86	150.0	Н	213.0	10.54
16499.000000	47.65	74.00	26.35	150.0	Н	330.0	17.58
19972.437500	41.57	74.00	32.43	150.0	Н	281.0	-1.36
21663.687500	42.00	74.00	32.00	150.0	Н	208.0	0.43
23025.625000	41.06	74.00	32.94	150.0	Н	0.0	1.05

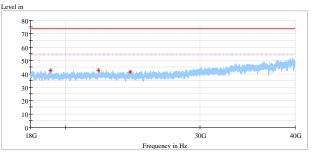
Vertical



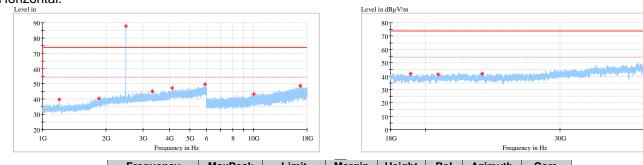

Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
1195.000000	42.54	74.00	31.46	150.0	V	213.0	-9.81
2197.000000	45.77	74.00	28.23	150.0	V	231.0	-3.66
2402.500000	79.06	74.00	-5.06	150.0	V	196.0	-2.99
2986.000000	43.11	74.00	30.89	150.0	V	204.0	-1.11
4345.500000	46.71	74.00	27.29	150.0	V	50.0	1.74
5948.500000	47.51	74.00	26.49	150.0	V	346.0	4.87
16942.000000	47.70	74.00	26.30	150.0	V	134.0	18.37
19104.125000	42.60	74.00	31.40	150.0	V	263.0	-1.78
22089.250000	42.57	74.00	31.43	150.0	V	60.0	0.64
24309.187500	41.37	74.00	32.63	150.0	V	353.0	1.12

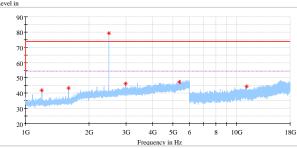
BLE_1M-2440MHz: Horizontal:

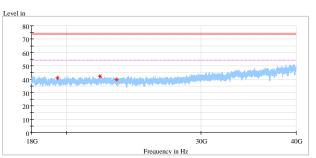




Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1199.000000	40.81	74.00	33.19	150.0	н	159.0	-9.81
1829.000000	40.58	74.00	33.42	150.0	Н	248.0	-5.48
2440.000000	84.87	74.00	-10.87	150.0	Н	356.0	-2.90
4173.500000	47.04	74.00	26.96	150.0	Н	0.0	1.46
5960.500000	48.57	74.00	25.43	150.0	Н	2.0	4.91
9910.500000	43.00	74.00	31.00	150.0	Н	310.0	10.53
16508.000000	47.85	74.00	26.15	150.0	Н	336.0	17.64
20387.687500	41.93	74.00	32.07	150.0	Н	179.0	-0.69
21382.500000	42.82	74.00	31.18	150.0	Н	166.0	0.27
24330.500000	43.53	74.00	30.47	150.0	Н	192.0	1.15


Vertical


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1199.500000	40.82	74.00	33.18	150.0	V	203.0	-9.81
1864.000000	42.98	74.00	31.02	150.0	V	221.0	-5.25
2440.500000	79.50	74.00	-5.50	150.0	V	114.0	-2.90
3800.500000	46.07	74.00	27.93	150.0	V	69.0	0.11
5907.000000	48.68	74.00	25.32	150.0	V	337.0	4.87
9427.500000	43.00	74.00	31.00	150.0	V	116.0	9.20
16499.500000	47.52	74.00	26.48	150.0	V	227.0	17.58
19104.125000	42.60	74.00	31.40	150.0	V	263.0	-1.78
22089.250000	42.57	74.00	31.43	150.0	V	60.0	0.64
24309.187500	41.37	74.00	32.63	150.0	V	353.0	1.12


BLE_1M-2480MHz Horizontal:

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1197.500000	39.77	74.00	34.23	150.0	Н	246.0	-9.82
1858.500000	40.31	74.00	33.69	150.0	Н	50.0	-5.28
2480.500000	87.94	74.00	-13.94	150.0	Н	0.0	-2.69
3319.500000	45.11	74.00	28.89	150.0	Н	94.0	-0.84
4129.000000	47.15	74.00	26.85	150.0	Н	15.0	1.29
5907.000000	49.66	74.00	24.34	150.0	Н	192.0	4.87
10033.500000	43.43	74.00	30.57	150.0	Н	185.0	9.84
16642.000000	48.58	74.00	25.42	150.0	Н	49.0	17.87
19112.375000	41.73	74.00	32.27	150.0	Н	175.0	-1.78
20749.312500	41.39	74.00	32.61	150.0	Н	81.0	-0.28
23728.937500	42.04	74.00	31.96	150.0	Н	81.0	0.90

Vertical

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1196.000000	41.73	74.00	32.27	150.0	V	212.0	-9.82
1597.500000	43.28	74.00	30.72	150.0	V	221.0	-7.42
2480.000000	79.21	74.00	-5.21	150.0	V	194.0	-2.69
2981.500000	46.25	74.00	27.75	150.0	V	61.0	-1.12
5373.500000	47.42	74.00	26.58	150.0	V	185.0	3.60
11158.500000	44.44	74.00	29.56	150.0	V	172.0	10.47
19449.250000	41.00	74.00	33.00	150.0	V	166.0	-1.47
22135.312500	42.14	74.00	31.86	150.0	V	113.0	0.72
23267.625000	39.94	74.00	34.06	150.0	V	313.0	0.59

Remark:

 Corrected Amplitude = Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet) 40G

Radiated Emission Test

List of Test Instruments

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2022-6-4
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	284	2022-2-2
Wave Guide Antenna	ETS	3117	00218954	2022-5-24
Pre-amplifier	Rohde & Schwarz	SCU 18F	100745	2021-10-25
Pre-amplifier	Rohde & Schwarz	SCU 08F2	08400018	2021-10-25
Attenuator	Agilent	8491A	MY39264334	2022-10-28
Sideband Horn Antenna	Q-PAR	QWH-SL-18-40-K- SG	12827	2022-7-21
3m Semi-anechoic chamber	TDK	9X6X6		N/A

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	102590	2022-6-4
LISN	Rohde & Schwarz	ENV216	102472	2022-6-5
Test software	Rohde & Schwarz	EMC32	Version10.35.02	N/A

Conducted RF Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2022-6-3
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2022-6-3
Power Splitter	Weinschel	1580	SC319	2022-6-3
10dB Attenuator	Weinschel	4M-10	43152	2022-6-3
Test software	Tonscend	System for BT/WIFI	Version 2.6.77.0518	N/A

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty						
Test Items	Extended Uncertainty					
Uncertainty for Radiated Emission in new 3m chamber (68-4-90-19-006) 30MHz-1000MHz	Horizontal: 4.70dB; Vertical: 4.67dB;					
Uncertainty for Radiated Emission in new 3m chamber (68-4-90-19-006) 1000MHz-18000MHz	Horizontal: 4.65dB; Vertical: 4.63dB;					
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 4.89dB; Vertical: 4.87dB;					
Uncertainty for Conducted Emission in shielding room (68-4-90-19-004) 150kHz-30MHz (for test using AMN ENV432 or ENV4200)	3.21dB					
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.16dB Frequency test involved: 0.6×10 ⁻⁷ or 1%					