

MPE Calculation

Product:	Bluetooth&Wi-Fi dual band Communication Module		
Model no.:	MM3SB3350N		
FCC ID:	2ADQO3SB3350N5		
Rating:	DC 5V		
RF Transmission Frequency:	BLE:2402-2480MHz For Wi-Fi 2.4G: 2412~2462 MHz For Wi-Fi 5GHz: 5.180GHz~5.240GHz; 5.260GHz~5.320GHz; 5.500GHz~5.700GHz; 5.745GHz~5.825GHz		
Modulation:	DSSS, OFDM		
Antenna Type:	Internal Antenna		
Max Antenna Gain:	BLE: 2.0dBi Wi-Fi 2.4GHz: 2.0dBi Wi-Fi 5GHz: 2.0dBi		
Description of the EUT:	MM3SB3350N is Bluetooth&Wi-Fi Communication Module with BLE, Wi-Fi function.		

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1,500	/	/	f/1500	30		
1,500–100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

- $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$
- P = power input to the antenna (in appropriate units, e.g., mW);
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;
- R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Report Number: 68.950.19.0482.01

Calculated Data:

for 5G Wi-Fi

Maximum peak output power at antenna input terminal (dBm):	15.59
Maximum peak output power at antenna input terminal (mW):	36.22
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	2.0
Maximum Antenna Gain (numeric):	2.0
The worst case is power density at predication frequency at 20 cm (mW/cm²):	0.011
MPE limit for general population exposure at prediction frequency (mW/cm²):	1.0

For 2.4G Wi-Fi

1 01 2:40 WF1 1	
Maximum peak output power at antenna input terminal (dBm):	18.3
Maximum peak output power at antenna input terminal (mW):	67.61
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	2.0
Maximum Antenna Gain (numeric):	2.0
The worst case is power density at predication frequency at 20 cm (mW/cm²):	0.0213
MPE limit for general population exposure at prediction frequency (mW/cm²):	1.0

For BLE

Maximum peak output power at antenna input terminal (dBm):	0.65
Maximum peak output power at antenna input terminal (mW):	1.161
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	0
Maximum Antenna Gain (numeric):	0
The worst case is power density at predication frequency at 20 cm (mW/cm²):	0.00036
MPE limit for general population exposure at prediction frequency (mW/cm²):	1.0

The max power density $0.0213 \text{ (mW/cm}^2\text{)} < 1 \text{ (mW/cm}^2\text{)}$

Result: Compliant

TUV SUD China, Shenzhen Branch

Johnshi

Reviewed by:

Prepared By:

John Zhi/ Project Manager

Date: 2019-10-30

Warlen Song/Project Engineer

Warlen Smy

Date: 2019-10-30