

FCC - TEST REPORT

Report Number	: 68.950.19.2875.01	Date of Issue: October 30, 2019					
Model	: MM3SB3350N						
Product Type	: Bluetooth&Wi-Fi dual band Co	mmunication Module					
Applicant	: GD Midea Air-Conditioning Eq	uipment Co., Ltd.					
Address		ovation Center, Industry Boulevard, an City, Guangdong Province 528311					
Manufacturer&Factory	: GD Midea Air-Conditioning Eq	uipment Co., Ltd.					
Address		Building #4, Midea Global Innovation Center, Industry Boulevard, Beijiao, Shunde District, Foshan City, Guangdong Province 528311					
Test Result	: n Positive o Negativ	e					
Total pages including							

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

33

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

Appendices

1 Table of Contents

1	Та	able of Contents
2	De	etails about the Test Laboratory
3	De	escription of the Equipment Under Test4
4	Su	ummary of Test Standards
5	Sı	ummary of Test Results
6	Ge	eneral Remarks7
7	Te	est Setups
8	Sy	ystems test configuration
9	Te	echnical Requirement
9	.1	Conducted Emission Test
9	.2	Conducted peak output power15
9	.3	Power spectral density17
9	.4	6 dB Bandwidth and 99% Occupied Bandwidth19
9	.5	Spurious RF conducted emissions
9	.6	Band edge
9	.7	Spurious radiated emissions for transmitter
10		Test Equipment List
11		System Measurement Uncertainty

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052 P.R. China
Telephone:	86 755 8828 6998

Fax: 86 755 828 5299

FCC Registration 514049 No.:

3 Description of the Equipment Under Test

Product:	Bluetooth &Wi-Fi dual band Communication Module
Model no.:	MM3SB3350N
FCC ID:	2ADQO3SB3350N5
Brand name	Midea
Options and accessories:	NIL
Rating:	DC5V
RF Transmission Frequency:	2402MHz-2480MHz
No. of Operated Channel:	40
Modulation:	GFSK
Modulation: Antenna Type:	GFSK PIFA antenna

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES			
10-1-2018 Edition	Subpart C - Intentional Radiators			

All the test methods were according to 558074 D01v05 DTS Measurement Guidance and ANSI C63.10 (2013).

5 Summary of Test Results

Test Condition	Test	Test Result				
	I	Site	Site Pass Fail N/			
§15.207	Conducted emission AC power port	Site 1	\boxtimes			
§15.247 (b) (1)	Conducted peak output power	Site 1	\boxtimes			
§15.247(a)(1)	20dB bandwidth				\boxtimes	
§15.247(a)(1)	Carrier frequency separation				\square	
§15.247(a)(1)(iii)	Number of hopping frequencies				\boxtimes	
§15.247(a)(1)(iii)	Dwell Time				\square	
§15.247(a)(2)	6dB bandwidth and 99% Occupied Site		\boxtimes			
§15.247(e)	Power spectral density	Site 1	\boxtimes			
§15.247(d)	Spurious RF conducted emissions	Site 1	\boxtimes			
§15.247(d)	Band edge	Site 1	\boxtimes			
§15.247(d) & §15.209	Spurious radiated emissions for transmitter	Site 1	\boxtimes			
§15.203	Antenna requirement	Note 2	\boxtimes			

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a Integrated antenna, which gain is 2.0dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2ADQO3SB3350N5 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

MM3SB3350N is a Communication Module which support 2.4G Wi-Fi, 5G Wi-Fi and BLE function. The 2.4G Wi-Fi and BLE operated at 2402MHz to 2480MHz, The 5G Wi-Fi operation 5150MHz to 5250MHz, 5250MHz to 5350MHz ,5470MHz to 5725MHz, and 5725MHz to 5825Mhz. The EUT acting as a master only operate in UNII-1 and UNII-3 bands. And it acting as a client operate in UNII-1, UNII-2A, UNII-2C and UNII-3 bands.

This report is for BLE only.

SUMMARY:

All tests according to the regulations cited on page 5 were

- n Performed
- O Not Performed

The Equipment under Test

- n Fulfills the general approval requirements.
- - **Does not** fulfill the general approval requirements.

Sample Received Date: August 2, 2019

Testing Start Date: September 26, 2019

Testing End Date: October 24, 2019

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

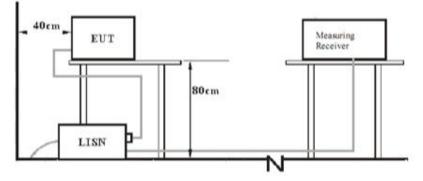
Reviewed by:

Prepared by:

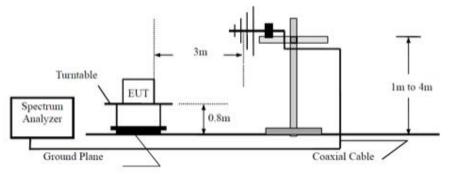
Tested by:

Zhi John EMC Section Manager

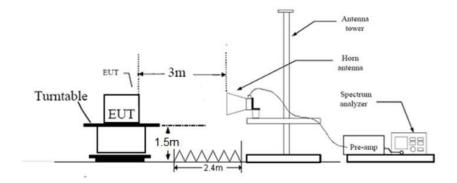
Warlen Song () EMC Project Engineer

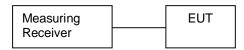

Louise Liu EMC Test Engineer

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299



7 Test Setups


AC Power Line Conducted Emission test setups


Below 1GHz

Above 1GHz

Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	DESCRIPTION MANUFACTURER		S/N(LENGTH)
Notebook	Lenovo	X220	
Adapter	Apple		

The system was configured to channel 0, 19, and 39 for the test.

9 Technical Requirement

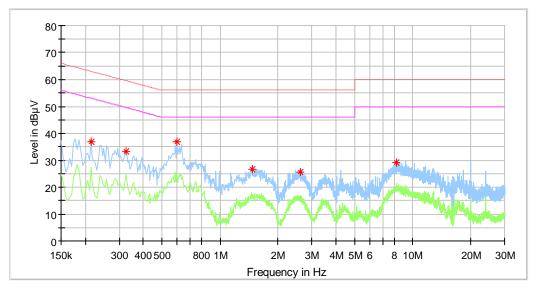
9.1 Conducted Emission Test

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

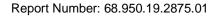
According to §15.107, conducted emissions limit as below:


	Frequency	QP Limit	AV Limit
_	MHz	dBµV	dBµV
_	0.150-0.500	66-56*	56-46*
	0.500-5	56	46
	5-30	60	50
	1 14 1 14 64	,	

*Decreasing linearly with logarithm of the frequency

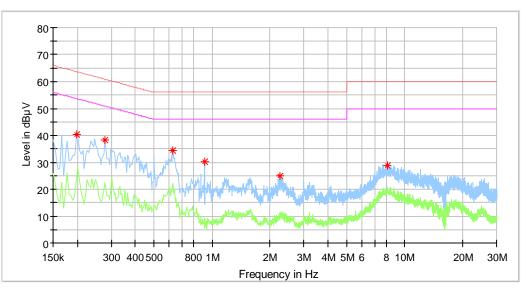
Conducted Emission

Product Type M/N Operating Condition Test Specification Comment	:	Bluetooth &Wi-Fi dual band Communication Module MM3SB3350N STA: Wi-Fi Line AC 120V/60Hz
Comment	:	AC 120V/60Hz


Critical_Freqs

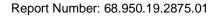
Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)*
0.214000	37.02		63.05	26.03	L1	10.3
0.326000	33.45		59.55	26.10	L1	10.3
0.598000	36.96		56.00	19.04	L1	10.3
1.466000	26.58		56.00	29.42	L1	10.3
2.602000	25.54		56.00	30.46	L1	10.4
8.206000	29.21		60.00	30.79	L1	10.6

Final_Result


Frequency	QuasiPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)

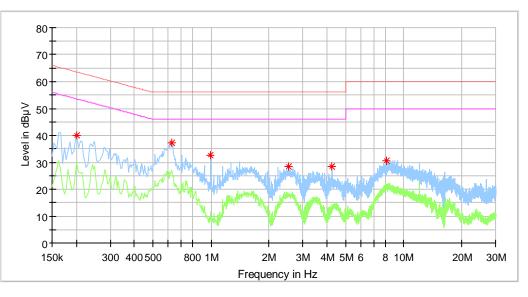
*Correct factor=cable loss + LISN factor

Product Type:Bluetooth &Wi-Fi dual band Communication ModuleM/N:MM3SB3350NOperating Condition:STA: Wi-FiTest Specification:NeutralComment:AC 120V/60Hz


Critical_Freqs

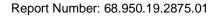
Frequency	MaxPeak	Avorago	Limit	Margin	Line	Corr.
	Waxreak	Average		•	Lille	
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)*
0.198000	40.47		63.69	23.23	Ν	10.3
0.278000	38.23		60.88	22.64	Ν	10.3
0.626000	34.48		56.00	21.52	Ν	10.3
0.914000	30.05		56.00	25.95	Ν	10.3
2.246000	25.02		56.00	30.98	Ν	10.4
8.150000	28.87		60.00	31.13	Ν	10.7

Final_Result


Frequency	QuasiPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)

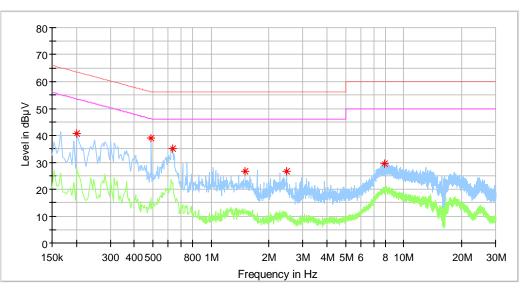
*Correct factor=cable loss + LISN factor

Product Type:Bluetooth &Wi-Fi dual band Communication ModuleM/N:MM3SB3350NOperating Condition:AP: Wi-FiTest Specification:LineComment:AC 120V/60Hz


Critical_Freqs

_	-					
Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)*
0.202000	39.83		63.53	23.70	L1	10.3
0.626000	37.28		56.00	18.72	L1	10.3
0.998000	32.51		56.00	23.49	L1	10.3
2.538000	28.47		56.00	27.53	L1	10.4
4.258000	28.51		56.00	27.49	L1	10.4
8.178000	30.54		60.00	29.46	L1	10.6

Final_Result


Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)

*Correct factor=cable loss + LISN factor

Product Type:Bluetooth &Wi-Fi dual band Communication ModuleM/N:MM3SB3350NOperating Condition:AP: Wi-FiTest Specification:NeutralComment:AC 120V/60Hz

Critical_Freqs

_	-					
Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)*
0.202000	40.82		63.53	22.71	Ν	10.3
0.490000	38.78		56.17	17.38	Ν	10.3
0.630000	35.17		56.00	20.83	Ν	10.3
1.502000	26.59		56.00	29.41	Ν	10.3
2.478000	26.81		56.00	29.19	Ν	10.4
7.930000	29.38		60.00	30.62	Ν	10.7

Final_Result

Frequency	QuasiPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)

*Correct factor=cable loss + LISN factor

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.2 Conducted peak output power

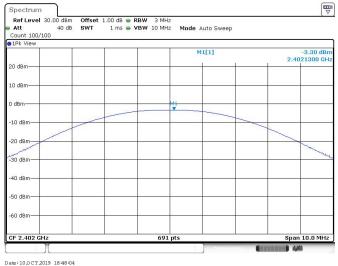
Test Method

- Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

According to §15.247 (b) (1), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30


Test result as below table

Frequency MHz	Conducted Peak Output Power dBm	Result
Bottom channel 2402MHz	-3.30	Pass
Middle channel 2440MHz	-2.35	Pass
Top channel 2480MHz	0.65	Pass

Report Number: 68.950.19.2875.01

Low c	hannel	2402MHz
-------	--------	---------

1010 CT 2019 18:48:04

Middle channel 2440MHz

1Pk View	10 W	10 N		
			M1[1]	-2.35 2.4401300
20 dBm				
10 dBm				
0 dBm		M1		
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm		_		
-60 dBm				
CF 2.44 GHz		691 pts		Span 10.0 M

High channel 2480MHz

91Pk View	 			
			M1[1]	0.65 dBi 2.4802750 GH
20 dBm				
10 dBm				
0 dBm		M1		
o ubiii				
-10 dBm				~
-20 dBm	 		_	
-30 dBm				
30 UBIII				
-40 dBm				
-50 dBm				
-60 dBm				

Date:10.0CT.2019 18:54:11

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

9.3 Power spectral density

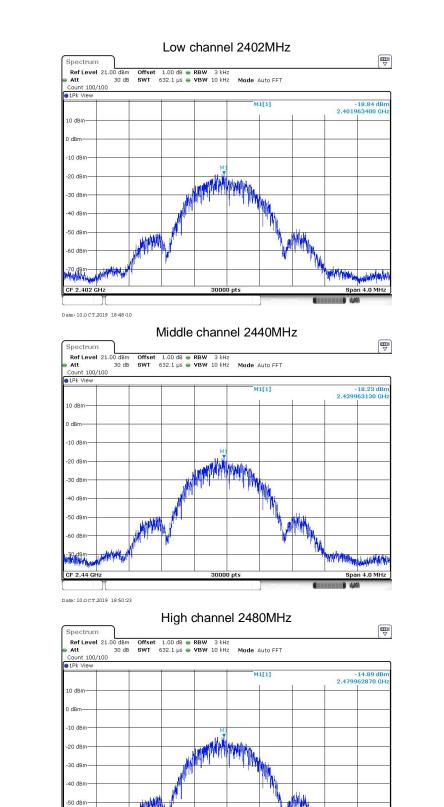
Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- 1. Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm/3KHz]


≤8

Test result

Frequency	Power spectral density	Result
MHz	dBm/3KHz	
Top channel 2402MHz	-18.84	Pass
Middle channel 2440MHz	-18.23	Pass
Bottom channel 2480MHz	-14.89	Pass

Report Number: 68.950.19.2875.01

EMC_SZ_FR_23.03 FCC Release 2017-06-20 -60 dBm-

CF 2.48 GH

Date: 10.0 CT.2019 18:54:18

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

30000 pts

W WANT

Span 4.0 MH

Page 18 of 33

9.4 6 dB Bandwidth and 99% Occupied Bandwidth

Test Method

1. Use the following spectrum analyzer settings:

RBW=100K, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

	Hz]		
≥500			
Test result Frequency MHz	6dB bandwidth kHz	99% bandwidth kHz	Result
Bottom channel 2402MHz Middle channel 2440MHz Top channel 2480MHz	704.0 704.0 668.0	1015.0 1015.0 1015.0	Pass Pass Pass

6 dB Bandwidth

Low channel 2402MHz

Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 PIPk View L D0 dBm Offset 1.00 dB 👄 RBW 100 kHz 40 dB SWT 18.9 µs 👄 VBW 300 kHz Mode Auto FFT -10.30 dBm 2.40163200 GHz -4.27 dBm 2.40198000 GHz M1[1] 20 dBm M2[1] 10 dBm 0 dBi 10 dBr -10.27 -20 dBm -30 dBm -40 dBm 50 dBm -60 dBm CF 2.402 GHz 1001 pts Span 4.0 MHz Marker Type Ref Trc X-value 2.401632 GHz 2.40198 GHz 704.0 kHz Y-value -10.30 dBm -4.27 dBm -0.01 dB Function Function Result M1 M2 D3 M1 ----

Date:10.0CT.2019 18:47:46

Middle channel 2440MHz

		30.00 dBm								
Att Count		40 dE	swt 18.9 µs	VBW 30	JO KHZ	Mode Au	ito FFT			
1Pk Vi		10								
	1		Î Î			M1	11			-9.38 dB
						1000			2.439	963600 GH
20 dBm-				1	-	M2	1]			-3.37 dB
10 dBm-									2.43	998000 GH
TO ODIII-										
0 dBm—					MP					
				MI	~~					
-10 dBm	D:	-9.369 0	IBm-	-	_	200				-
				1						
-20 dBm	-						1			-
							1			
-30 dBm			/							
-40 dBm										
TO GOIN								$\langle \rangle$		
-59 dBm		\sim				-				
-60 dBm	-				-					
CF 2.44	I GHZ	ş			1001 pts	5	6		Spa	an 4.0 MHz
4arker										
Type	Ref	Trc	X-value	Y-val		Function	on	Fun	ction Resul	t
M1		1	2.439636 GHz		38 dBm					
M2		1	2.43998 GHz		37 dBm					
D3	M1	1	704.0 kHz	-0).14 dB					

Date:10.0CT.2019 18:49:59

High channel 2480MHz

Ref Lo Att Count		30.00 dB 40 c		B 👄 RBW 100 kH s 👄 VBW 300 kH		Auto FFT		
1Pk Vi		50						
			1		M	1[1]		-5.85 dBi
20 dBm·	_					0143		2.47964400 GH
					M	2[1]		0.33 dBr 2.47992400 GH
10 dBm·	+							2.17352100 01
0 dBm—				M2				
	D	1 -5.674	dBm	WILL CONTRACT	Page 1			
-10 dBm			1	A				
-20 dBm				1		1		
-20 UBII			1					
-30 dBm	-			15	-		-	
40 dBm		-	1					(mag) = 1 = 1
-50 dBir	~	~~			-			~~~~~
-60 dBm	-				с с			
CF 2.4	3 GHz	3		100	1 pts		ļ	Span 4.0 MHz
1arker								
Туре	Ref	Trc	X-value	Y-value	Func	tion	Funct	ion Result
M1	_	1	2.479644 GH					
M2 D3	M1	1	2.479924 GH 668.0 kH					

Date: 10.0 CT.2019 18:53:53

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

99% Occupied Bandwidth

Low channel 2402MHz

Date:10.0CT.2019 18:47:57

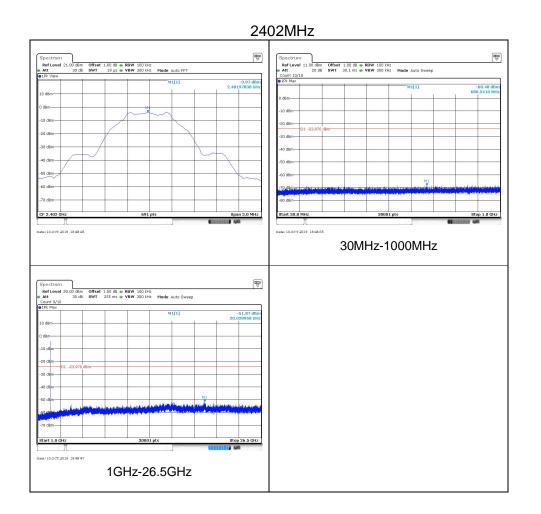
Middle channel 2440MHz

High channel 2480MHz

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

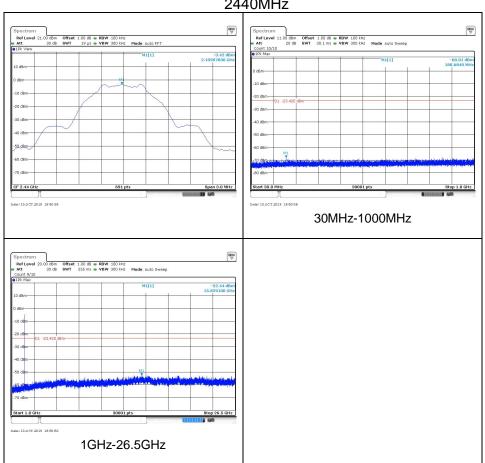
9.5 Spurious RF conducted emissions

Test Method

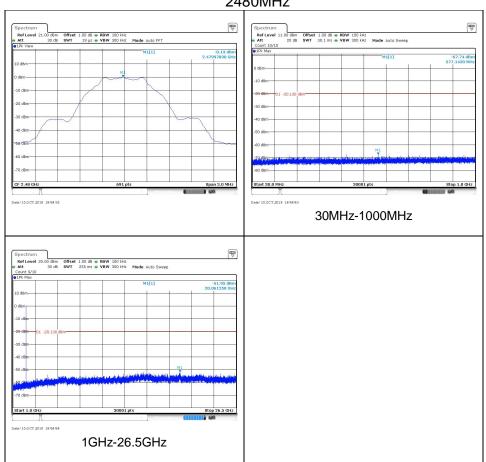

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20



Spurious RF conducted emissions

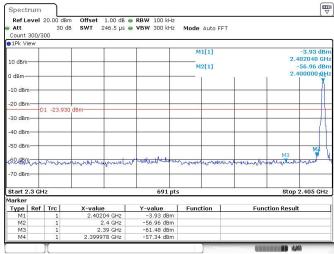

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

2440MHz

2480MHz

9.6 Band edge

Test Method


- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Band edge testing

2402MHz

Date:10.0CT.2019 18:48:20

2480MHz

			RBW 100 kHz VBW 300 kHz	Mode Auto Sw	eep	
ew		1		M1[1]		0.02 dBr
				mittil.		2.480010 GH
	11			M2[1]		-57.71 dBr
	N.		_		a a	2.483500 GH
				2		
-01	10.090	dBm				
- D	19.900					
+	-		-			
+	M2			M4		
end	hoten			. and the second second	and the barran barran	مسطحيه وليبيد وماليس
	1.1.1.4		The second second second			
+						
47.6	17		691 nts			Stop 2.55 GHz
in a			051 pc	, 		otop 2100 drie
Ref	Trc	X-value	Y-value	Function	Funct	ion Result
	1	2.48001 GHz	0.02 dBm			
	1	2.4835 GHz	-57.71 dBm			
	1	2.5 GHz 2.520087 GHz	-59.53 dBm -56.03 dBm			
	D1	800/300 W M1 M1 D1 -19.980 47 GHz Ref Trc 1 1 1	300/300 W M1 D1 19.980 dBm 47 GHz Ref Trc 2.4805 GHz 1 2.4805 GHz	200/300 W M1 M1 D1 -19.900 dBm D1 -19.900 dBm d1 2.47 OHz 691 pt: 1 2.48001 GHz 0.02 dBm 1 2.56Hz 557.71 dBm 1 2.56Hz 555.3 dBm	200/300 W M1[1] M1[1] M2[1] M2[1] D1 -19.980 dBm D1 -19.980 dBm d A7 GHz 691 pts Function 1 2.48001 GHz 0.02 dBm 1 2.4805 GHz -57.71 dBm 1 2.5 GHz 55.3 dBm	MI[1] MI[1] MI M2[1] MI M2[1] <

Date:10.0CT.2019 18:54:27

EMC_SZ_FR_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 27 of 33

9.7 Spurious radiated emissions for transmitter

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement ,Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

a) RBW = 1 MHz.

b) VBW $\ [3 \times RBW]$.

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D,where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.

2) If linear voltage averaging mode was used in the preceding step e), then the correction

factor is $[20 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-	612.11*	34.56	Н	46.00	PK	11.44	-19.7	Pass
1000MHz	888.13	36.22	Н	46.00	PK	9.78	-15.8	Pass
	119.99*	28.60	V	43.50	PK	14.90	-30.3	Pass
	888.13	35.83	V	46.00	PK	10.17	-15.8	Pass
	2241.75*	33.21	Н	74	PK	40.79	-7.1	Pass
	4804.36*	35.81	Н	74	PK	38.19	1.3	Pass
	11844.46*	42.36	Н	74	PK	31.64	11.0	Pass
1000-			Н	54	AV			Pass
25000MHz	2241.75*	34.63	V	74	PK	39.37	-7.1	Pass
	4803.44*	37.08	V	74	PK	36.92	1.3	Pass
	11363.97*	41.62	V	74	PK	32.38	10.9	Pass
			V	54	AV			Pass

Low channel 2402MHz Test Result

Middle channel 2440MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н		QP			Pass
1000MHz			V		QP			Pass
	2280.25*	37.49	Н	74	PK	36.51	-7.0	Pass
	4879.31*	36.46	Н	74	PK	37.54	1.8	Pass
	7548.68*	38.30	Н	74	PK	35.70	6.6	Pass
1000-	11810.04*	41.60	Н	74	PK	32.40	11.1	Pass
25000MHz			Н	54	AV			Pass
25000101112	2279.94*	32.68	V	74	PK	41.3	-7.0	Pass
	4879.31*	38.65	V	74	PK	35.35	1.8	Pass
	11874.33*	42.17	V	74	PK	31.83	10.7	Pass
			V	54	AV			Pass

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н		QP			Pass
1000MHz			V		QP			Pass
	2319.75*	36.46	Н	74	PK	37.54	-6.9	Pass
	4959.45*	37.55	Н	74	PK	36.45	1.7	Pass
	11411.81*	41.97	Н	74	PK	32.03	10.6	Pass
1000			Н	54	AV			Pass
1000- 25000MHz	2319.87*	31.76	V	74	PK	42.24	-6.9	Pass
2000101112	2747.56*	28.48	V	74	PK	45.52	-5.2	Pass
	4959.44*	41.64	V	74	PK	32.36	1.7	Pass
	11361.54*	42.23	V	74	PK	31.77	10.9	Pass
			V	54	AV			Pass

High channel 2480MHz Test Result

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Level=Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

10 Test Equipment List

List of Test Instruments

adiated Emission Test				
Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 26	101031	2020-6-28
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	708	2020-6-28
Horn Antenna	Rohde & Schwarz	HF907	102295	2020-7-5
Loop Antenna	Rohde & Schwarz	HFH2-Z2	12827	2020-7-5
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2020-6-28
Signal Generator	Rohde & Schwarz	SMY01	100432	2020-3-20
Attenuator	Agilent	8491A	MY39264334	2020-6-28
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

TS8997 Test System

Description	Manufacturer	Model no.	Serial no.	cal. due date
Signal Generator	Rohde & Schwarz	SMB100A	108272	2020-6-28
Vector Signal Generator	Rohde & Schwarz	FSV40	262825	2020-6-28
Communication Synthetical Test Instrument	Rohde & Schwarz	SMU 200A	101251	2020-5-31
Signal Analyzer	Rohde & Schwarz	OSP120/OSP-B157	101030	2020-6-28
Vector Signal Generator	Rohde & Schwarz	1580	105324	2020-6-28
RF Switch Module	Rohde & Schwarz	4M-10	101226/100851	2020-6-28
Power Splitter	Weinschel	DNF	SC319	2020-7-7
10dB Attenuator	Weinschel	DNF	43152	2020-7-6
10dB Attenuator	R&S	DNF	DNF-001	2020-6-28
10dB Attenuator	R&S	DNF	DNF-002	2020-6-28
Test software	Rohde & Schwarz	EMC32	Version 10.38.00	N/A

Conducted Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2020-6-28
LISN	Rohde & Schwarz	ENV4200	100249	2020-6-28
LISN	Rohde & Schwarz	ENV432	101318	2020-3-20
LISN	Rohde & Schwarz	ENV216	100326	2020-6-28
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2020-6-28
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	
Test Items	Extended Uncertainty
Uncertainty for Conducted Emission 150kHz-30MHz (for test using High Voltage Probe TK9420(VT9420))	3.21 dB
Uncertainty for Radiated Spurious Emission 25MHz- 3000MHz	Horizontal: 4.80dB; Vertical: 4.89dB;
Uncertainty for Radiated Spurious Emission 3000MHz- 18000MHz	Horizontal: 4.69dB; Vertical: 4.68dB;
Uncertainty for Radiated Spurious Emission 18000MHz- 40000MHz	Horizontal: 4.89dB; Vertical: 4.87dB;
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.16dB Frequency test involved: 0.6×10-7 or 1%