

FCC SAR Test Report

FCC ID: 2ADPBID117

Project No. : 1411C072

Equipment : Wireless Enabled Hard Drive
Model Name : IDrive WiFi; IDriveWiFi-XXXXGB

Applicant: IDrive Inc.

Address : 26115 Mureau Road, Suite A, Calabasas, CA 91302

Date of Receipt : Nov. 10, 2014

Date of Test : Nov. 10, 2014 ~ Nov. 26, 2014

Issued Date : Nov. 28, 2014
Tested by : BTL Inc.

Testing Engineer :

Super Trans

(Super Jiang)

Technical Manager :

(Loo Hung)

Authorized Signatory:

(Steven Lu)

BTL INC.

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, China. TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Report No.: BTL-FCC-SAR-1411C072 Page 1 of 64

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**), or National Institute of Standards and Technology (**NIST**).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Report No.: BTL-FCC-SAR-1411C072 Page 2 of 64

Table of Contents	Page
1. GENERAL SUMMARY	6
2. RF EMISSIONS MEASUREMENT	7
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3 . GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 THE MAXIMUM SAR _{1G} VALUES	9
3.3 LABORATORY ENVIRONMENT	9
3.4 MAIN TEST INSTRUMENTS	10
4 . SAR MEASUREMENTS SYSTEM CONFIGURATION	11
4.1 SAR MEASUREMENT SET-UP 4.2 DASY5 E-FIELD PROBE SYSTEM	11 12
5 . TISSUE-EQUIVALENT LIQUID	19
5.1 TISSUE-EQUIVALENT LIQUID INGREDIENTS 5.2 TISSUE-EQUIVALENT LIQUID PROPERTIES	19 19
6 . SYSTEM CHECK 6.1 DESCRIPTION OF SYSTEM CHECK	20 20
6.2 DESCRIPTION OF SYSTEM CHECK	20 21
7 . OPERATIONAL CONDITIONS DURING TEST	22
7.1 GENERAL DESCRIPTION OF TEST PROCEDURES	22
7.2 TEST POSITION	22
7.2.2 SAR TEST REDUCTION AND EXCLUSION GUIDANCE	22
8 . TEST RESULT	25
8.1 CONDUCTED POWER RESULTS	25
8.2 SAR TEST RESULTS	27
8.2.1 WIFI 8.3 SIMULTANEOUS TRANSMISSION CONDITIONS	27 28
ESTIMATED SAR	28
APPENDIX	30
1. TEST LAYOUT	30
2. SYSTEM CHECK RESULTS	31

Report No.: BTL-FCC-SAR-1411C072 Page 3 of 64

Table of Contents	Page
3. GRAPH RESULTS	32
4. PROBE CALIBRATION CERTIFICATE	40
5. (1) D2450V2 DIPOLE CALIBRATION CERTIFICATE	51
6. DAE4 CALIBRATION CERTIFICATE	59
7. EUT TESTING POSITION AND ANTENNA LOCATION	62

Report No.: BTL-FCC-SAR-1411C072 Page 4 of 64

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FCC-SAR-1411C072	Original Issue.	Nov. 28, 2014

Report No.: BTL-FCC-SAR-1411C072 Page 5 of 64

1. GENERAL SUMMARY

Equipment	Wireless Enabled Hard Drive
Model Name	IDrive WiFi; IDriveWiFi-XXXXGB
Brand Name	IDrive; IDrive WiFi
Model Difference	Only differ in the hard drive capacity.
Manufacturer	IDrive Inc.
Address	26115 Mureau Road, Suite A, Calabasas, CA 91302
Factory	Power7 Technology(Dongguan) Co.,Ltd
Address	No.28 BinjiangSt.ShishuikouVillage,QiaotouTown, DongguanCity, GuangDong Province P.R.China
Standard(s)	FCC 47CFR §2.1093 Radio frequency Radiation Exposure Evaluation: Portable Devices ANSI C95.1, 1999 Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1999) KDB 248227 D01 v01r02 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters KDB 447498 D01 General RF Exposure Guidance v05r02: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies. KDB 865664 D01 SAR measurement 100 MHz to 6GHz v01r03: SAR Measurement Requirements for 100MHz to 6GHz

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCC-SAR-1411C072) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Report No.: BTL-FCC-SAR-1411C072 Page 6 of 64

2. RF EMISSIONS MEASUREMENT

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is **SAR room** at the location of No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China.523792

2.2 MEASUREMENT UNCERTAINTY

Uncertainty Conponent	Uncertainty Value	Probability Distribution	Divisor	C _i (1g)	Standard Uncertainty ±1%	V _i or V _{eff}
Measurement System					<u> </u>	
Probe Calibration (k=1)	5.9	Normal	1	1	5.9	∞
Axial Isotropy	4.7	Rectangular	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
Hemispherical Isotropy	9.6	Rectangular	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞
Boundary Effect	1.0	Rectangular	$\sqrt{3}$	1	0.6	∞
Linearity	4.7	Rectangular	$\sqrt{3}$	1	2.7	∞
System Detection Limit	1.0	Rectangular	$\sqrt{3}$	1	0.6	∞
Readout Electronics	0.3	Normal	1	1	0.3	∞
Response Time	0.8	Rectangular	$\sqrt{3}$	1	0.5	∞
Integration Time	2.6	Rectangular	$\sqrt{3}$	1	1.5	∞
RF Ambient Conditions-Noise	3.0	Rectangular	$\sqrt{3}$	1	1.7	∞
RF Ambient Reflections	3.0	Rectangular	$\sqrt{3}$	1	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	Rectangular	$\sqrt{3}$	1	0.2	∞
Probe Positioning with respect to Phantom Shell	2.9	Rectangular	$\sqrt{3}$	1	1.7	∞
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	1.0	Rectangular	$\sqrt{3}$	1	0.6	∞
Test Sample Related						
Test sample Positioning	2.9	Normal	1	1	2.9	145
Device Holder Uncertainty	3.6	Normal	1	1	3.6	5
Output Power Variation - SAR drift measurement	5.0	Rectangular	$\sqrt{3}$	1	2.9	∞
Phantom and Setup						
Phantom Uncertainty (shape and thickness tolerances)	4.0	Rectangular	$\sqrt{3}$	1	2.3	∞
Liquid Conductivity - deviation from target values	5.0	Rectangular	$\sqrt{3}$	0.64	1.8	∞
Liquid Conductivity - measurement uncertainty	2.5	Normal	1	0.64	1.6	∞
Liquid Permittivity - deviation from target values	5.0	Rectangular	$\sqrt{3}$	0.6	1.7	∞
Liquid Permittivity - measurement uncertainty	2.5	Normal	1	0.6	1.5	∞
Combined standard uncertain	ity	RSS	-	-	10.9	387
Expanded uncertainty		k=2	-	-	21.9	-

Report No.: BTL-FCC-SAR-1411C072 Page 7 of 64

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Tested Mode(s)	WiFi(802.11b/g/n)				
Operation Frequency	2412 MHz ~2462 MHz				
Modulation Technology	802.11b:DSSS 802.11g:OFDM 802.11n:OFDM				
Bit Rate of Transmitter	802.11b :1, 2, 5.5, 11 Mbps 802.11g : 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11n : up to 300 Mbps				
Number Of Channel	Please refer to note 1				
Antenna Type	Please refer to note 2				
Power Source	#1 DC voltage supplied from AC Adapter. Brand/Model: Ktec / KSA29B0500200D5 #2 Supplied from lithium battery. Model: SP 954856				
Power Rating	#1 I/P: AC 100-240V~ 50/60Hz 0.5A O/P: DC 5.0V 2.0A #2 DC 3.7V 3000mAh 11.1Wh				

Note:

1. Number Of Channel(WIFI)

<u> </u>	<u> </u>	,					
	802.11b / g / n 20MHz / n 40MHz						
	CH 01 – CH 11 for 802.11b, 802.11g, 802.11n(20MHz) CH 03 – CH 09 for 802.11n(40MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

2. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Note
0(A)	N/A	SLB-201560040	Integral	N/A	2.24	TX/RX
1(B)	N/A	SLB-201570170	Integral	N/A	2.71	TX/RX

Report No.: BTL-FCC-SAR-1411C072 Page 8 of 64

3.2 THE MAXIMUM SAR_{1G} VALUES

Body SAR Configuration

Test Mode	Frequency (MHz)	Test Position	Separation Distance	Reported Result SAR _{1g} (W/kg)	Limit SAR _{1g} (W/kg)
802.11b	2462	Test Position 2	0mm	0.947	1.6

3.3 LABORATORY ENVIRONMENT

Temperature	Min. = 18°C, Max. = 25°C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

Report No.: BTL-FCC-SAR-1411C072 Page 9 of 64

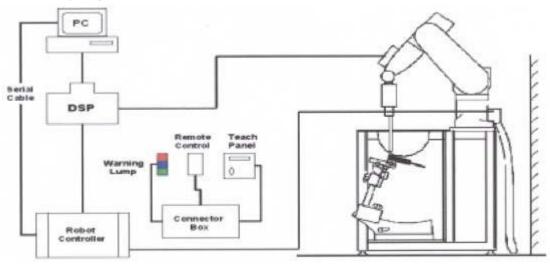
3.4 MAIN TEST INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Data Acquisition Electronics	Speag	DAE4	1390	Sep. 15, 2015
2	E-field Probe	Speag	EX3DV4	3898	Mar. 10, 2015
3	Electro Optical Converter	Speag	ECO90	1151	N/A
4	SAM Twin Phantom	Speag	SAM	1784	N/A
5	System Validation Dipole	Speag	D2450V2	919	Sep. 17, 2015
6	Power Amplifier	Speag	ZHL-42W	N/A	N/A
7	Power Amplifier	Speag	ZVE-8G	N/A	N/A
8	ENA Network Analyzer	Agilent	E5071C	MY46102965	Mar. 29, 2015
9	Dielectric Probe Kit	Agilent	85070E	2593	N/A
10	P-series power meter	Agilent	N1911A	MY45100473	Mar. 29, 2015
11	wideband power sensor	Agilent	N1921A	MY51100041	Mar. 29, 2015
12	Power Meter	Anritsu	ML2487A	6K00004714	Mar. 16, 2015
13	Power Meter Sensor	Anritsu	MA2491A	34138	Mar. 16, 2015
14	MXG Analog Signal Generator	Agilent	N5181A	MY49060710	Nov. 02, 2015
15	Low pass filter	Mini-Circuits	SLP-2950+	M108294	Mar. 29, 2015
16	Attenuator	Mini-Circuits	VAT-10+	31317-1	Mar. 29, 2015
17	Attenuator	Mini-Circuits	VAT-10+	31317-2	Mar. 29, 2015
18	Attenuator	MEB	300-affn-03	314	Mar. 29, 2015
19	Dual directional coupler	Agilent	777D	50208	Mar. 29, 2015

Remark: "N/A" denotes no model name, serial No. or calibration specified.

All calibration period of equipment list is one year.

Report No.: BTL-FCC-SAR-1411C072 Page 10 of 64


4. SAR MEASUREMENTS SYSTEM CONFIGURATION

4.1 SAR MEASUREMENT SET-UP

The DASY5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal
 multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision
 detection, etc. The unit is battery powered with standard or rechargeable batteries. The
 signal is optically transmitted to the EOC.
- 4. A unit to operate the optical surface detector which is connected to the EOC.
- 5. The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 7
- 7. DASY5 software and SEMCAD data evaluation software.
- 8. Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- 9. The generic twin phantom enabling the testing of left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. System validation dipoles allowing to validate the proper functioning of the system.

4.1.1 Test Setup Layout

Report No.: BTL-FCC-SAR-1411C072 Page 11 of 64

4.2 DASY5 E-FIELD PROBE SYSTEM

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

4.2.1 EX3DV4 PROBE SPECIFICATION

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2dB
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm

EX3DV4 E-field Probe

Report No.: BTL-FCC-SAR-1411C072 Page 12 of 64

4.2.2 E-FIELD PROBE CALIBRATION

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than ± 0.25 dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or
$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

4.2.3 OTHER TEST EQUIPMENT

4.2.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

4.2.3.2 Phantom

The SAM twin phantom is a berglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6 mm). The phantom has three measurement areas:

- Left hand
- Right hand
- _ Flat phantom

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to cover the phantom during o -periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible.

SAM twin Phantom

Report No.: BTL-FCC-SAR-1411C072 Page 14 of 64

4.2.4 SCANNING PROCEDURE

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 10 mm x 10 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

4.2.5 DATA STORAGE AND EVALUATION

4.2.5.1 Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Report No.: BTL-FCC-SAR-1411C072 Page 16 of 64

4.4.2 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: Sensitivity Normi, a_{i0} , a_{i1} , a_{i2}

Conversion factor ConvF_i

Diode compression point Dcp_i

Device Frequency f parameters:

Crest factor cf

Media parameters: Conductivity

Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf / dcp_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

Cf = crest factor of exciting field (DASY parameter)

 dcp_i = diode compression point (DASY parameter)

Report No.: BTL-FCC-SAR-1411C072 Page 17 of 64

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z) [mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

aii = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_X^2 + E_Y^2 + E_Z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

With SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \text{ or } P_{pwe} = H_{tot}^2 \cdot 37.7$$

With P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total field strength in V/m

 H_{tot} = total magnetic field strength in A/m

5. TISSUE-EQUIVALENT LIQUID

5.1 TISSUE-EQUIVALENT LIQUID INGREDIENTS

The liquid is consisted of water, salt and Glycol. The liquid has previously been proven to be suited for worst-case. The Table 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed

Composition of the body Tissue Equivalent Matter

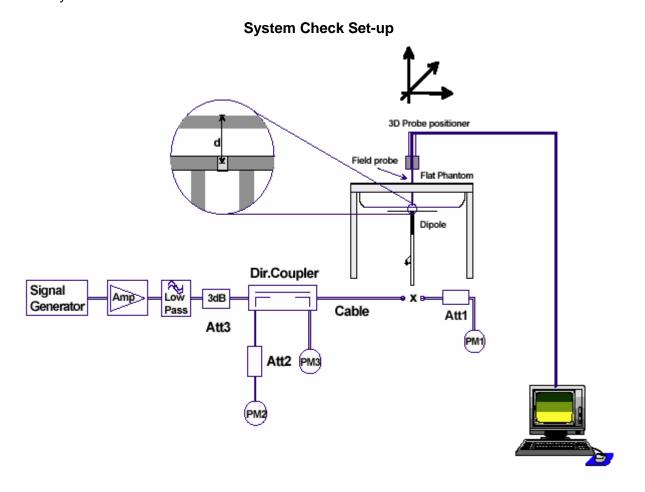
MIXTURE%	FREQUENCY 2450MHz
Water	73.2
Glycol	26.7
Salt	0.1
Dielectric Parameters Target Value	f=2450MHzε=52.70 σ=1.95

5.2 TISSUE-EQUIVALENT LIQUID PROPERTIES

Dielectric Performance of Tissue Simulating Liquid

Frequency	B	Dielectric I	Dielectric Parameters				
(MHz)	Description	€ r	σ(s/m)	$^{\circ}$ C			
	Target value	52.70	1.95	22.0			
0.450	±5% within	50.07-55.34	1.85-2.048	22.0			
2450	Measurement value	50.05	4.02	20.0			
	2014-11-26	50.95	1.92	20.8			

Report No.: BTL-FCC-SAR-1411C072 Page 19 of 64


6. SYSTEM CHECK

6.1 DESCRIPTION OF SYSTEM CHECK

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the 6.2.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

Report No.: BTL-FCC-SAR-1411C072 Page 20 of 64

6.2 DESCRIPTION OF SYSTEM CHECK

System Check in Tissue Simulating Liquid

Frequency (MHz)	Test Date		Dielectric Parameters				250mW Measured SAR _{1g}	1W Normalize d SAR _{1g}	1W Target SAR _{1g} (±10% deviation)
		εr	σ(s/m)	(℃)		(W/kg)			
2450	2014-11-26	50.95	1.92	20.80	12.50	50.00	49.30 (44.37~54.23)		

Note: 1. The graph results see Appendix 2.
2. Target Value derives from the calibration certificate

Report No.: BTL-FCC-SAR-1411C072 Page 21 of 64

7. OPERATIONAL CONDITIONS DURING TEST

7.1 General Description of Test Procedures

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band.802.11b/g modes are tested on channels1,6,11; however, if output power reduction is necessary for channels 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

7.2 Test Position

The SAR Exclusion Threshold in KDB 447498 D01 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned adjacent the phantom and the edge containing the antenna positioned perpendicular to the phantom.

7.2.2 SAR test reduction and exclusion guidance

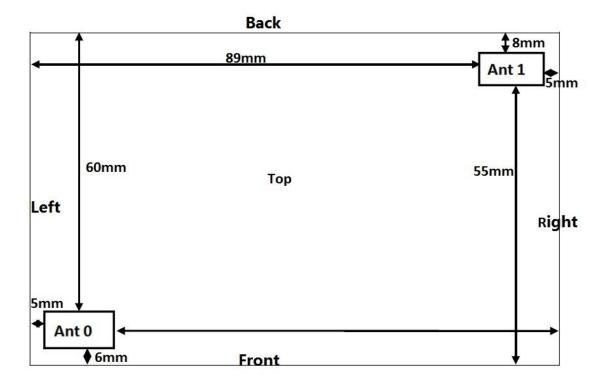
(1) The SAR exclusion threshold for distances < 50mm is defined by the following equation:

```
(max. power of channel, including tune-up tolerance, mW) √ Frequency (GHz) ≤3.0 (min. test separation distance, mm)
```

(2)The SAR exclusion threshold for distances>50mm is defined by the following equation, as illustrated in KDB 447498 D01 Appendix B:

```
a) at 100 MHz to 1500 MHz
```

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) \cdot (f _(MHz)/150)] mW


b) at >1500MHz and ≤6GHz

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) ·10] mW

Report No.: BTL-FCC-SAR-1411C072 Page 22 of 64

The location of the antenna inside EUT is shown in APPENDIX 7.

> **Test Position 1:** The top side of the EUT towards the bottom of the flat phantom. The distance between the top side of the EUT and the bottom of the flat phantom is 0mm.

SAR is not required for Ant0 and Ant1 in this position.

Evaluation_(Ant0)=
$$[10^{(13.5/10)}/25]*(2.462^{1/2})=1.41<3.0$$

Evaluation_(Ant1)=
$$[10^{(13.5/10)}/25]*(2.462^{1/2})=1.41<3.0$$

➤ **Test Position 2:** The bottom side of the EUT towards the bottom of the flat phantom. The distance between the bottom side of the EUT and the bottom of the flat phantom is 0mm. (APPENDIX 7)

SAR is required for Ant0 and Ant1 in this position.

Evaluation_(Ant0)=
$$[10^{(13.5/10)}/5]*(2.462^{1/2})=7.025>3.0$$

Evaluation_(Ant1)=
$$[10^{(13.5/10)}/5]*(2.462^{1/2})=7.025>3.0$$

Report No.: BTL-FCC-SAR-1411C072 Page 23 of 64

> **Test Position 3:** The back side of the EUT towards the bottom of the flat phantom. The distance between the back side of the EUT and the bottom of the flat phantom is 0mm. (APPENDIX 7)

SAR is not required for Ant0 in this position.

SAR is required for Ant1 in this position.

Evaluation_(Ant0)= 95.6+(60-50)*10 = 195.60mW=22.9dBm>13.5dBm(max.power)

Evaluation_(Ant1)= $[10^{(13.5/10)}/8]*(2.462^{1/2})=4.391>3.0$

➤ **Test Position 4:** The front side of the EUT towards the bottom of the flat phantom. The distance between the front side of the EUT and the bottom of the flat phantom is 0mm. (APPENDIX 7)

SAR is required for Ant0 in this position.

SAR is not required for Ant1 in this position.

Evaluation_(Ant0)=
$$[10^{(13.5/10)}/6]*(2.462^{1/2})=5.855>3.0$$

Evaluation_(Ant1)= 95.6+(55-50)*10 = 145.60mW=21.63dBm>13.5dBm(max.power)

> **Test Position 5:** The left side of the EUT towards the bottom of the flat phantom. The distance between the left side of the EUT and the bottom of the flat phantom is 0mm. (APPENDIX 7)

SAR is required for Ant0 in this position.

SAR is not required for Ant1 in this position.

Evaluation_(Apt0)=
$$[10^{(13.5/10)}/5]*(2.462^{1/2})=7.025>3.0$$

Evaluation_(Ant1)= 95.6+(89-50)*10 =485.60mW=26.86dBm>13.5dBm(max.power)

➤ **Test Position 6:** The right side of the EUT towards the bottom of the flat phantom. The distance between the right side of the EUT and the bottom of the flat phantom is 0mm. (APPENDIX 7)

SAR is not required for Ant0 in this position.

SAR is required for Ant1 in this position.

Evaluation_(Anto)= 95.6+(89-50)*10 = 485.60mW=26.86dBm>13.5dBm(max.power)

Evaluation_(Ant1)= $[10^{(13.5/10)}/5]*(2.462^{1/2})=7.025>3.0$

Report No.: BTL-FCC-SAR-1411C072 Page 24 of 64

8. TEST RESULT

8.1 CONDUCTED POWER RESULTS

		Data Rate	Test Results (dBm)							
WiFi		(Mbps)			С	onducted	AV			
2.4G	Ant	Frequency (MHz)	1	2	5.5	11				
		2412	12.79	12.74	12.68	12.63				
	Ant 0	2437	12.69	12.85	12.81	12.75				
802.11b		2462	12.61	12.56	12.47	12.41				
002.110		2412	12.73	12.68	12.57	12.51				
	Ant 1	2437	12.52	12.46	12.38	12.33				
		2462	12.83	12.77	12.72	12.65				

		Data Rate		Test Results (dBm)						
WiFi		(Mbps)	(Mbps) Conducted AV							
2.4G	Ant	Frequency								
		(MHz)	6	9	12	18	24	36	48	54
		2412	10.78	10.74	10.67	10.56	10.53	10.48	10.40	10.35
	Ant 0	2437	10.73	10.67	10.63	10.58	10.51	10.46	10.38	10.32
802.11g		2462	10.78	10.73	10.66	10.62	10.57	10.53	10.47	10.39
002.119		2412	10.70	10.65	10.58	10.52	10.48	10.42	10.37	10.34
	Ant 1	2437	10.65	10.59	10.55	10.48	10.44	10.38	10.32	10.28
		2462	10.57	10.53	10.48	10.42	10.38	10.34	10.27	10.23

		Data Rate			1	est Resul	ts (dBm)				
WiFi		(Mbps)	(Mbps) Conducted AV								
2.4G	Ant	Frequency (MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
		2412	10.68	10.65	10.6	10.56	10.52	10.47	10.43	10.37	
	Ant 0	2437	10.72	10.68	10.63	10。58	10.53	10.47	10.42	10.37	
802.11n		2462	10.94	10.88	10.83	10.79	10.74	10.7	10.67	10.62	
HT20		2412	10.74	10.69	10.65	10.61	10.58	10.54	10.49	10.45	
	Ant 1	2437	10.78	10.74	10.68	10.63	10.59	10.52	10.47	10.43	
		2462	8.82	8.78	8.73	8.65	8.61	8.56	8.52	8.47	

Report No.: BTL-FCC-SAR-1411C072 Page 25 of 64

WiFi		Data Rates	ower (dB	Sm)						
2.4G	Ant	(MHz)	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
		2412	10.53	10.49	10.43	10.39	10.35	10.28	10.24	10.18
	Ant 0	2437	10.64	10.61	10.57	10.49	10.44	10.38	10.34	10.29
802.11n HT20		2462	10.87	10.83	10.76	10.72	10.67	10.62	10.57	10.48
11120		2412	10.62	10.58	10.49	10.45	10.41	10.38	10.34	10.29
	Ant 1	2437	10.67	10.63	10.59	10.53	10.47	10.42	10.38	10.34
		2462	8.75	8.72	8.68	8.61	8.57	8.52	8.48	8.44

		Data Rate	Data Rate Test Results (dBm)									
WiFi		(Mbps)	(Mbps) Conducted AV									
2.4G	Ant	Frequency (MHz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
		2422	8.81	8.77	8.72	8.68	8.62	8.59	8.65	8.58		
	Ant 0	2437	8.78	8.74	8.69	8.62	8.58	8.53	8.49	8.42		
802.11n		2452	8.88	8.82	8.76	8.71	8.67	8.62	8.55	8.52		
HT40		2422	8.46	8.43	8.39	8.35	8.3	8.27	8.23	8.18		
	Ant 1	2437	9.35	9.32	9.28	9.24	9.19	9.15	9.11	8.88		
		2452	7.46	7.41	7.39	7.32	7.26	7.23	7.18	7.11		

WiFi		Data Rates	Average Power (dBm)							
2.4G	Ant	Frequency (MHz)	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
		2422	8.72	8.68	8.63	8.57	8.54	8.49	8.43	8.38
	Ant 0	2437	8.6	8.58	8.55	8.46	8.42	8.37	8.33	8.28
802.11n HT40		2452	8.74	8.68	8.62	8.56	8.52	8.48	8.43	8.37
11140		2422	8.08	7.89	7.83	7.79	7.73	7.68	7.61	7.56
	Ant 1	2437	8.97	8.94	8.88	8.82	8.75	8.71	8.69	8.63
		2452	6.35	6.32	6.29	6.25	6.17	6.13	6.06	6.00

Report No.: BTL-FCC-SAR-1411C072 Page 26 of 64

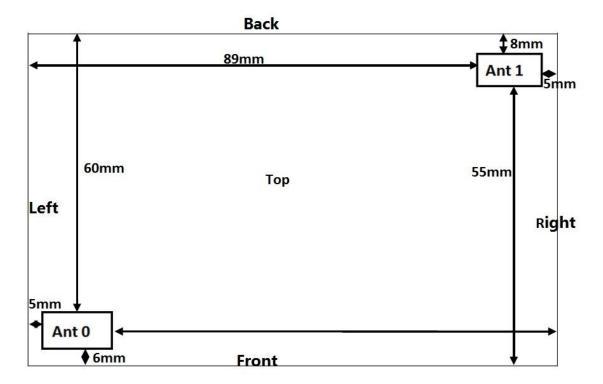
8.2 SAR TEST RESULTS

8.2.1 WIFI

Test Position	Channel Frequency	Duty Cycle	Maximum Allowed Power	Conducted power	Drift ±0.21dB	Measured	Limit of SA	R 1.6 W/kg	Graph	
Toolaion	(MHz)	- Cyolc	(dBm)	(dBm)	(dB)	SAR (W/kg)	factor	SAR (W/kg)	Results	
Test Position of Body, 802.11b (Ant0 Distance=0mm)										
2	2437	1:1	13.5	12.79	-0.01	0.435	1.178	0.512	1	
4	2437	1:1	13.5	12.79	-0.03	0.064	1.178	0.075	2	
5	2437	1:1	13.5	12.79	-0.01	0.029	1.178	0.034	3	
		Test	Position of	Body, 802.11	b (Ant1	Distance=0r	nm)			
	2462	1:1	13.5	12.83	-0.02	0.812	1.167	0.947	4	
2	2412	1:1	13.5	12.73	-0.01	0.529	1.194	0.632	5	
	2437	1:1	13.5	12.52	-0.03	0.537	1.253	0.673	6	
3	2462	1:1	13.5	12.83	-0.03	0.07	1.167	0.082	7	
6	2462	1:1	13.5	12.83	-0.01	0.018	1.167	0.021	8	

Note:

- 1. The value with boldface is the maximum SAR Value of each test band.
- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than 1/4dB higher than measured on the corresponding 802.11b channels.


Report No.: BTL-FCC-SAR-1411C072 Page 27 of 64

8.3 SIMULTANEOUS TRANSMISSION CONDITIONS

Ant	enna	Simultaneous transmission
Ant 0	Ant 1	YES

The location of the antenna inside EUT is shown in APPENDIX 7.

Estimated SAR

(1) for test separation distances≤50mm

When standalone SAR is not required to be measured per FCC KDB 447498 D01,the following Equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter for test separation distances≤50mm.

Estimated SAR=
$$\frac{\text{(max. power of channel, including tune-up tolerance, mW)}}{\text{(min. test separation distance, mm)}} \sqrt[*]{f (GHz)}$$

(2)for test separation distances≥50mm

0.4W/Kg for 1g SAR

Report No.: BTL-FCC-SAR-1411C072 Page 28 of 64

Estimated SARMax.Ant0.Test Position1=[10(13.5/10)/25]*(2.4621/2/7.5)=0.187W/Kg

Estimated SARMax.Ant0.Test Position3≤0.4W/Kg

Estimated SARMax.Ant0.Test Position6≤0.4W/Kg

Estimated SARMax.Ant1.Test Position1=[10(13.5/10)/25]*(2.4621/2/7.5)=0.187W/Kg

Estimated SARMax.Ant1.Test Position4≤0.4W/Kg

Estimated SARMax.Ant1.Test Position5≤0.4W/Kg

Per FCC KDB 447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of 1g SAR of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit(≤1.6W/Kg),When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio =
$$\frac{(SAR_1 + SAR_2)^{1.5}}{(min. test separation distance, mm)} < 0.04$$

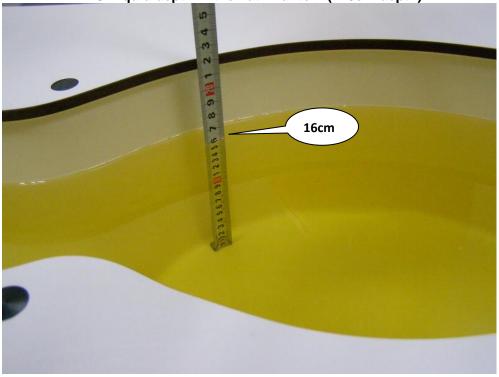
Reported SAR _{1g(W/Kg)}			MAX.
Test Position	Ant 0	Ant 1	∑SAR _{1g}
Test Position 1	0.187	0.187	0.374
Test Position 2	0.512	0.947	1.459
Test Position 3	0.4	0.082	0.482
Test Position 4	0.075	0.4	0.475
Test Position 5	0.034	0.4	0.434
Test Position 6	0.4	0.021	0.421

Note:1. The value with boldface is the maximum $\sum SAR_{1g}$ Value.

2. MAX. ∑SAR1g=Report SAR_{Max.Ant0}+ Report SAR_{Max.Ant1}

MAX. ∑SAR1g =1.459W/Kg<1.6W/kg, so the simultaneous transmission SAR are not required for Ant 0 and Ant 1.

Report No.: BTL-FCC-SAR-1411C072 Page 29 of 64


APPENDIX

1. Test Layout

Specific Absorption Rate Test Layout

Report No.: BTL-FCC-SAR-1411C072 Page 30 of 64

2. System Check Results

Date/Time: 11/26/2014 08:33:21

Test Laboratory: BTL Inc.

System Performance Check Body 2450 MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:919

Communication System: UID 0, CW (0); Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.92$ S/m; $\epsilon r = 50.95$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

Probe: EX3DV4 - SN3898; ConvF(7.49, 7.49, 7.49); Calibrated: 03/10/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn1390; Calibrated: 09/15/2014

Phantom: SAM 1; Type: SAM; Serial: 1784

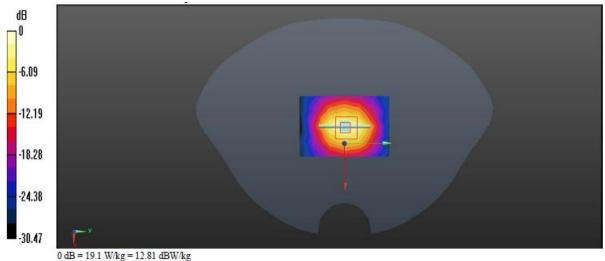
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at 2450MHz/Area Scan (5x7x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 19.1 W/kg

System Performance Check at 2450MHz/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.325 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 25.8 W/kg

SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.68 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

3. Graph Results

Date/Time: 11/26/2014 15:00:12

Test Laboratory: BTL Inc.

Wireless Enabled Hard Drive IDrive WiFi 802.11b ant0 2437MHz CH6 Test Position 2 distance=0mm DUT: Wireless Enabled Hard Drive; Type: IDrive WiFi; Serial: NA

Communication System: UID 0, IEEE 802.11b WiFi 2.4GHz (DSSS,1Mbps) (0); Frequency: 2437 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.913$ S/m; $\epsilon r = 51.045$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY Configuration:

Probe: EX3DV4 - SN3898; ConvF(7.51, 7.51, 7.51); Calibrated: 03/10/2014;

➤ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

➤ Electronics: DAE4 Sn1390; Calibrated: 09/15/2014

Phantom: SAM 1; Type: SAM; Serial: 1784

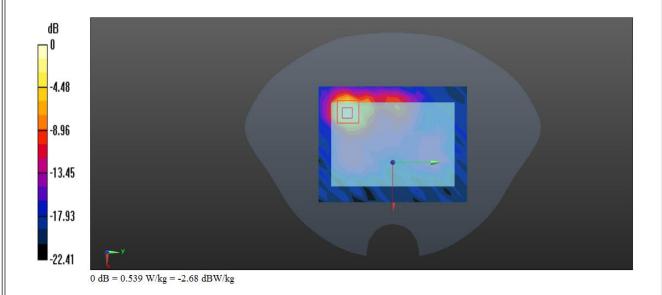
> DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Test Position 2/Wireless Enabled Hard Drive IDrive WiFi/Area Scan (12x16x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.539 W/kg

Test Position 2/Wireless Enabled Hard Drive IDrive WiFi/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.953 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.435 W/kg; SAR(10 g) = 0.156 W/kg

Maximum value of SAR (measured) = 0.734 W/kg

Date/Time: 11/26/2014 17:48:48

Test Laboratory: BTL Inc.

Wireless Enabled Hard Drive IDrive WiFi 802.11b ant0 2437MHz CH6 Test Position 4 distance=0mm DUT: Wireless Enabled Hard Drive; Type: IDrive WiFi; Serial: NA

Communication System: UID 0, IEEE 802.11b WiFi 2.4GHz (DSSS,1Mbps) (0); Frequency: 2437 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.913$ S/m; $\epsilon r = 51.045$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: EX3DV4 - SN3898; ConvF(7.51, 7.51, 7.51); Calibrated: 03/10/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn1390; Calibrated: 09/15/2014

Phantom: SAM 1; Type: SAM; Serial: 1784

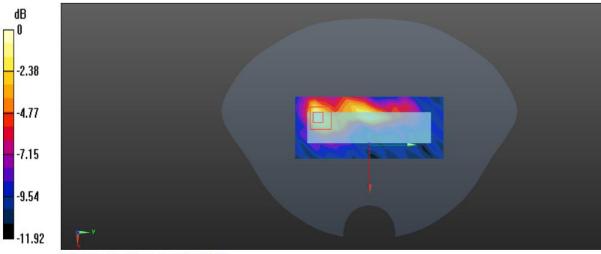
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Test Position 4/Wireless Enabled Hard Drive IDrive WiFi/Area Scan (7x16x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0999 W/kg

Test Position 4/Wireless Enabled Hard Drive IDrive WiFi/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.523 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.064 W/kg; SAR(10 g) = 0.026 W/kg

Maximum value of SAR (measured) = 0.109 W/kg

0 dB = 0.0999 W/kg = -10.00 dBW/kg

Date/Time: 11/26/2014 18:31:03

Test Laboratory: BTL Inc.

Wireless Enabled Hard Drive IDrive WiFi 802.11b ant0 2437MHz CH6 Test Position 5 distance=0mm

DUT: Wireless Enabled Hard Drive; Type: IDrive WiFi; Serial: NA

Communication System: UID 0, IEEE 802.11b WiFi 2.4GHz (DSSS,1Mbps) (0); Frequency: 2437 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.913$ S/m; $\epsilon r = 51.045$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: EX3DV4 - SN3898; ConvF(7.51, 7.51, 7.51); Calibrated: 03/10/2014;

➤ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

➤ Electronics: DAE4 Sn1390; Calibrated: 09/15/2014

Phantom: SAM 1; Type: SAM; Serial: 1784

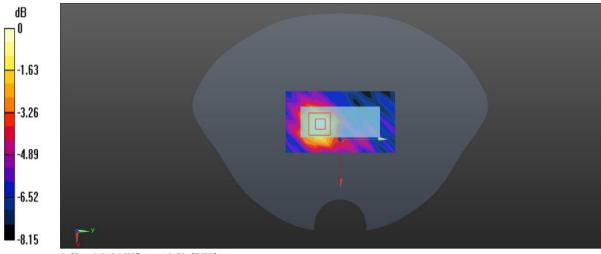
> DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Test Position 5/Wireless Enabled Hard Drive IDrive WiFi/Area Scan (7x12x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0424 W/kg

Test Position 5/Wireless Enabled Hard Drive IDrive WiFi/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.913 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.0710 W/kg

SAR(1 g) = 0.029 W/kg; SAR(10 g) = 0.015 W/kg

Maximum value of SAR (measured) = 0.0472 W/kg

0 dB = 0.0424 W/kg = -13.73 dBW/kg

Date/Time: 11/26/2014 09:55:05

Test Laboratory: BTL Inc.

Wireless Enabled Hard Drive IDrive WiFi 802.11b ant1 2462MHz CH11 Test Position 2 distance=0mm

DUT: Wireless Enabled Hard Drive; Type: IDrive WiFi; Serial: NA

Communication System: UID 0, IEEE 802.11b WiFi 2.4GHz (DSSS,1Mbps) (0); Frequency: 2462 MHz

Medium parameters used: f = 2462 MHz; $\sigma = 1.93$ S/m; $\epsilon r = 50.81$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: EX3DV4 - SN3898; ConvF(7.34, 7.34, 7.34); Calibrated: 03/10/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn1390; Calibrated: 09/15/2014

Phantom: SAM 1; Type: SAM; Serial: 1784

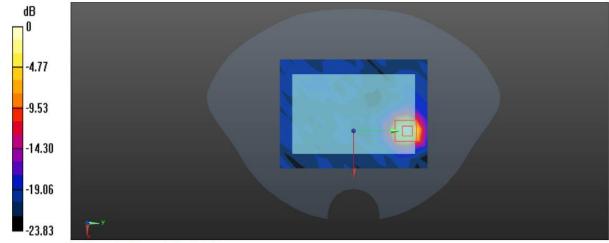
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Test Position 2/Wireless Enabled Hard Drive IDrive WiFi/Area Scan (12x16x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.28 W/kg

Test Position 2/Wireless Enabled Hard Drive IDrive WiFi/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.208 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 0.812 W/kg; SAR(10 g) = 0.304 W/kg

Maximum value of SAR (measured) = 1.30 W/kg

0 dB = 1.28 W/kg = 1.07 dBW/kg

Date/Time: 11/27/2014 11:09:53

Test Laboratory: BTL Inc.

Wireless Enabled Hard Drive IDrive WiFi 802.11b ant1 2412MHz CH1 Test Position 2 distance=0mm DUT: Wireless Enabled Hard Drive; Type: IDrive WiFi; Serial: NA

Communication System: UID 0, IEEE 802.11b WiFi 2.4GHz (DSSS,1Mbps) (0); Frequency: 2412 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.892 \text{ S/m}$; $\epsilon r = 51.895$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: EX3DV4 - SN3898; ConvF(7.54, 7.54, 7.54); Calibrated: 03/10/2014;

➤ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn1390; Calibrated: 09/15/2014

Phantom: SAM 1; Type: SAM; Serial: 1784

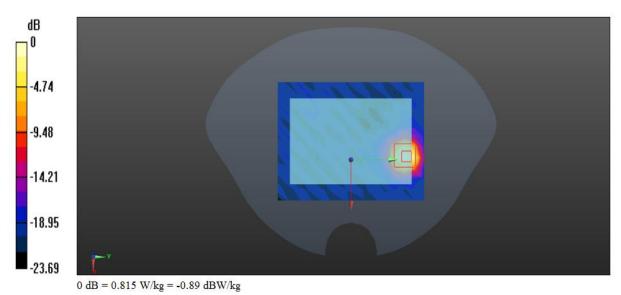
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Test Position 2/Wireless Enabled Hard Drive IDrive WiFi/Area Scan (12x16x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.815 W/kg

Test Position 2/Wireless Enabled Hard Drive IDrive WiFi/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.474 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.529 W/kg; SAR(10 g) = 0.196 W/kg

Maximum value of SAR (measured) = 0.863 W/kg

Date/Time: 11/27/2014 11:49:46

Test Laboratory: BTL Inc.

Wireless Enabled Hard Drive IDrive WiFi 802.11b ant1 2437MHz CH6 Test Position 2 distance=0mm

DUT: Wireless Enabled Hard Drive; Type: IDrive WiFi; Serial: NA

Communication System: UID 0, IEEE 802.11b WiFi 2.4GHz (DSSS,1Mbps) (0); Frequency: 2437 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.913$ S/m; $\epsilon r = 51.045$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: EX3DV4 - SN3898; ConvF(7.51, 7.51, 7.51); Calibrated: 03/10/2014;

➤ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn1390; Calibrated: 09/15/2014

Phantom: SAM 1; Type: SAM; Serial: 1784

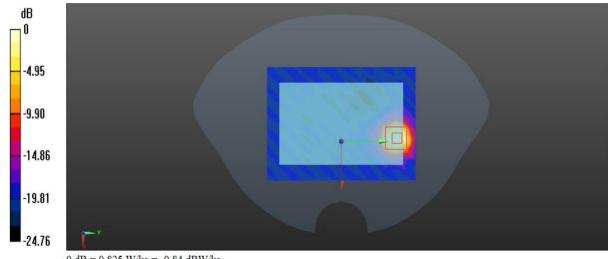
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Test Position 2/Wireless Enabled Hard Drive IDrive WiFi/Area Scan (12x16x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.825 W/kg

Test Position 2/Wireless Enabled Hard Drive IDrive WiFi/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.443 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.537 W/kg; SAR(10 g) = 0.199 W/kg

Maximum value of SAR (measured) = 0.868 W/kg

0 dB = 0.825 W/kg = -0.84 dBW/kg

Report No.: BTL-FCC-SAR-1411C072 Page 37 of 64

Date/Time: 11/26/2014 16:43:28

Test Laboratory: BTL Inc.

Wireless Enabled Hard Drive IDrive WiFi 802.11b ant1 2462MHz CH11 Test Position 3 distance=0mm

DUT: Wireless Enabled Hard Drive; Type: IDrive WiFi; Serial: NA

Communication System: UID 0, IEEE 802.11b WiFi 2.4GHz (DSSS,1Mbps) (0); Frequency: 2462 MHz

Medium parameters used: f = 2462 MHz; $\sigma = 1.93$ S/m; $\epsilon r = 50.81$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: EX3DV4 - SN3898; ConvF(7.34, 7.34, 7.34); Calibrated: 03/10/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn1390; Calibrated: 09/15/2014

Phantom: SAM 1; Type: SAM; Serial: 1784

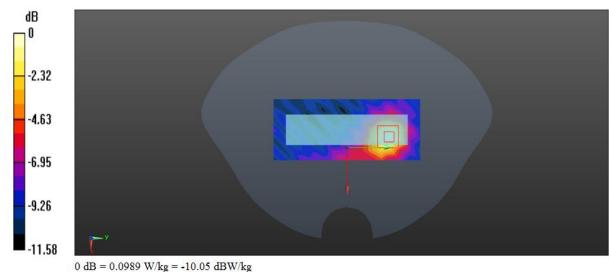
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Test Position 3/Wireless Enabled Hard Drive IDrive WiFi/Area Scan (7x16x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0989 W/kg

Test Position 3/Wireless Enabled Hard Drive IDrive WiFi/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.089 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.158 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.033 W/kg

Maximum value of SAR (measured) = 0.110 W/kg

O dis O.O.O.O. Mag Tolos dis Mag

Date/Time: 11/26/2014 19:05:42

Test Laboratory: BTL Inc.

Wireless Enabled Hard Drive IDrive WiFi 802.11b ant1 2462MHz CH11 Test Position 6 distance=0mm

DUT: Wireless Enabled Hard Drive; Type: IDrive WiFi; Serial: NA

Communication System: UID 0, IEEE 802.11b WiFi 2.4GHz (DSSS,1Mbps) (0); Frequency: 2462 MHz

Medium parameters used: f = 2462 MHz; $\sigma = 1.93$ S/m; $\epsilon r = 50.81$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: EX3DV4 - SN3898; ConvF(7.34, 7.34, 7.34); Calibrated: 03/10/2014;

➤ Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn1390; Calibrated: 09/15/2014

Phantom: SAM 1; Type: SAM; Serial: 1784

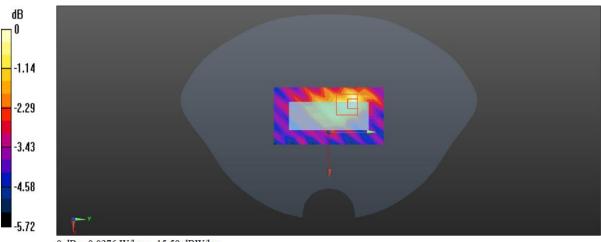
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Test Position 6/Wireless Enabled Hard Drive IDrive WiFi/Area Scan (7x12x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0276 W/kg

Test Position 6/Wireless Enabled Hard Drive IDrive WiFi/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.030 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.0480 W/kg

SAR(1 g) = 0.018 W/kg; SAR(10 g) = 0.00952 W/kg

Maximum value of SAR (measured) = 0.0289 W/kg

0 dB = 0.0276 W/kg = -15.59 dBW/kg

4. Probe Calibration Certificate

EX3DV4 - 3898

p e

Tel: +86-10-62304633-2079 E-mail: Info@emcite.com

No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.emcite.com

Client

Auden

Certificate No: Z14-97001

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3898

Calibration Procedure(s)

TMC-OS-E-02-195

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

March 10, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101547	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101548	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Reference10dBAttenuator	BT0520	12-Dec-12(TMC,No.JZ12-867)	Dec-14
Reference20dBAttenuator	BT0267	12-Dec-12(TMC,No.JZ12-866)	Dec-14
Reference Probe EX3DV4	SN 3846	03-Sep-13(SPEAG,No.EX3-3846_Sep13)	Sep-14
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb -14
DAE4	SN 905	11-Jun-13 (SPEAG, DAE4-905_Jun13)	Jun -14
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-13 (TMC, No.JW13-045)	Jun-14
Network Analyzer E5071C	MY46110673	15-Feb-14 (TMC, No.JZ14-781)	Feb-15
	200000	_ 0.00 (access)	

Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: SAR Project Leader Qi Dianyuan Approved by: Lu Bingsong Deputy Director of the laboratory

Issued: March 12, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97001

Page 1 of 11

Report No.: BTL-FCC-SAR-1411C072 Page 40 of 64

In Collaboration with

S P E A G

Add: No.52 Huayuanbei Rood, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ
Φ rotation around probe axis

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

 NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z;A,B,C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z14-97001

Page 2 of 11

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Probe EX3DV4

SN: 3898

Calibrated: March 10, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z14-97001

Page 3 of 11

Report No.: BTL-FCC-SAR-1411C072 Page 42 of 64

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax; +86-10-62304633-2504 E-mail; Info@emcite.com Http://www.emcite.com

DASY - Parameters of Probe: EX3DV4 - SN: 3898

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) ^	0.50	0.54	0.48	±10.8%
DCP(mV) ⁸	106.5	104.9	101.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0	cw	X	0.0	0.0	1.0	0.00	203.2	±2.1%
		Y	0.0	0.0	1.0		211.8	
		Z	0.0	0.0	1.0		194.9	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97001

Page 4 of 11

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

⁸ Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY - Parameters of Probe: EX3DV4 - SN: 3898

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.32	10.32	10.32	2.94	0.48	±12%
850	41.5	0.92	9.85	9.85	9.85	0.09	1.71	±12%
900	41.5	0.97	9.83	9.83	9.83	0.29	0.92	±12%
1750	40.1	1.37	8.38	8.38	8.38	0.19	1.35	±12%
1900	40.0	1.40	8.20	8.20	8.20	0.19	1.43	±12%
2000	40.0	1.40	8.19	8.19	8.19	0.18	1.54	±12%
2450	39.2	1.80	7.55	7.55	7.55	0.50	0.76	±12%
2600	39.0	1.96	7.34	7.34	7.34	0.80	0.59	±12%
5200	36.0	4.66	5.52	5.52	5.52	0.39	1.24	±13%
5300	35.9	4.76	5.23	5.23	5.23	0.39	1.01	±13%
5500	35.6	4.96	4.95	4.95	4.95	0.41	1.10	±13%
5600	35.5	5.07	4.74	4.74	4.74	0.42	1.16	±13%
5800	35.3	5.27	4.84	4.84	4.84	0.44	1.07	±13%

^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z14-97001

Page 5 of 11

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

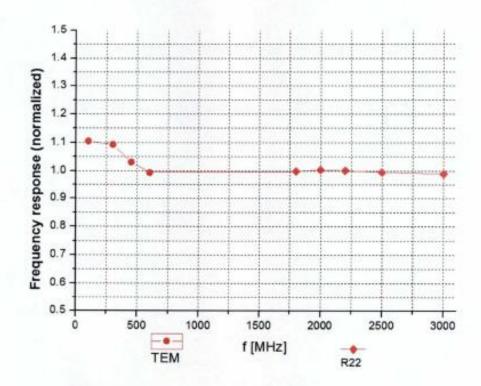
DASY - Parameters of Probe: EX3DV4 - SN: 3898

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.18	10.18	10.18	0.95	0.64	±12%
850	55.2	0.99	9.63	9.63	9.63	0.19	1.33	±12%
900	55.0	1.05	9.63	9.63	9.63	0.23	1.14	±12%
1750	53.4	1.49	8.16	8.16	8.16	0.19	1.57	±12%
1900	53.3	1.52	7.83	7.83	7.83	0.19	1.63	±12%
2000	53.3	1.52	8.10	8.10	8.10	0.15	3.04	±12%
2450	52.7	1.95	7.49	7.49	7.49	0.61	0.75	±12%
2600	52.5	2.16	7.06	7.06	7.06	0.58	0.77	±12%
5200	49.0	5.30	4.80	4.80	4.80	0.47	1.05	±13%
5300	48.9	5.42	4.60	4.60	4.60	0.42	1.43	±13%
5500	48.6	5.65	4.25	4.25	4.25	0.45	1.56	±13%
5600	48.5	5.77	4.22	4.22	4.22	0.46	1.41	±13%
5800	48.2	6.00	4.34	4.34	4.34	0.50	1.27	±13%

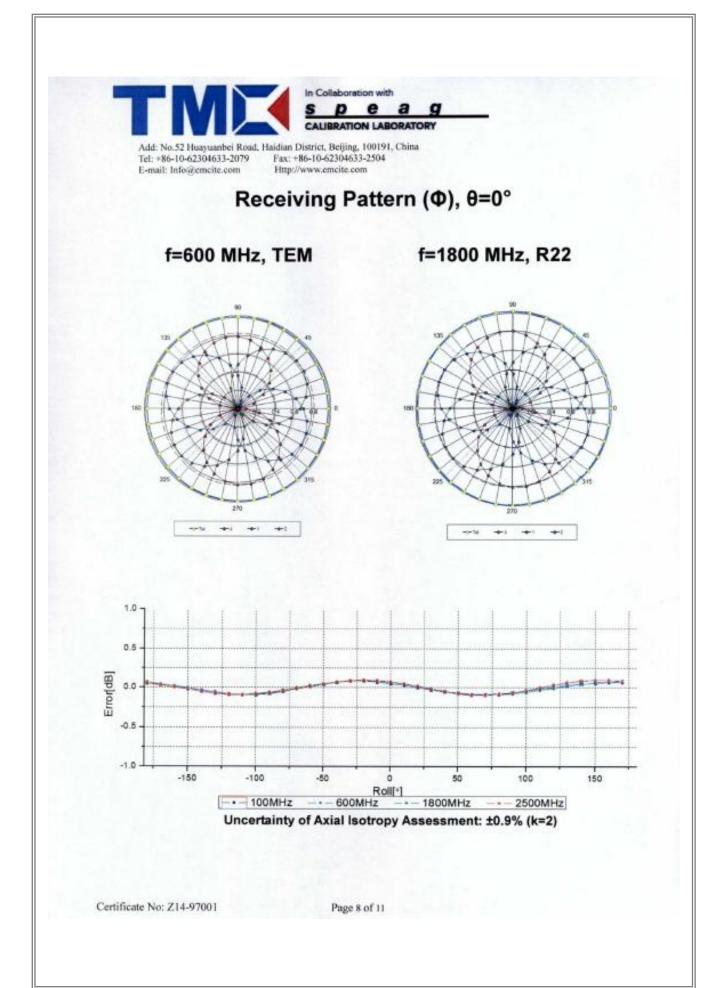
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z14-97001


Page 6 of 11

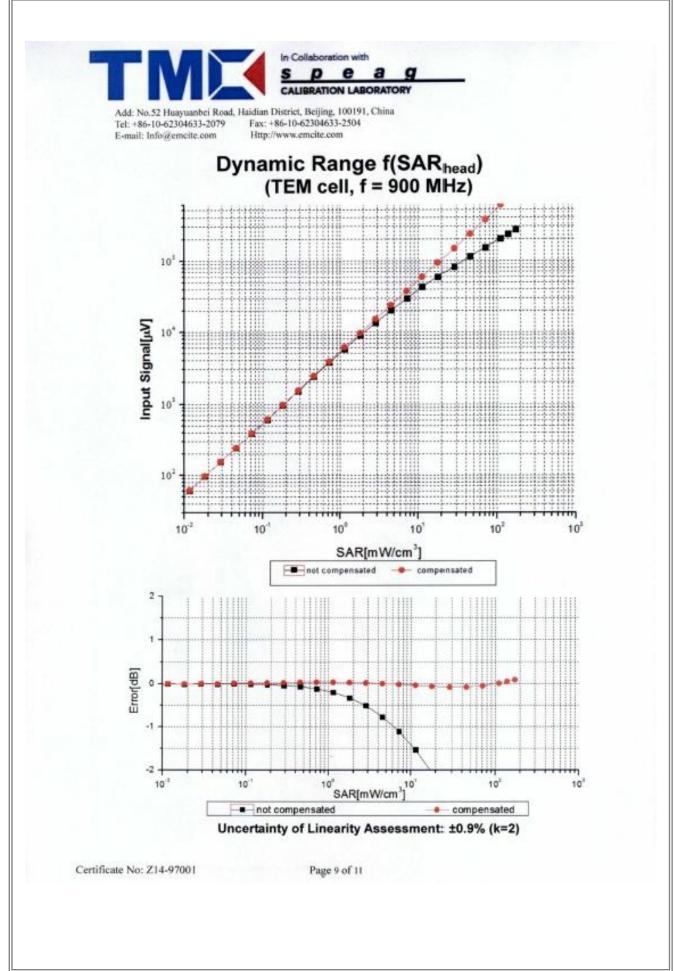
Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

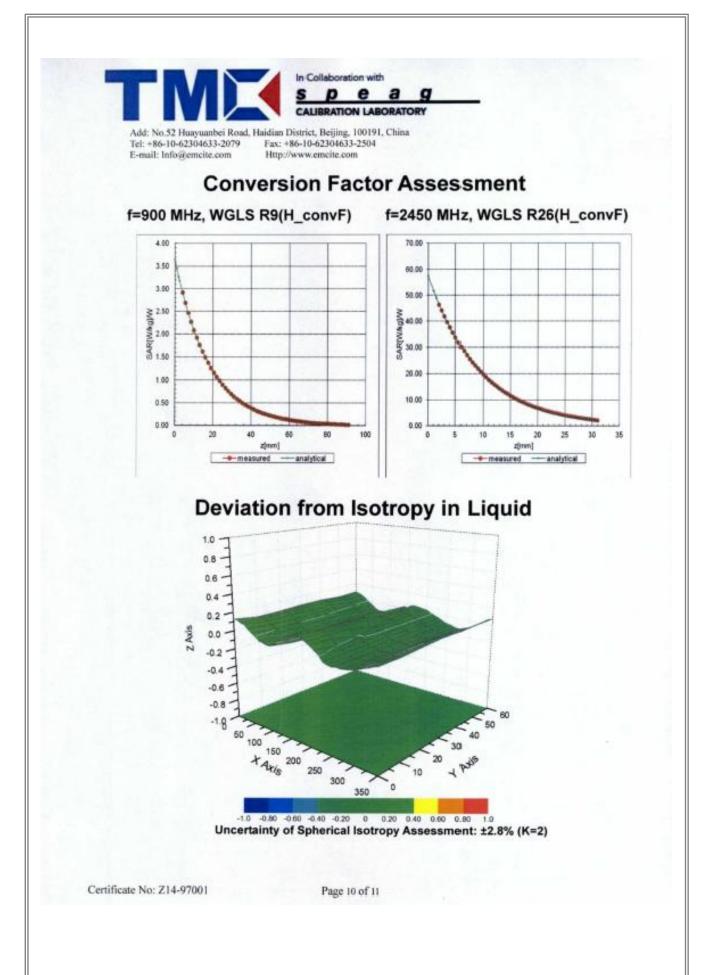
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z14-97001


Page 7 of 11



Page 47 of 64

Page 49 of 64

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY - Parameters of Probe: EX3DV4 - SN: 3898

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	71
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	2mm

Certificate No: Z14-97001

Page 11 of 11

5. (1) D2450V2 Dipole Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079

Http://www.chinattl.cn E-mail: cttl/@chinattl.com

Client CALIBRATION CERTIFICATE

NIM

Certificate No: Z14-97101

Object D2450V2 - SN: 919

Calibration Procedure(s) TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date: September 17, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Scheduled Calibration ID# Cal Date(Calibrated by, Certificate No.) **Primary Standards**

Mar-15 102196 14-Mar-14 (CTTL, No.JZ14-896) Power Meter NRVD Mar -15 100596 14-Mar-14 (CTTL, No. JZ14-896) Power sensor NRV-Z5 Aug-15 Reference Probe ES3DV3 SN 3142 1- Sep-14 (CTTL-SPEAG, No.JZ14-97079) SN 536 23-Jan-14 (SPEAG, DAE3-536_Jan14) Jan -15 DAE3 Nov-14 13-Nov-13 (TMC, No.JZ13-394) Signal Generator E4438C MY49070393 Oct-14 MY43021135 19-Oct-13 (TMC, No.JZ13-278) Network Analyzer E8362B

Signature Function Name Calibrated by: SAR Test Engineer Zhao Jing Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Deputy Director of the laboratory Lu Bingsong

Issued: September 30, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z14-97101 Page 1 of 8

Report No.: BTL-FCC-SAR-1411C072 Page 51 of 64

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97101

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ettl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1

AST system configuration, as far as	not given on page 1	
DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	1,000	

SAR result with Head TSL

Condition	
250 mW input power	13.0 mW/g
normalized to 1W	51.5 mW /g ± 20.8 % (k=2)
Condition	
250 mW input power	6.03 mW/g
normalized to 1W	24.0 mW /g ± 20.4 % (k=2)
	250 mW input power normalized to 1W Condition 250 mW input power

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.2 ± 6 %	1.97 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	-	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	50.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.02 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	23.9 mW/g ± 20.4 % (k=2)

Certificate No: Z14-97101

Page 3 of 8

Report No.: BTL-FCC-SAR-1411C072 Page 53 of 64

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.6Ω- 0.44 Ω
Return Loss	- 24.1dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	56.2Ω+ 2.77jΩ	
Return Loss	- 23.9dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.117 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z14-97101

Page 4 of 8

Report No.: BTL-FCC-SAR-1411C072

Page 54 of 64

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Date: 17.09.2014

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 919

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.852$ S/m; $\varepsilon_r = 39.76$; $\rho = 1000$ kg/m³

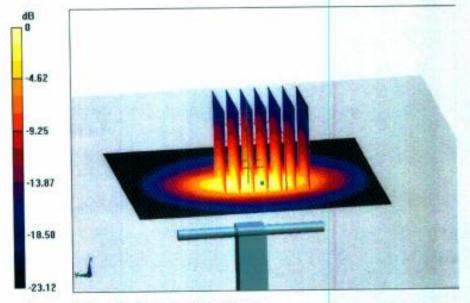
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3142; ConvF(4.58, 4.58, 4.58); Calibrated: 2014-09-01;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check /d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

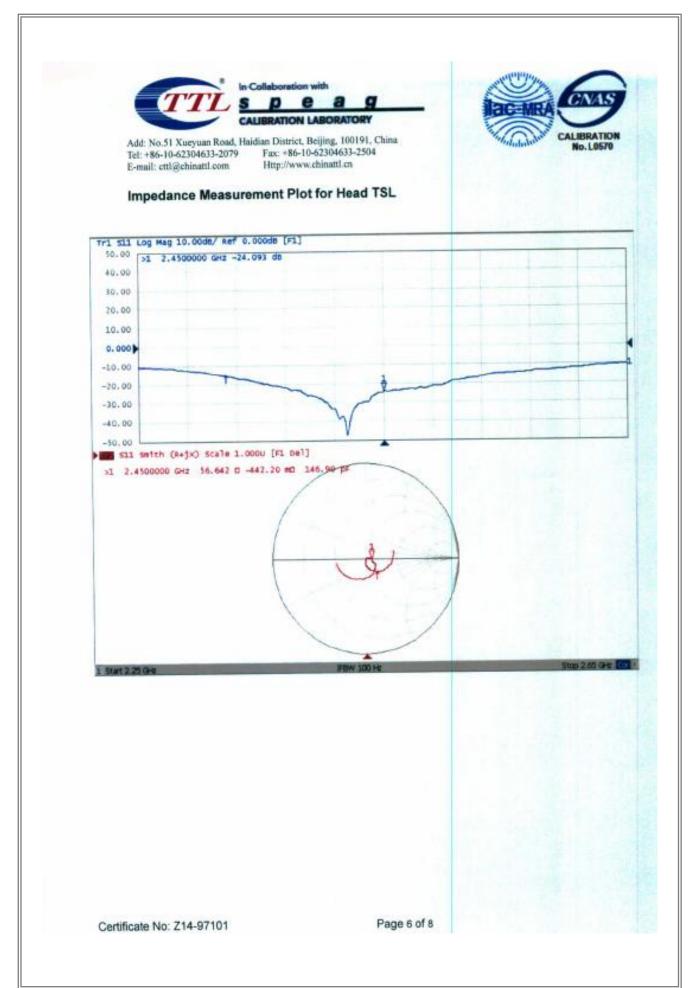
Reference Value = 98.50 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg

Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg


Certificate No: Z14-97101

Page 5 of 8

Report No.: BTL-FCC-SAR-1411C072

Page 55 of 64

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Date: 17.09.2014

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 919

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.966$ S/m; $\epsilon_r = 51.18$; $\rho = 1000$ kg/m³

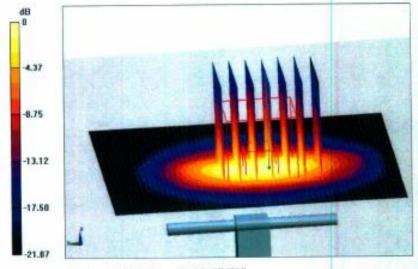
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3142; ConvF(4.29, 4.29, 4.29); Calibrated: 2014-09-01;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check /d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 94.44 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 25.7 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6.02 W/kg

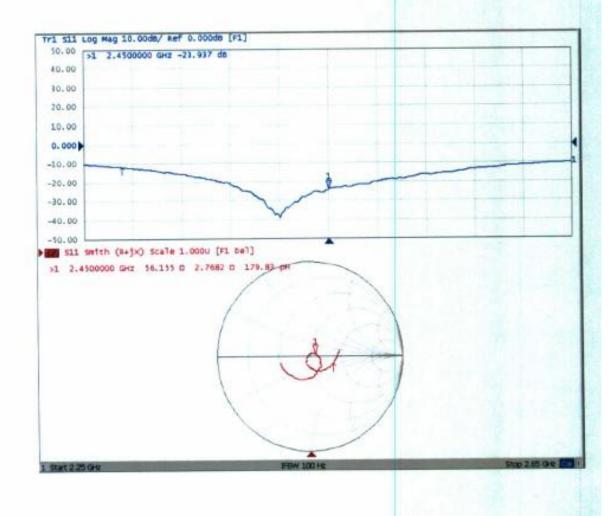
Maximum value of SAR (measured) = 16.7 W/kg

0 dB = 16.7 W/kg = 12.23 dBW/kg

Certificate No: Z14-97101

Page 7 of 8

Report No.: BTL-FCC-SAR-1411C072 Page 57 of 64



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Certificate No: Z14-97101

Page 8 of 8

6. DAE4 Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Famil: enl@chinattl.com Http://www.chinattl.com

Http://www.chinattl.cn E-mail: cttl@chinattl.com Certificate No: Z14-97093 NIM Client : CALIBRATION CERTIFICATE Object DAE4 - SN: 1390 Calibration Procedure(s) TMC-OS-E-01-198 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: September 15, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date(Calibrated by, Certificate No.) ID# Primary Standards July-15 1971018 01-July-14 (CTTL, No:J14X02147) Process Calibrator 753 Function Name Calibrated by: SAR Test Engineer Yu Zongying Reviewed by: SAR Project Leader Qi Dianyuan Approved by: Lu Bingsong Deputy Director of the laboratory Issued. September 17, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 3

Report No.: BTL-FCC-SAR-1411C072

Certificate No: Z14-97093

Page 59 of 64

Add: No.51 Xueyuan Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z14-97093

Page 2 of 3

Add: No.51 Xueyusan Road, Haidian District, Betjing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

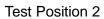
A/D - Converter Resolution nominal

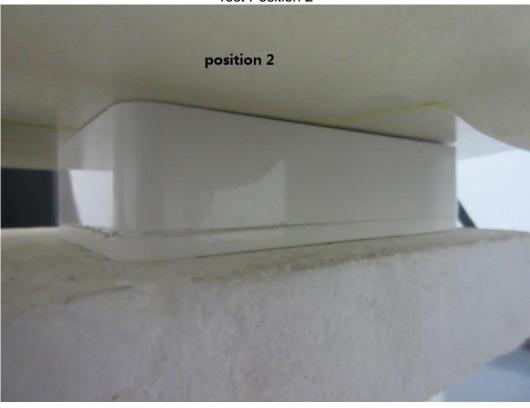
High Range: 1LSB = $6.1\mu V$, full range = -10...+300 mVLow Range: 1LSB = 61nV, full range = -1.....+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	403.699 ± 0.15% (k=2)	403.423 ± 0.15% (k=2)	404.3 ± 0.15% (k=2)
Low Range	3.96442 ± 0.7% (k=2)	3.98241 ± 0.7% (k=2)	3.98276 ± 0.7% (k=2)

Connector Angle

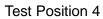
Connector Angle to be used in DASY system	72°±1°
---	--------


Certificate No: Z14-97093


Page 3 of 3

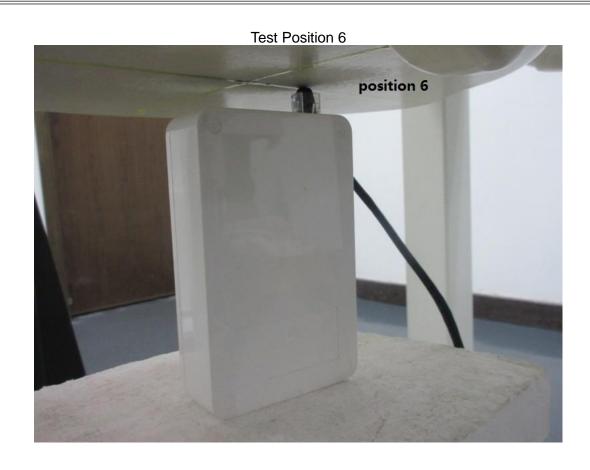
Report No.: BTL-FCC-SAR-1411C072 Page 61 of 64

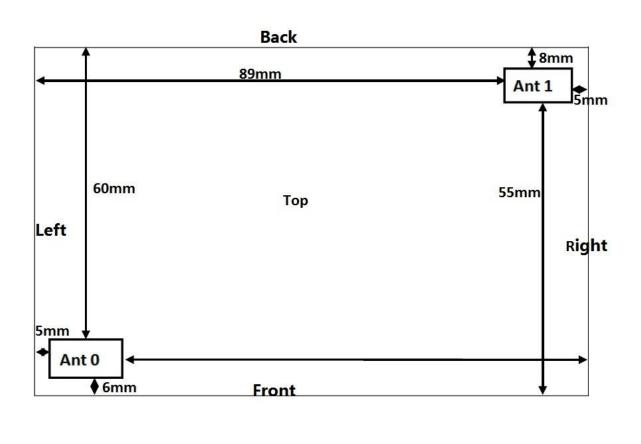
7. EUT Testing Position and Antenna Location



Test Position 3

Report No.: BTL-FCC-SAR-1411C072 Page 62 of 64




Test Position 5

Report No.: BTL-FCC-SAR-1411C072 Page 63 of 64

Report No.: BTL-FCC-SAR-1411C072 Page 64 of 64