Report No: CCIS15020009804

FCC REPORT

Applicant: USA111 Inc

Address of Applicant: 5885 Green Pointe Dr. Suite B Groveport, OH 43125

Equipment Under Test (EUT)

Product Name: smart phone

Model No.: U2

Trade mark: IRULU

FCC ID: 2ADOV-U2

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 07 Feb., 2015

Date of Test: 07 Feb., to 24 Mar., 2015

Date of report issued: 25 Mar., 2015

Test Result: Pass *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	25 Mar., 2015	Original

Prepared by: Date: 25 Mar., 2015

Report Clerk

Reviewed by: Date: 25 Mar., 2015

Project Engineer

3 Contents

			Page
1	С	COVER PAGE	1
2	٧	/ERSION	2
3	С	CONTENTS	3
4	Т	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	5
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	LABORATORY FACILITY	6
	5.6	LABORATORY LOCATION	6
	5.7	TEST INSTRUMENTS LIST	7
6	Т	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	Т	EST SETUP PHOTO	17
8	F	FUT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part15.107	Pass		
Radiated Emission	Part15.109	Pass		

Pass: The EUT complies with the essential requirements in the standard.

Report No: CCIS15020009804

5 General Information

5.1 Client Information

Applicant:	USA111 Inc			
Address of Applicant:	5885 Green Pointe Dr. Suite B Groveport, OH 43125			
Manufacturer/ Factory:	Shenzhen Allland Networking Co., Ltd.			
Address of Manufacture Factory:	Fourth Floor, #B Building, Weiyulong Industrial Park, Xuegang North Road #16, Bantian Street, Longgang District, Shenzhen, China			

5.2 General Description of E.U.T.

Product Name:	smart phone
Model No.:	U2
Power supply:	Rechargeable Li-ion Battery DC3.7V-2000mAh
	Model:JHD-AP006U-050100BB-2
AC adapter :	Input:100-240V AC,50/60Hz 0.2A
	Output:5V DC MAX 1A

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+recording mode	Keep the EUT in Charging+recording mode
Charging+Play mode	Keep the EUT in Charging+Play mode
FM mode	Keep the EUT in FM receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Peport No: CCIS15020009804

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC	
DELL	PC	OPTIPLEX745	N/A	DoC	
DELL	MONITOR	E178FPC	N/A	DoC	
DELL	KEYBOARD	SK-8115	N/A	DoC	
DELL	MOUSE	MOC5UO	N/A	DoC	
HP	Printer	CB495A	05257893	DoC	
MERCURY	Wireless router	MW150R	12922104015	FCC ID	

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

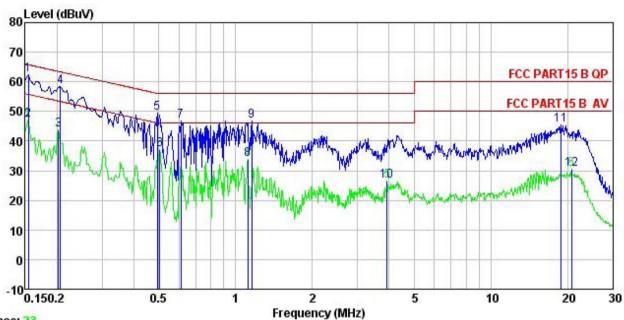
5.7 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	urer Model No. Invento		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Coaxial Cable	CCIS	N/A	CCIS0016	04-01-2014	03-31-2015	
6	Coaxial Cable	CCIS	N/A	CCIS0017	04-01-2014	03-31-2015	
7	Coaxial cable	CCIS	N/A	CCIS0018	04-01-2014	03-31-2015	
8	Coaxial Cable CCIS		N/A	CCIS0019	04-01-2014	03-31-2015	
9	Coaxial Cable	CCIS	N/A	CCIS0087	04-01-2014	03-31-2015	
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	04-01-2014	03-31-2015	
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015	
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015	
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-31-2014	03-29-2015	
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
16	Spectrum analyzer		FSP	CCIS0023	04-19-2014	04-19-2015	
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015	
18	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-014	03-31-2015	
19	Universal radio communication tester		CMU200	CCIS0069	05-29-2014	05-28-2015	
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015	

Conducted Emission:									
ltem	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date			
				No.	(mm-dd-yy)	(mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	06-09-2014	06-08-2015			
2	EMI Test Receiver Rohde & Schwarz		ESCI	CCIS0002	04-19-2014	04-19-2015			
3	LISN	CHASE	MN2050D	CCIS0074	01-10-2014	04-09-2015			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015			

6 Test results and Measurement Data

6.1 Conducted Emission


Test Requirement:	FCC Part 15 B Section 15.10	07	
Test Method:	ANSI C63.4:2003		
Test Frequency Range:	150kHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:		Limit	(dBµV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	0.5-30	60	50
Test setup:	* Decreases with the logarith		
Test procedure	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilization	Filter AC position	nain power through a
	500hm/50uH coupling imp 2. The peripheral devices are a LISN that provides a 500 termination. (Please refers photographs). 3. Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.4:	pedance for the measure also connected to the ohm/50uH coupling imports to the block diagram are checked for maximument the maximum emissed all of the interface care	ring equipment. e main power through pedance with 50ohm of the test setup and m conducted sion, the relative ables must be changed
Test environment:	Temp.: 23 °C Hum	nid.: 56% Pr	ess.: 1 01kPa
Measurement Record:			Jncertainty: 3.28dB
Test Instruments:	Refer to section 5.7 for detail	ls	
Test Instruments: Test mode:	Refer to section 5.7 for detail		

Measurement data:

Line:

Trace: 23

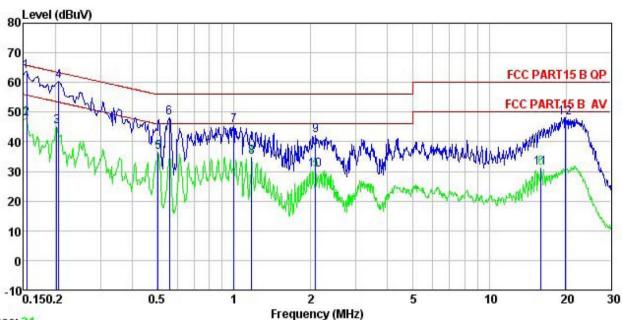
Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 98RF Condition

Pro

EUT : Smart phone Model : U2
Test Mode : PC Mode
Power Rating : AC 120V/60Hz
Environment : Test Tooling : AC 120V/60Hz

Test Engineer: Colin


Remark

vemark	•								
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
-	MHz	dBu∇	<u>dB</u>	₫B	dBu₹	dBu∀	<u>dB</u>		
1	0.154	51.19	0.27	10.78	62.24	65.78	-3.54	QP	
2	0.154	36.08	0.27	10.78	47.13	55.78	-8.65	Average	
3	0.202	32.64	0.28	10.76	43.68	53.54	-9.86	Average	
4	0.206	47.41	0.28	10.76	58.45	63.36	-4.91	QP	
4 5	0.494	38.30	0.29	10.76	49.35	56.10	-6.75	QP	
6 7 8 9	0.505	26.08	0.29	10.76	37.13	46.00	-8.87	Average	
7	0.611	35.88	0.25	10.77	46.90	56.00	-9.10	QP	
8	1.117	22.76	0.25	10.88	33.89	46.00	-12.11	Average	
9	1.160	35.64	0.25	10.89	46.78	56.00	-9.22	QP	
10	3.922	15.44	0.28	10.89	26.61	46.00	-19.39	Average	
11	18.820	34.22	0.34	10.92	45.48	60.00	-14.52	QP	
12	20.704	19.08	0.37	10.92	30.37	50.00	-19.63	Average	

Neutral:

Trace: 21

Site : CCIS Shielding Room

Condition : FCC PART15 B QP LISN NEUTRAL

Pro : 98RF EUT : Smart phone

Model : U2 Test Mode : PC Mode Power Rating : AC 120V/60Hz

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Colin

Remark

CMAIK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu₹	dB	
1	0.154	52.82	0.25	10.78	63.85	65.78	-1.93	QP
2	0.154	36.80	0.25	10.78	47.83	55.78	-7.95	Average
3	0.202	34.20	0.25	10.76	45.21			Average
4	0.206	49.46	0.25	10.76	60.47	63.36	-2.89	QP
4 5 6 7	0.505	25.55	0.29	10.76	36.60	46.00	-9.40	Average
6	0.558	37.00	0.25	10.77	48.02	56.00	-7.98	QP
7	1.000	34.25	0.22	10.87	45.34	56.00	-10.66	QP
8	1.172	23.64	0.24	10.89	34.77	46.00	-11.23	Average
9	2.088	30.90	0.29	10.96	42.15	56.00	-13.85	QP
10	2.088	19.14	0.29	10.96	30.39	46.00	-15.61	Average
11	15.970	20.07	0.25	10.91	31.23	50.00	-18.77	Average
12	19.950	37.05	0.26	10.93	48.24	60.00	-11.76	QP

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Section 15.109								
Test Method:	ANSI C63.4:2003								
Test Frequency Range:	30MHz to 6000MHz								
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:	Frequency	Detec	ctor RBW VB			N Remark			
•	30MHz-1GHz	Quasi-p	oeak	120kHz 300kł		Hz	Iz Quasi-peak Value		
	Above 1GHz	Pea	k	1MHz 3MH		Ιz	Peak Value		
	Above IGIIZ	Pea	k	1MHz	10H	lz	Average Value		
Limit:	Frequency	y	Limi	t (dBuV/m @	93m)		Remark		
	30MHz-88M	lHz		40.0			Quasi-peak Value		
	88MHz-216N	ЛHz		43.5		(Quasi-peak Value		
	216MHz-960I	MHz		46.0		(Quasi-peak Value		
	960MHz-1G	Hz		54.0			Quasi-peak Value		
	Above 1CL	1		54.0			Average Value		
	Above 1Gh	12	74.0			Peak Value			
	Below 1GHz Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz Antenna Tower Horn Antenna Spectrum Analyzer Antenna Tower								

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 							
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 							
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.							
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test environment:	Temp.: 25 °C Humid.: 55% Press.: 1 01kPa							
Measurement Record:	Uncertainty: 4.88dB							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							



Measurement Data

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Smart phone

Model : U2
Test mode : PC Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Colin REMARK :

Freq							Over Limit	Remark
MHz	dBu₹	<u>d</u> B/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
31.955	40.18	12.32	0.45	29.97	22.98	40.00	-17.02	QP
42.900	34.44	13.56	0.54	29.88	18.66	40.00	-21.34	QP
175.652	45.31	9.36	1.35	29.01	27.01	43.50	-16.49	QP
205.675	44.49	10.74	1.41	28.79	27.85	43.50	-15.65	QP
480.528	40.77	16.07	2.35	28.92	30.27	46.00	-15.73	QP
942.131	40.92	21.37	3.44	27.75	37.98	46.00	-8.02	QP
	MHz 31.955 42.900 175.652 205.675 480.528	Freq Level MHz dBuV 31.955 40.18 42.900 34.44 175.652 45.31 205.675 44.49 480.528 40.77	Freq Level Factor MHz dBuV dB/m 31.955 40.18 12.32 42.900 34.44 13.56 175.652 45.31 9.36 205.675 44.49 10.74 480.528 40.77 16.07	Freq Level Factor Loss MHz dBuV dB/m dB 31.955 40.18 12.32 0.45 42.900 34.44 13.56 0.54 175.652 45.31 9.36 1.35 205.675 44.49 10.74 1.41 480.528 40.77 16.07 2.35	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 31.955 40.18 12.32 0.45 29.97 42.900 34.44 13.56 0.54 29.88 175.652 45.31 9.36 1.35 29.01 205.675 44.49 10.74 1.41 28.79 480.528 40.77 16.07 2.35 28.92	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dB dBuV/m 31.955 40.18 12.32 0.45 29.97 22.98 42.900 34.44 13.56 0.54 29.88 18.66 175.652 45.31 9.36 1.35 29.01 27.01 205.675 44.49 10.74 1.41 28.79 27.85 480.528 40.77 16.07 2.35 28.92 30.27	MHz dBuV dB/m dB dB dBuV/m dBuV/m 31.955 40.18 12.32 0.45 29.97 22.98 40.00 42.900 34.44 13.56 0.54 29.88 18.66 40.00 175.652 45.31 9.36 1.35 29.01 27.01 43.50 205.675 44.49 10.74 1.41 28.79 27.85 43.50 480.528 40.77 16.07 2.35 28.92 30.27 46.00	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m dB dB uV/m dB dB uV/m dB uV/m dB dB uV/m dB uV/m

Vertical:

Site : 3m chamber

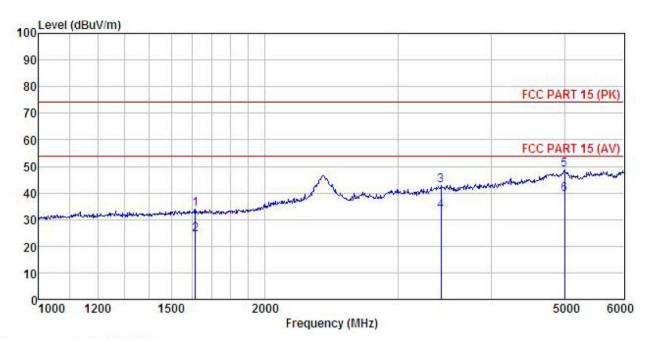
: FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT

Model

: Smart phone : U2 : PC Mode Test mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Colin
REMARK:

Freq						Limit Line	Over Limit	
MHz	dBu∜	<u>dB</u> /m	₫B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
31.955	43.15	12.32	0.45	29.97	25.95	40.00	-14.05	QP
56.991	35.09	12.91	0.67	29.79	18.88	40.00	-21.12	QP
146.888	42.45	8.24	1.30	29.24	22.75	43.50	-20.75	QP
176.269	39.42	9.42	1.35	29.00	21.19	43.50	-22.31	QP
400.432	40.28	15.10	2.12	28.78	28.72	46.00	-17.28	QP
480.528	33.99	16.07	2.35	28.92	23.49	46.00	-22.51	QP
	MHz 31.955 56.991 146.888 176.269 400.432	Freq Level MHz dBuV 31.955 43.15 56.991 35.09 146.888 42.45 176.269 39.42 400.432 40.28	Freq Level Factor MHz dBuV dB/m 31.955 43.15 12.32 56.991 35.09 12.91 146.888 42.45 8.24 176.269 39.42 9.42 400.432 40.28 15.10	Freq Level Factor Loss MHz dBuV dB/m dB 31.955 43.15 12.32 0.45 56.991 35.09 12.91 0.67 146.888 42.45 8.24 1.30 176.269 39.42 9.42 1.35 400.432 40.28 15.10 2.12	MHz dBuV dB/m dB dB 31.955 43.15 12.32 0.45 29.97 56.991 35.09 12.91 0.67 29.79 146.888 42.45 8.24 1.30 29.24 176.269 39.42 9.42 1.35 29.00 400.432 40.28 15.10 2.12 28.78	MHz dBuV dB/m dB dB dBuV/m 31.955 43.15 12.32 0.45 29.97 25.95 56.991 35.09 12.91 0.67 29.79 18.88 146.888 42.45 8.24 1.30 29.24 22.75 176.269 39.42 9.42 1.35 29.00 21.19 400.432 40.28 15.10 2.12 28.78 28.72	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m 31.955 43.15 12.32 0.45 29.97 25.95 40.00 56.991 35.09 12.91 0.67 29.79 18.88 40.00 146.888 42.45 8.24 1.30 29.24 22.75 43.50 176.269 39.42 9.42 1.35 29.00 21.19 43.50 400.432 40.28 15.10 2.12 28.78 28.72 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 31.955 43.15 12.32 0.45 29.97 25.95 40.00 -14.05 56.991 35.09 12.91 0.67 29.79 18.88 40.00 -21.12 146.888 42.45 8.24 1.30 29.24 22.75 43.50 -20.75 176.269 39.42 9.42 1.35 29.00 21.19 43.50 -22.31 400.432 40.28 15.10 2.12 28.78 28.72 46.00 -17.28


Page 14 of 18

Above 1GHz

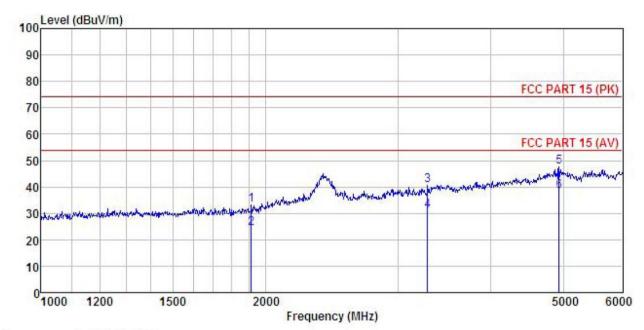
Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone

Model : U2
Test mode : PC Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%


Test Engineer: Colin REMARK :

יוונטונוי	•	Read.	Antenna	Cable	Preamn		Limit	Over		
	Freq		Factor						Remark	
_	MHz	dBu∜	<u>dB</u> /π	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		
1	1613.965	45.73	24.94	4.13	40.97	33.83	74.00	-40.17	Peak	
2	1613.965	36.32	24.94	4.13	40.97	24.42	54.00	-29.58	Average	
3	3427.260	46.96	28.53	6.38	39.09	42.78	74.00	-31.22	Peak	
4	3427.260	37.55	28.53	6.38	39.09	33.37	54.00	-20.63	Average	
5	4999.149	47.78	31.79	9.12	39.98	48.71	74.00	-25.29	Peak	
6	4999.149	38.54	31.79	9.12	39.98	39.47	54.00	-14.53	Average	

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone

Model : U2
Test mode : PC Mode
Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55% Test Engineer: Colin REMARK

nun										
	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
-	MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB		
1	1911.691	43.64	25.81	4.76	40.90	33.31	74.00	-40.69	Peak	
2	1911.691	34.75	25.81	4.76	40.90	24.42	54.00	-29.58	Average	
3	3290.031	45.94	28.35	6.18	39.78	40.69	74.00	-33.31	Peak	
4	3290.031	36.13	28.35	6.18	39.78	30.88	54.00	-23.12	Average	
5	4931.516	46.99	31.61	9.04	40.08	47.56	74.00	-26.44	Peak	
6	4931.516	37.63	31.61	9.04					Average	